kaggle100/100 [==============================] - 38s 385ms/step - loss: 0.3392 - acc: 0.8556 - val_loss: 0.4208 - val_acc: 0.8357 Epoch 99/100 100/100 [==============================] - 38s 384ms/step - loss: 0.3345 - acc: 0.8528 - val_loss: 0.4641 - val_acc: 0.8185 Epoch 100/100 100/100 [==============================] - 38s 381ms/step - loss: 0.3374 - acc: 0.8516 - val_loss: 0.3796 - val_acc: 0.8382 测试集准确度:0.8894用python的ptint函数输出上面结果猫狗识别
时间: 2025-06-05 16:26:27 浏览: 28
### 猫狗分类模型的训练过程和测试结果输出
在猫狗分类模型的训练过程中,可以使用 `print` 函数将训练和验证阶段的关键指标(如 `loss`、`acc`、`val_loss` 和 `val_acc`)输出到控制台。以下是实现此功能的完整代码示例:
```python
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
# 假设定义了以下变量
BATCH_SIZE = 32
EPOCHS = 10
criterion = nn.CrossEntropyLoss()
def train(model, device, train_loader, optimizer, epoch):
model.train()
train_loss = 0.0
correct = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
train_loss /= len(train_loader.dataset)
train_acc = correct / len(train_loader.dataset)
print("Train set: Epoch {} average loss: {:.4f}, accuracy: {}/{} ({:.4f}%)".format(
epoch, train_loss, correct, len(train_loader.dataset), 100. * train_acc))
return train_loss, 100. * train_acc
def val(model, device, val_loader, epoch):
model.eval()
val_loss = 0.0
correct = 0
with torch.no_grad():
for data, target in val_loader:
data, target = data.to(device), target.to(device)
output = model(data)
val_loss += criterion(output, target).item() * data.size(0)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
val_loss /= len(val_loader.dataset)
val_acc = correct / len(val_loader.dataset)
print("\nValidation set: Epoch {} average loss: {:.4f}, accuracy: {}/{} ({:.4f}%)".format(
epoch, val_loss, correct, len(val_loader.dataset), 100. * val_acc))
return val_loss, 100. * val_acc
# 模拟主函数
if __name__ == "__main__":
# 假设定义了模型、设备、数据加载器和优化器
model = None # 替换为实际模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_loader = DataLoader(...) # 替换为实际训练数据加载器
val_loader = DataLoader(...) # 替换为实际验证数据加载器
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(1, EPOCHS + 1):
train_loss, train_acc = train(model, device, train_loader, optimizer, epoch)
val_loss, val_acc = val(model, device, val_loader, epoch)
```
上述代码中,`train` 函数负责训练阶段的损失和准确率计算,并通过 `print` 输出训练集的平均损失和准确率[^1]。`val` 函数则负责验证阶段的损失和准确率计算,并通过 `print` 输出验证集的平均损失和准确率[^1]。
### 注意事项
- 在计算 `train_loss` 和 `val_loss` 时,确保乘以 `data.size(0)`(即每个批次的大小),以便正确计算整个数据集的平均损失[^1]。
- 使用 `argmax` 函数获取预测值的最大索引,并与目标值进行比较以计算准确率[^1]。
### 输出示例
假设训练和验证完成一个 epoch 后,控制台输出如下:
```
Train set: Epoch 1 average loss: 0.6932, accuracy: 875/1000 (87.5000%)
Validation set: Epoch 1 average loss: 0.6875, accuracy: 880/1000 (88.0000%)
```
阅读全文
相关推荐

















