``` import argparse import collections import numpy as np import torch import torch.nn as nn from parse_config import ConfigParser from trainer import Trainer from utils.util import * from data_loader.data_loaders import * import model.loss as module_loss import model.metric as module_metric import model.model as module_arch # 固定随机种子以提高可重复性 SEED = 123 torch.manual_seed(SEED) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False np.random.seed(SEED) def weights_init_normal(m): if isinstance(m, (nn.Conv1d, nn.Conv2d)): nn.init.normal_(m.weight.data, 0.0, 0.02) elif isinstance(m, nn.BatchNorm1d): nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0.0) def main(config, fold_id): batch_size = config["data_loader"]["args"]["batch_size"] logger = config.get_logger('train') # 构建模型并初始化权重 model = config.init_obj('arch', module_arch) model.apply(weights_init_normal) logger.info(model) # 获取损失函数和评估指标 criterion = getattr(module_loss, config['loss']) metrics = [getattr(module_metric, met) for met in config['metrics']] # 构建优化器 trainable_params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = config.init_obj('optimizer', torch.optim, trainable_params) # 加载数据 data_loader, valid_data_loader, data_count = data_generator_np( folds_data[fold_id][0], folds_data[fold_id][1], batch_size ) weights_for_each_class = calc_class_weight(data_count) # 初始化训练器并开始训练 trainer = Trainer( model=model, criterion=criterion, metrics=metrics, optimizer=optimizer, config=config, data_loader=data_loader, fold_id=fold_id, valid_data_loader=valid_data_loader, class_weights=weights_for_each_class ) trainer.train() if __name__ == '__main__': args = argparse.ArgumentParser(description='PyTorch Template') args.add_argument('-c', '--config', default="config.json", type=str, help='config file path (default: None)') args.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)') args.add_argument('-d', '--device', default="0", type=str, help='indices of GPUs to enable (default: all)') args.add_argument('-f', '--fold_id', type=str, help='fold_id') args.add_argument('-da', '--np_data_dir', type=str, help='Directory containing numpy files') CustomArgs = collections.namedtuple('CustomArgs', 'flags type target') options = [] args2 = args.parse_args() fold_id = int(args2.fold_id) config = ConfigParser.from_args(args, fold_id, options) if "shhs" in args2.np_data_dir: folds_data = load_folds_data_shhs(args2.np_data_dir, config["data_loader"]["args"]["num_folds"]) else: folds_data = load_folds_data(args2.np_data_dir, config["data_loader"]["args"]["num_folds"]) main(config, fold_id)```给出的这段代码都调用了哪些其他的模块代码?

时间: 2025-06-13 13:27:33 浏览: 6
<think>好的,我需要分析用户提供的Python代码,找出它调用了哪些其他模块的代码。首先,我会仔细阅读代码中的import语句,这是最直接的模块调用来源。接着,我会检查代码中是否有使用其他自定义模块或函数,比如通过getattr或动态导入的方式。 首先,观察import部分: - `import argparse`、`collections`、`numpy`、`torch`等是标准库或第三方库,这些是明确的依赖。 - `from parse_config import ConfigParser` 这里明显导入了自定义模块parse_config中的ConfigParser类。 - `from trainer import Trainer` 导入了自定义的trainer模块中的Trainer类。 - `from utils.util import *` 这里导入了utils包下util模块的所有内容,可能包含一些工具函数。 - `from data_loader.data_loaders import *` 导入了data_loader包中的data_loaders模块的所有内容,可能包括数据加载相关的函数或类。 - `import model.loss as module_loss`、`model.metric as module_metric`、`model.model as module_arch` 这三个导入分别指向模型相关的损失函数、评估指标和架构模块。 接下来,查看代码中的函数调用: - `data_generator_np` 可能在data_loader.data_loaders模块中定义,因为前面从那里导入了所有内容。 - `calc_class_weight` 可能来自utils.util,因为那里导入了*,但需要确认。 - `load_folds_data_shhs`和`load_folds_data` 同样可能来自data_loader.data_loaders,但用户提到这些函数可能在其他模块,比如data_loader下的某个文件,如data_utils.py。 - `ConfigParser.from_args` 调用了parse_config模块中的ConfigParser类的方法。 - `Trainer`类的初始化在trainer模块中定义。 - `model.loss`中的具体损失函数,例如可能通过getattr(module_loss, config['loss'])动态获取。 - 类似地,metrics也是从model.metric模块中动态导入的。 - 模型架构来自model.model模块,通过config.init_obj('arch', module_arch)进行初始化。 可能的遗漏点: - `parse_config`模块可能包含其他辅助函数或配置处理类。 - `utils.util`可能包含calc_class_weight,但用户代码中该函数是否在此模块需要确认。 - 数据加载函数如load_folds_data_shhs可能在data_loader的某个子模块中,比如data_utils.py或者data_loaders.py。 - 是否存在其他自定义模块,比如logger的配置可能在utils中,或者config.json的解析需要其他模块支持。 需要确保所有被调用的函数和类都能在导入的模块中找到。例如,在`main`函数中,`data_generator_np`应该来自data_loader.data_loaders,而`calc_class_weight`来自utils.util。另外,`load_folds_data_shhs`和`load_folds_data`可能来自data_loader.data_loaders或其他相关模块。 总结调用的模块包括: - parse_config - trainer - utils.util - data_loader.data_loaders - model.loss - model.metric - model.model - 可能的其他data_loader子模块,如data_utils 需要检查每个函数和类的来源,确保没有遗漏。例如,ConfigParser来自parse_config,Trainer来自trainer,data_generator_np来自data_loader.data_loaders,calc_class_weight来自utils.util,load_folds_data相关函数可能来自data_loader.data_loaders或其他模块如data_utils。</think>以下是代码中调用的主要模块及其功能分析,按调用关系分层说明: $\boxed{标准库模块}$ - $\boxed{argparse}$: 处理命令行参数解析 - $\boxed{collections}$: 用于创建命名元组CustomArgs - $\boxed{numpy}$: 科学计算,处理数据生成 - $\boxed{torch}$: PyTorch深度学习框架 - $\boxed{nn}$: 神经网络模块 - $\boxed{optim}$: 优化器相关 $\boxed{自定义模块}$ 1. $\boxed{parse_config}$ 配置解析模块 - $\boxed{ConfigParser}$ 类:处理配置文件(config.json)的加载和解析 2. $\boxed{trainer}$ 训练核心模块 - $\boxed{Trainer}$ 类:封装整个训练流程 3. $\boxed{utils.util}$ 工具函数模块 - $\boxed{calc\_class\_weight}$: 计算类别权重 - 可能包含其他工具函数(如随机种子设置等) 4. $\boxed{data\_loader.data\_loaders}$ 数据加载模块 - $\boxed{data\_generator\_np}$: 数据生成器 - $\boxed{load\_folds\_data}$: 加载交叉验证数据 - $\boxed{load\_folds\_data\_shhs}$: 特定数据集加载方法 5. 模型相关模块 - $\boxed{model.loss}$: 损失函数实现 - $\boxed{model.metric}$: 评估指标实现 - $\boxed{model.model}$: 模型架构定义 $\boxed{调用关系示意图}$ ``` main() ├─ ConfigParser.from_args() # 配置解析 ├─ data_generator_np() # 数据生成 ├─ calc_class_weight() # 类别权重计算 ├─ module_arch.Architecture # 模型构建 ├─ module_loss.LossFunction # 损失函数 ├─ module_metric.Metric # 评估指标 └─ Trainer.train() # 训练流程控制 ``` $\boxed{特殊调用方式}$ 1. 动态加载机制: ```python # 根据配置动态获取类/函数 model = config.init_obj('arch', module_arch) # 从model.model加载指定模型 criterion = getattr(module_loss, config['loss']) # 从model.loss动态获取损失函数 ``` 2. 权重初始化: ```python model.apply(weights_init_normal) # 自定义的卷积层/BN层初始化 ``` 该代码实现了一个典型的深度学习训练框架,通过模块化设计实现了配置解析、数据加载、模型构建、训练流程的分离,具有良好的可扩展性。
阅读全文

相关推荐

import argparse import collections import numpy as np import torch import torch.nn as nn from parse_config import ConfigParser from trainer import Trainer from utils.util import * from data_loader.data_loaders import * import model.loss as module_loss import model.metric as module_metric import model.model as module_arch # 固定随机种子以提高可重复性 SEED = 123 torch.manual_seed(SEED) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False np.random.seed(SEED) def weights_init_normal(m): if isinstance(m, (nn.Conv1d, nn.Conv2d)): nn.init.normal_(m.weight.data, 0.0, 0.02) elif isinstance(m, nn.BatchNorm1d): nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0.0) def main(config, fold_id): batch_size = config["data_loader"]["args"]["batch_size"] logger = config.get_logger('train') # 构建模型并初始化权重 model = config.init_obj('arch', module_arch) model.apply(weights_init_normal) logger.info(model) # 获取损失函数和评估指标 criterion = getattr(module_loss, config['loss']) metrics = [getattr(module_metric, met) for met in config['metrics']] # 构建优化器 trainable_params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = config.init_obj('optimizer', torch.optim, trainable_params) # 加载数据 data_loader, valid_data_loader, data_count = data_generator_np( folds_data[fold_id][0], folds_data[fold_id][1], batch_size ) weights_for_each_class = calc_class_weight(data_count) # 初始化训练器并开始训练 trainer = Trainer( model=model, criterion=criterion, metrics=metrics, optimizer=optimizer, config=config, data_loader=data_loader, fold_id=fold_id, valid_data_loader=valid_data_loader, class_weights=weights_for_each_class ) trainer.train() if __name__ == '__main__': args = argparse.ArgumentParser(description='PyTorch Template') args.add_argument('-c', '--config', default="config.json", type=str, help='config file path (default: None)') args.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)') args.add_argument('-d', '--device', default="0", type=str, help='indices of GPUs to enable (default: all)') args.add_argument('-f', '--fold_id', type=str, help='fold_id') args.add_argument('-da', '--np_data_dir', type=str, help='Directory containing numpy files') CustomArgs = collections.namedtuple('CustomArgs', 'flags type target') options = [] args2 = args.parse_args() fold_id = int(args2.fold_id) config = ConfigParser.from_args(args, fold_id, options) if "shhs" in args2.np_data_dir: folds_data = load_folds_data_shhs(args2.np_data_dir, config["data_loader"]["args"]["num_folds"]) else: folds_data = load_folds_data(args2.np_data_dir, config["data_loader"]["args"]["num_folds"]) main(config, fold_id)可以在服务器下运行吗?

import argparse import collections import numpy as np from data_loader.data_loaders import * import model.loss as module_loss import model.metric as module_metric import model.model as module_arch from parse_config import ConfigParser from trainer import Trainer from utils.util import * import torch import torch.nn as nn # fix random seeds for reproducibility SEED = 123 torch.manual_seed(SEED) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False np.random.seed(SEED) def weights_init_normal(m): if type(m) == nn.Conv2d: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif type(m) == nn.Conv1d: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif type(m) == nn.BatchNorm1d: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) def main(config, fold_id): batch_size = config["data_loader"]["args"]["batch_size"] logger = config.get_logger('train') # build model architecture, initialize weights, then print to console model = config.init_obj('arch', module_arch) model.apply(weights_init_normal) logger.info(model) # get function handles of loss and metrics criterion = getattr(module_loss, config['loss']) metrics = [getattr(module_metric, met) for met in config['metrics']] # build optimizer trainable_params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = config.init_obj('optimizer', torch.optim, trainable_params) data_loader, valid_data_loader, data_count = data_generator_np(folds_data[fold_id][0], folds_data[fold_id][1], batch_size) weights_for_each_class = calc_class_weight(data_count) trainer = Trainer(model, criterion, metrics, optimizer, config=config, data_loader=data_loader, fold_id=fold_id, valid_data_loader=valid_data_loader, class_weights=weights_for_each_class) trainer.train() if __name__ == '__main__': args = argparse.ArgumentParser(description='PyTorch Template') args.add_argument('-c', '--config', default="config.json", type=str, help='config file path (default: None)') args.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)') args.add_argument('-d', '--device', default="0", type=str, help='indices of GPUs to enable (default: all)') args.add_argument('-f', '--fold_id', type=str, help='fold_id') args.add_argument('-da', '--np_data_dir', type=str, help='Directory containing numpy files') CustomArgs = collections.namedtuple('CustomArgs', 'flags type target') options = [] args2 = args.parse_args() fold_id = int(args2.fold_id) config = ConfigParser.from_args(args, fold_id, options) if "shhs" in args2.np_data_dir: folds_data = load_folds_data_shhs(args2.np_data_dir, config["data_loader"]["args"]["num_folds"]) else: folds_data = load_folds_data(args2.np_data_dir, config["data_loader"]["args"]["num_folds"]) main(config, fold_id)逐行代码都是什么意思?请给我讲解

SEED = 123#随机种子设置部分以下 torch.manual_seed(SEED)# 固定PyTorch随机种子 torch.backends.cudnn.deterministic = False# 允许CUDA优化 torch.backends.cudnn.benchmark = False np.random.seed(SEED)# 固定Numpy随机种子 def weights_init_normal(m):#权重初始化函数部分 if type(m) == nn.Conv2d:# 对2D卷积层正态初始化 torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif type(m) == nn.Conv1d:#对2D卷积(nn.Conv2d)和1D卷积(nn.Conv1d)使用相同的初始化策略 采用小标准差(0.02)的正态分布: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif type(m) == nn.BatchNorm1d:# 对1D批归一化层初始化 torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) def main(config, fold_id): batch_size = config["data_loader"]["args"]["batch_size"] logger = config.get_logger('train') # build model architecture, initialize weights, then print to console model = config.init_obj('arch', module_arch) model.apply(weights_init_normal) logger.info(model) # get function handles of loss and metrics criterion = getattr(module_loss, config['loss']) metrics = [getattr(module_metric, met) for met in config['metrics']] # build optimizer trainable_params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = config.init_obj('optimizer', torch.optim, trainable_params) data_loader, valid_data_loader, data_count = data_generator_np(folds_data[fold_id][0], folds_data[fold_id][1], batch_size) weights_for_each_class = calc_class_weight(data_count) trainer = Trainer(model, criterion, metrics, optimizer, config=config, data_loader=data_loader, fold_id=fold_id, valid_data_loader=valid_data_loader, class_weights=weights_for_each_class) trainer.train() if __name__ == '__main__': args = argparse.ArgumentParser(description='PyTorch Template') args.add_argument('-c', '--config', default="config.json", type=str, help='config file path (default: None)') args.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)') args.add_argument('-d', '--device', default="0", type=str, help='indices of GPUs to enable (default: all)') args.add_argument('-f', '--fold_id', type=str, help='fold_id') args.add_argument('-da', '--np_data_dir', type=str, help='Directory containing numpy files') CustomArgs = collections.namedtuple('CustomArgs', 'flags type target') options = [] args2 = args.parse_args() fold_id = int(args2.fold_id) config = ConfigParser.from_args(args, fold_id, options) if "shhs" in args2.np_data_dir: folds_data = load_folds_data_shhs(args2.np_data_dir, config["data_loader"]["args"]["num_folds"]) else: folds_data = load_folds_data(args2.np_data_dir, config["data_loader"]["args"]["num_folds"]) main(config, fold_id) 请逐行解释该部分代码,并标出调用其他文件的指令部分,训练过程有没有调用其他部分的代码指令

最新推荐

recommend-type

浅谈电力系统中IP技术在自动化远动通道故障分析的应用1(1).docx

浅谈电力系统中IP技术在自动化远动通道故障分析的应用1(1).docx
recommend-type

论信息化技术在小学数学教学中的应用(1).docx

论信息化技术在小学数学教学中的应用(1).docx
recommend-type

常用CAD快捷键技巧(1).docx

常用CAD快捷键技巧(1).docx
recommend-type

基于计算机信息系统的项目成本管理策略(1).docx

基于计算机信息系统的项目成本管理策略(1).docx
recommend-type

大学生计算机毕业实习报告(7篇)(1).doc

大学生计算机毕业实习报告(7篇)(1).doc
recommend-type

单片机实验开发板程序编写指南

单片机实验程序的知识点可以从单片机的概念、开发板的作用、实验的目的以及具体程序编写与调试方面进行详细阐述。 首先,单片机(Single-Chip Microcomputer),又称微控制器,是将中央处理单元(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入输出接口等主要计算机功能部件集成在一片芯片上的微小型计算机。它具备独立处理特定任务的能力,广泛应用于嵌入式系统中。单片机由于其成本低廉、体积小、功耗低、控制简单等特点,被广泛应用于家用电器、办公自动化、汽车电子、工业控制等众多领域。 接着,开发板(Development Board)是为了方便开发者使用单片机而设计的一种实验平台,通常集成了单片机、电源管理模块、外围接口电路、调试接口、编程接口等。开发板的主要作用是提供一个简洁的硬件环境,让开发者可以更容易地进行实验、测试和程序开发。在使用开发板进行单片机实验时,可以通过编程器将用户编写的程序烧录到单片机中,然后进行实际操作和测试。 实验的目的通常是为了验证某些特定的功能或者算法。在实验中,开发者可以使用单片机开发板来实现对输入信号的检测、处理和输出控制。例如,可以编写程序使单片机控制LED灯的亮灭,或者读取按键输入并根据按键的不同进行不同的控制。实验程序可以是一个简单的循环处理,也可以是复杂的算法实现,如数据通信、中断处理、定时器使用等。 在编写单片机实验程序时,首先需要了解所使用的单片机的指令集和硬件资源。以常用的8051单片机为例,需要熟悉其寄存器配置、特殊功能寄存器(SFR)的使用以及I/O口操作等。编写程序时,通常会使用C语言或者汇编语言。C语言因其可读性好、编写效率高而更受欢迎。开发者可以使用Keil uVision、IAR Embedded Workbench等集成开发环境(IDE)来编写、编译和调试代码。 在程序调试阶段,可以通过开发板上的调试接口,如JTAG、ISP等,将编译好的程序下载到单片机中。调试过程通常包括设置断点、单步执行、查看寄存器和内存内容等操作。通过调试可以发现并修正程序中的逻辑错误或硬件交互问题。 另外,为了保证程序的可靠性和稳定性,实验程序设计时还应考虑异常处理、资源管理以及功耗优化等因素。编写高效的单片机程序不仅仅是让程序按预期运行,还要考虑到程序运行的效率、资源消耗以及对异常情况的应对。 总之,基于开发板的单片机实验程序开发涉及到硬件理解、软件编程、程序调试等多个环节。开发者需要将理论知识与实际操作相结合,通过不断的学习和实践,掌握单片机编程和应用开发的关键技能。这不仅需要对单片机的基础知识有深入的了解,还需要对开发板的功能和特性有充分的认识,从而能够设计出高效、稳定和实用的单片机应用系统。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

ubuntu 检查下载源

<think>我们正在讨论Ubuntu系统中检查和配置下载源(软件源)的方法。用户的需求很明确:如何检查当前配置的下载源,以及如何修改它们。根据引用[1]和[2]中的信息,我们知道在Ubuntu中,软件源配置存储在`/etc/apt/sources.list`文件中以及`/etc/apt/sources.list.d/`目录下的额外文件中。修改源通常包括备份当前配置、编辑源列表文件、更新软件包列表等步骤。步骤分解:1.检查当前下载源:可以通过查看`sources.list`文件和`sources.list.d/`目录中的文件内容来实现。2.修改下载源:包括备份、编辑源列表(替换为新的镜像源地址
recommend-type

办公软件:下载使用指南与资源包

标题中提到的“offices办公软件”,指的是Office套件,这是一系列办公应用程序的集合,通常包括文字处理软件(如Microsoft Word)、电子表格软件(如Microsoft Excel)、演示文稿制作软件(如Microsoft PowerPoint),以及邮件管理软件等。该软件包旨在帮助用户提高工作效率,完成文档撰写、数据分析、演示制作等多种办公任务。 描述部分非常简单,提到“一个很好公办软件你一定很爱他快来下载吧加强团结”,表达了对软件的高度评价和期待用户下载使用,以促进工作中的团结协作。不过,这段描述中可能存在错别字或排版问题,正确的表达可能是“一款非常好的办公软件,你一定很爱它,快来下载吧,加强团结”。 标签部分为“dddd”,这显然不是一个有效的描述或分类标签,它可能是由于输入错误或者故意设置的占位符。 压缩包子文件的文件名称列表中包含了以下文件: - keygen.exe:这是一个序列号生成器的可执行文件,通常用于生成软件的注册码或激活码,使得用户能够在不支付授权费用的情况下使用某些付费软件。然而,这通常是违反软件许可协议的行为,也可能涉及到法律风险。 - 说明_Readme.html:这是一个HTML格式的说明文件,通常会包含该软件的安装指南、使用方法、版本信息、已知问题、版权声明和致谢等内容。阅读这个文件可以帮助用户正确安装和使用软件。 - OfficeSuite 4_50.sis:这是一个适用于Symbian操作系统的安装包文件,SIS是Symbian Install File的缩写。从文件名可以看出,这是一个名为“OfficeSuite”的软件的第50个版本,版本号为4.0。Symbian曾是智能手机操作系统之一,通常用于诺基亚等品牌的设备上,但随着智能手机市场的变化,现在已很少见,市场上主流的智能手机操作系统已转向Android和iOS。 - resource:这个名称很模糊,没有文件扩展名,因此无法确定具体是什么类型的资源。它可能是一个包含字体、图像或其他资源文件的文件夹,这些资源文件用于支持Office套件在不同设备或操作系统上的运行。 在使用这些文件时,特别是涉及到keygen.exe这类软件时,用户应谨慎行事。应避免使用未经授权的软件,不仅因为其可能违反法律,还可能对计算机系统造成安全风险。在下载和安装任何软件时,应确保来源的可靠性,并从官方渠道获取正版授权。此外,对于已经过时或不再受支持的软件,比如针对Symbian系统的OfficeSuite,用户可能需要寻找其他替代方案来满足当前的办公需求。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的