2023-05-14 00:41:17.476475: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll D:\ruanjian\Anaconda\envs\tf2\lib\site-packages\h5py\__init__.py:40: UserWarning: h5py is running against HDF5 1.10.5 when it was built against 1.10.4, this may cause problems '{0}.{1}.{2}'.format(*version.hdf5_built_version_tuple) Warning! ***HDF5 library version mismatched error*** The HDF5 header files used to compile this application do not match the version used by the HDF5 library to which this application is linked. Data corruption or segmentation faults may occur if the application continues. This can happen when an application was compiled by one version of HDF5 but linked with a different version of static or shared HDF5 library. You should recompile the application or check your shared library related settings such as 'LD_LIBRARY_PATH'. You can, at your own risk, disable this warning by setting the environment variable 'HDF5_DISABLE_VERSION_CHECK' to a value of '1'. Setting it to 2 or higher will suppress the warning messages totally. Headers are 1.10.4, library is 1.10.5 SUMMARY OF THE HDF5 CONFIGURATION ================================= General Information:什么解决
时间: 2023-06-18 18:05:15 浏览: 221
这个警告是因为你使用的h5py库的头文件版本和链接的HDF5库的版本不匹配。这可能会导致数据损坏或分段错误。你可以尝试重新编译应用程序或检查共享库相关设置,例如LD_LIBRARY_PATH。你也可以通过将环境变量HDF5_DISABLE_VERSION_CHECK设置为1来禁用此警告,但这是有风险的。如果你将其设置为2或更高,将完全禁止警告消息。如果你想解决这个问题,可以尝试重新安装HDF5库,或者使用与你安装的h5py库版本对应的HDF5库版本。
相关问题
分析一下这个结果PS D:\HuaweiMoveData\Users\xu'bi'cheng\Desktop\be reco> python one.py X_train shape: (20477, 80, 3) X_test shape: (6653, 80, 3) y_train shape: (20477,) y_test shape: (6653,) 2025-03-13 21:50:39.872696: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found 2025-03-13 21:50:39.874140: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. 2025-03-13 21:50:50.071107: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library nvcuda.dll 2025-03-13 21:50:50.102860: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:06:00.0 name: GeForce MX250 computeCapability: 6.1 coreClock: 1.582GHz coreCount: 3 deviceMemorySize: 2.00GiB deviceMemoryBandwidth: 52.21GiB/s 2025-03-13 21:50:50.106351: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found 2025-03-13 21:50:50.109650: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cublas64_11.dll'; dlerror: cublas64_11.dll not found 2025-03-13 21:50:50.114413: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cublasLt64_11.dll'; dlerror: cublasLt64_11.dll not found 2025-03-13 21:50:50.119304: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cufft64_10.dll'; dlerror: cufft64_10.dll not found 2025-03-13 21:50:50.122797: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'curand64_10.dll'; dlerror: curand64_10.dll not found 2025-03-13 21:50:50.126463: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cusolver64_11.dll'; dlerror: cusolver64_11.dll not f
<think>好的,我现在需要解决用户在Windows上遇到的TensorFlow CUDA动态链接库缺失的问题,具体是cudart64_110.dll和cublas64_11.dll找不到。首先,我得回忆一下TensorFlow与CUDA版本的兼容性。
首先,用户遇到的错误信息提到缺少cudart64_110.dll,这通常意味着CUDA 11.0的运行时库缺失。但TensorFlow的不同版本需要特定版本的CUDA和cuDNN。例如,TensorFlow 2.4及更高版本通常需要CUDA 11.0,而更早的版本可能需要CUDA 10.1。用户可能安装了不匹配的CUDA版本,或者没有正确安装。
接下来,我需要考虑可能的解决方案。首先是检查CUDA和cuDNN的版本是否正确安装,并确保路径正确。用户可能没有将CUDA的bin目录添加到系统环境变量PATH中,导致系统找不到这些DLL文件。另外,用户可能没有安装对应的cuDNN版本,或者将cuDNN的文件复制到CUDA的安装目录下。
另一个可能性是用户没有NVIDIA GPU,或者没有安装GPU驱动程序。这时候,TensorFlow会回退到CPU模式,但警告信息仍然会出现。用户可能需要确认是否确实需要使用GPU版本的TensorFlow,或者选择安装正确的CUDA工具包。
此外,用户可能安装了多个CUDA版本,导致版本冲突。需要检查环境变量中的路径顺序,确保正确的CUDA版本优先被加载。
可能还需要指导用户通过安装Microsoft Visual C++ Redistributable,因为某些CUDA依赖这些运行时库。同时,检查NVIDIA显卡驱动是否为最新版本,兼容CUDA 11.0。
最后,如果用户不需要使用GPU,可以考虑安装纯CPU版本的TensorFlow,这样可以避免CUDA相关的依赖问题。但需要根据用户的具体需求来判断。
总结下来,解决方案可能包括:验证CUDA和cuDNN版本,确保正确安装并配置环境变量,更新显卡驱动,安装必要的运行时库,或者选择CPU版本的TensorFlow。同时,需要指导用户如何检查这些组件,并给出具体的步骤。</think>针对TensorFlow报错`cudart64_110.dll`和`cublas64_11.dll`缺失的问题,以下是系统级解决方案:
---
### **分步解决方案**
1. **验证CUDA工具包版本**
- TensorFlow 2.4+ 需要CUDA 11.0,而TensorFlow 2.11+ 需要CUDA 11.2[^1]
- 检查已安装的CUDA版本:
```bash
nvcc --version
```
- 若版本不匹配,从[NVIDIA官网](https://developer.nvidia.com/cuda-toolkit-archive)下载对应版本
2. **配置环境变量**
- 将CUDA的`bin`和`libnvvp`目录添加到系统`PATH`:
```
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\libnvvp
```
- 重启终端使配置生效
3. **安装cuDNN库**
- 从[NVIDIA cuDNN页面](https://developer.nvidia.com/cudnn)下载与CUDA版本匹配的cuDNN
- 解压后将其中的`bin`、`include`、`lib`目录文件复制到CUDA安装目录的同名文件夹中
4. **安装Visual C++ Redistributable**
- 安装[Microsoft Visual C++ 2015-2022 Redistributable](https://aka.ms/vs/17/release/vc_redist.x64.exe)
5. **GPU驱动更新**
- 通过NVIDIA GeForce Experience或[驱动下载页面](https://www.nvidia.com/Download/index.aspx)更新驱动至≥456.81版
6. **强制版本对齐(可选)**
- 若存在多版本冲突,通过`where cudart64_*.dll`定位文件位置,删除冗余版本
---
### **验证安装**
```python
import tensorflow as tf
print("GPU可用性:", tf.config.list_physical_devices('GPU'))
```
若输出显示GPU设备,则配置成功;若仍报错,建议尝试纯CPU版本:
```bash
pip install tensorflow-cpu
```
---
2023-06-10 16:51:11.329824: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll 2023-06-10 16:56:47.339190: W tensorflow/stream_executor/cuda/redzone_allocator.cc:312] Internal: Invoking ptxas not supported on Windows Relying on driver to perform ptx compilation. This message will be only logged once. 2023-06-10 16:56:47.537030: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll Traceback (most recent call last):
看起来这是一个 TensorFlow 在 Windows 操作系统上运行时遇到的警告和错误消息。警告消息 "Internal: Invoking ptxas not supported on Windows" 表示在 Windows 操作系统上使用 ptxas 编译器的操作不受支持,因此必须依赖驱动程序来执行 ptx 编译。错误消息的具体内容需要查看 Traceback 中的栈跟踪信息才能确定。请提供更多上下文信息以获得更准确的答案。
阅读全文
相关推荐

















