Ubuntu 18.04的环境系统上连接宇树机器狗 Go1** 并实现目标检测功能开发,涉及到多个步骤,包括硬件配置、软件环境搭建以及算法实现。下面我将详细说明如何实现你提出的目标,逐步指导如何完成图像采集与处理、目标检测
时间: 2025-01-05 18:45:09 浏览: 239
在Ubuntu 18.04的环境系统上连接宇树机器狗Go1并实现目标检测功能开发,可以按照以下步骤进行:
### 硬件配置
1. **连接宇树机器狗Go1**:
- 确保机器狗Go1的电源已开启。
- 使用USB或以太网线将机器狗连接到计算机。如果使用USB,确保计算机识别了设备。
2. **安装必要的驱动程序**:
- 打开终端,更新系统软件包列表:
```bash
sudo apt update
```
- 安装必要的驱动程序(根据机器狗的具体型号和接口,可能需要不同的驱动):
```bash
sudo apt install ros-melodic-usb-cam
sudo apt install ros-melodic-opencv3
```
### 软件环境搭建
1. **安装ROS(Robot Operating System)**:
- 安装ROS Melodic版本(Ubuntu 18.04推荐使用ROS Melodic):
```bash
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654
sudo apt update
sudo apt install ros-melodic-desktop-full
```
- 初始化rosdep:
```bash
sudo rosdep init
rosdep update
```
- 设置环境变量:
```bash
echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc
source ~/.bashrc
```
2. **创建ROS工作空间**:
- 创建工作空间目录:
```bash
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/
catkin_make
```
- 设置工作空间环境变量:
```bash
echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc
```
### 图像采集与处理
1. **安装OpenCV**:
- 安装OpenCV库:
```bash
sudo apt install libopencv-dev python-opencv
```
2. **编写图像采集节点**:
- 在`~/catkin_ws/src`目录下创建一个新的ROS包:
```bash
cd ~/catkin_ws/src
catkin_create_pkg image_processing rospy std_msgs sensor_msgs
```
- 编写图像采集节点脚本(`image_acquisition.py`):
```python
#!/usr/bin/env python
import rospy
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
import cv2
def image_callback(msg):
bridge = CvBridge()
cv_image = bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
cv2.imshow('Image', cv_image)
cv2.waitKey(1)
def main():
rospy.init_node('image_acquisition')
rospy.Subscriber('/camera/image_raw', Image, image_callback)
rospy.spin()
if __name__ == '__main__':
main()
```
- 编写CMakeLists.txt和package.xml文件,配置编译选项。
### 目标检测算法实现
1. **安装深度学习框架**:
- 安装TensorFlow或PyTorch:
```bash
pip install tensorflow
# 或者
pip install torch
```
2. **编写目标检测节点**:
- 在`image_processing`包中创建目标检测节点脚本(`object_detection.py`):
```python
#!/usr/bin/env python
import rospy
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
import cv2
import tensorflow as tf
class ObjectDetector:
def __init__(self):
self.bridge = CvBridge()
self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile('frozen_inference_graph.pb', 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
self.sess = tf.Session(graph=self.detection_graph)
def detect_objects(self, image):
image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num) = self.sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image}
)
return boxes, scores, classes, num
def image_callback(msg):
detector = ObjectDetector()
image = detector.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
image_expanded = np.expand_dims(image, axis=0)
boxes, scores, classes, num = detector.detect_objects(image_expanded)
# 处理检测结果...
def main():
rospy.init_node('object_detection')
rospy.Subscriber('/camera/image_raw', Image, image_callback)
rospy.spin()
if __name__ == '__main__':
main()
```
### 总结
通过以上步骤,你可以在Ubuntu 18.04的环境系统上连接宇树机器狗Go1并实现目标检测功能开发。确保每一步都正确配置和安装必要的软件包,并根据具体需求进行调整。
阅读全文