DEIM模型代码
时间: 2025-05-10 10:31:46 浏览: 26
### 关于 DEIM 模型的代码实现
DEIM(Discrete Empirical Interpolation Method)是一种用于模型降阶的技术,在目标检测领域也有其应用版本。以下是基于现有研究和公开资料整理的相关代码实现思路。
#### 1. **DEIM 的核心算法**
DEIM 是一种数值分析技术,主要用于减少高维系统的计算复杂度。其实现通常涉及以下几个部分:
- 构建低秩近似矩阵。
- 使用经验插值法选择重要的基向量。
- 实现离散化插值过程以逼近原始系统的行为。
以下是一个简单的 Python 示例,展示如何构建基本的 DEIM 过程:
```python
import numpy as np
def deim_algorithm(U, tol=1e-6):
"""
Discrete Empirical Interpolation Method (DEIM) algorithm.
Parameters:
U : ndarray
The matrix of basis vectors obtained from POD or other methods.
tol : float
Tolerance for selecting interpolation points.
Returns:
P : list
Indices of selected interpolation points.
"""
m, n = U.shape
P = []
Q = []
V = np.zeros((m, n))
R = np.copy(U)
for j in range(n):
i_star = np.argmax(np.abs(R[:, j])) # Select the row with maximum absolute value
P.append(i_star)
v_j = R[i_star, :] / R[i_star, j]
V[:, j] = v_j
if j < n - 1:
R -= np.outer(v_j * R[i_star, :], R[:, j].T)
residual_norm = np.linalg.norm(R[:, j])
if residual_norm < tol:
break
return P
# Example usage
U = np.random.rand(100, 20) # Assume this is a reduced basis matrix
P = deim_algorithm(U)
print(f"Selected interpolation indices: {P}")
```
此代码实现了基础的 DEIM 算法逻辑[^1]。
---
#### 2. **目标检测中的 DEIM 改进版**
对于目标检测场景下的 DEIM,主要集中在两个方面的改进:Dense One-to-One (Dense O2O) 和 Matchability-Aware Loss (MAL)[^3]。这些改进可以通过调整损失函数和数据增强策略来实现。
##### (1)Dense One-to-One (Dense O2O)
Dense O2O 提升了正样本数量,因此可以在训练过程中引入更多的监督信号。具体实现如下:
```python
import torch.nn.functional as F
def dense_o2o_loss(preds, targets, num_pos_samples_factor=2.0):
"""
Compute Dense One-to-One loss by increasing positive sample density.
Parameters:
preds : Tensor
Predicted bounding box coordinates and class scores.
targets : Tensor
Ground truth labels and bounding boxes.
num_pos_samples_factor : float
Factor to increase the number of positive samples.
Returns:
loss : Tensor
Computed loss value.
"""
pos_mask = targets >= 0 # Identify positive samples
neg_mask = ~pos_mask
# Increase the weight of positive samples dynamically
weights = torch.ones_like(targets)
weights[pos_mask] *= num_pos_samples_factor
loss = F.binary_cross_entropy_with_logits(preds, targets, weight=weights)
return loss
```
##### (2)Matchability-Aware Loss (MAL)
MAL 聚焦于优化匹配质量,可通过自定义损失函数实现:
```python
def matchability_aware_loss(match_scores, threshold=0.5):
"""
Compute Matchability-Aware Loss based on matching quality.
Parameters:
match_scores : Tensor
Scores indicating how well predictions match ground truths.
threshold : float
Threshold above which matches are considered valid.
Returns:
mal_loss : Tensor
MAL loss value.
"""
valid_matches = match_scores > threshold
invalid_matches = ~valid_matches
mal_loss = torch.mean(torch.where(valid_matches, 1 - match_scores, match_scores))
return mal_loss
```
上述两段代码分别展示了 Dense O2O 和 MAL 的实现方式[^3]。
---
#### 3. **Windows 部署环境配置**
为了在 Windows 上运行 DEIM 或其他深度学习模型,需安装必要的依赖项[^4]。以下是一份推荐的安装指南:
```bash
pip install torch>=2.0.1 torchvision>=0.15.2 faster-coco-eval>=1.6.5 PyYAML tensorboard scipy calflops transformers
```
完成依赖安装后,可加载预训练权重并执行推理脚本。例如:
```python
from models.deim import DEIMModel
from utils.inference import run_inference
model = DEIMModel(pretrained=True)
run_inference(model, input_image_path="test.jpg", output_dir="results/")
```
以上代码片段假设 `models` 文件夹中存在 `deim.py` 文件,并提供了完整的模型类定义。
---
###
阅读全文
相关推荐







