使用keras框架写一个搭建mobilenetv2的代码
时间: 2023-06-01 19:02:39 浏览: 149
以下是使用Keras框架搭建MobileNetV2的代码:
```
from keras.layers import Input, Conv2D, GlobalAveragePooling2D, Dropout, Dense
from keras.layers import DepthwiseConv2D, BatchNormalization, Activation, Add, Reshape
from keras.models import Model
def relu6(x):
return K.relu(x, max_value=6)
def _conv_block(inputs, filters, kernel, strides):
x = Conv2D(filters, kernel, padding='same', strides=strides)(inputs)
x = BatchNormalization()(x)
return Activation(relu6)(x)
def _bottleneck(inputs, filters, kernel, t, s, r=False):
tchannel = K.int_shape(inputs)[-1] * t
x = _conv_block(inputs, tchannel, (1, 1), (1, 1))
x = DepthwiseConv2D(kernel, strides=(s, s), padding='same', depth_multiplier=1)(x)
x = BatchNormalization()(x)
x = Activation(relu6)(x)
x = Conv2D(filters, (1, 1), strides=(1, 1), padding='same')(x)
x = BatchNormalization()(x)
if r:
x = Add()([x, inputs])
return x
def _inverted_residual_block(inputs, filters, kernel, t, strides, n):
x = _bottleneck(inputs, filters, kernel, t, strides)
for i in range(1, n):
x = _bottleneck(x, filters, kernel, t, 1, True)
return x
def MobileNetV2(input_shape, k):
inputs = Input(shape=input_shape)
x = _conv_block(inputs, 32, (3, 3), strides=(2, 2))
x = _inverted_residual_block(x, 16, (3, 3), t=1, strides=1, n=1)
x = _inverted_residual_block(x, 24, (3, 3), t=6, strides=2, n=2)
x = _inverted_residual_block(x, 32, (3, 3), t=6, strides=2, n=3)
x = _inverted_residual_block(x, 64, (3, 3), t=6, strides=2, n=4)
x = _inverted_residual_block(x, 96, (3, 3), t=6, strides=1, n=3)
x = _inverted_residual_block(x, 160, (3, 3), t=6, strides=2, n=3)
x = _inverted_residual_block(x, 320, (3, 3), t=6, strides=1, n=1)
x = _conv_block(x, 1280, (1, 1), strides=(1, 1))
x = GlobalAveragePooling2D()(x)
x = Reshape((1, 1, 1280))(x)
x = Dropout(0.3, name='Dropout')(x)
x = Conv2D(k, (1, 1), padding='same')(x)
x = Activation('softmax', name='softmax')(x)
output = Reshape((k,))(x)
model = Model(inputs, output)
return model
```
这个代码定义了一个名为MobileNetV2的函数,该函数接受输入形状和类别数,并返回一个Keras模型。该模型使用MobileNetV2网络架构。MobileNetV2是一种轻量级的卷积神经网络,可以用于图像分类、对象检测和语义分割等任务。该网络使用深度可分离卷积层和残差连接来减少参数和计算量,从而实现更高效的计算。
阅读全文
相关推荐

















