u3unet代码复现
时间: 2025-05-24 20:10:46 浏览: 20
### U3UNet 的代码复现教程
U3UNet 是一种改进版的 UNet 架构,通常用于更复杂的医学图像分割任务或其他高分辨率需求的任务。其核心思想是在原始 UNet 基础上增加更多的层次和连接方式来提升性能。
以下是基于 PyTorch 实现 U3UNet 的基本思路以及代码示例:
#### 数据加载部分
在构建 U3UNet 之前,需要准备数据集并完成加载工作。这可以通过 `torch.utils.data.DataLoader` 来实现[^1]。假设我们已经有了一个自定义的数据集类 `CustomDataset`,则可以按照如下方式进行设置:
```python
from torch.utils.data import DataLoader, Dataset
class CustomDataset(Dataset):
def __init__(self, images, masks, transform=None):
self.images = images
self.masks = masks
self.transform = transform
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx]
mask = self.masks[idx]
if self.transform:
image = self.transform(image)
mask = self.transform(mask)
return image, mask
train_dataset = CustomDataset(images_train, masks_train, transform=train_transforms)
val_dataset = CustomDataset(images_val, masks_val, transform=val_transforms)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
```
#### U3UNet 网络结构设计
U3UNet 结合了多次下采样、上采样以及跳跃连接的思想,并进一步增强了网络深度和复杂度。以下是一个简单的 U3UNet 实现方案:
```python
import torch.nn as nn
import torch
class DoubleConv(nn.Module):
"""Double Convolution Layer"""
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class DownBlock(nn.Module):
"""Downsampling Block with MaxPooling and DoubleConv"""
def __init__(self, in_channels, out_channels):
super(DownBlock, self).__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(kernel_size=2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class UpBlock(nn.Module):
"""Upsampling Block with Transposed Convolution and Concatenation"""
def __init__(self, in_channels, out_channels):
super(UpBlock, self).__init__()
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = nn.functional.pad(x1, [diffX // 2, diffX - diffX//2,
diffY // 2, diffY - diffY//2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class U3UNet(nn.Module):
def __init__(self, n_channels, n_classes):
super(U3UNet, self).__init__()
factor = 2
self.inc = DoubleConv(n_channels, 64)
self.down1 = DownBlock(64, 128)
self.down2 = DownBlock(128, 256)
self.down3 = DownBlock(256, 512)
self.down4 = DownBlock(512, 1024 // factor)
self.up1 = UpBlock(1024, 512 // factor)
self.up2 = UpBlock(512, 256 // factor)
self.up3 = UpBlock(256, 128 // factor)
self.up4 = UpBlock(128, 64)
self.outc = nn.Conv2d(64, n_classes, kernel_size=1)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
u1 = self.up1(x5, x4)
u2 = self.up2(u1, x3)
u3 = self.up3(u2, x2)
u4 = self.up4(u3, x1)
logits = self.outc(u4)
return logits
```
#### 训练过程
为了训练 U3UNet 模型,可以选择交叉熵损失函数或者 Dice Loss 函数作为优化目标。下面展示了一个完整的训练循环例子:
```python
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = U3UNet(n_channels=3, n_classes=1).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.BCEWithLogitsLoss()
def train_model(model, dataloader, optimizer, loss_fn, device):
model.train()
running_loss = 0.0
for i, (images, masks) in enumerate(dataloader):
images, masks = images.to(device), masks.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = loss_fn(outputs, masks)
loss.backward()
optimizer.step()
running_loss += loss.item()
epoch_loss = running_loss / len(dataloader)
return epoch_loss
for epoch in range(num_epochs):
train_loss = train_model(model, train_loader, optimizer, loss_fn, device)
print(f"Epoch {epoch+1}/{num_epochs}, Training Loss: {train_loss:.4f}")
```
---
###
阅读全文
相关推荐

















