Res-uNet segmentation
时间: 2025-02-06 16:02:13 浏览: 59
### Res-U-Net分割模型的实现与应用
#### 背景介绍
Res-U-Net 是一种结合了残差网络 (ResNet) 和 U-Net 的架构,在医学图像处理和计算机视觉任务中表现出色。这种结构不仅继承了U-Net 结合了两个重要组件:
1. **编码器部分**:基于改进后的ResNet模块构建,能够有效捕捉输入图片的空间信息并逐步降低分辨率。
2. **解码器部分**:负责恢复空间维度的同时融合来自编码路径的不同层次特征图,从而提高最终预测的质量。
两者之间存在多层跳过链接(skip connections),允许低级细节直接传递到高级表示层面,这对于保持边界清晰至关重要[^2]。
#### 实现方法
下面展示了一个简单的PyTorch版本Res-U-Net框架示例代码:
```python
import torch.nn as nn
import torch
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class DownBlock(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class UpBlock(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
else:
self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class ResUNet(nn.Module):
def __init__(n_classes):
super().__init__()
factor = 2
self.inc = DoubleConv(3, 64)
self.down1 = DownBlock(64, 128)
self.down2 = DownBlock(128, 256)
self.down3 = DownBlock(256, 512)
self.down4 = DownBlock(512, 1024 // factor)
self.up1 = UpBlock(1024, 512 // factor, bilinear=False)
self.up2 = UpBlock(512, 256 // factor, bilinear=False)
self.up3 = UpBlock(256, 128 // factor, bilinear=False)
self.up4 = UpBlock(128, 64, bilinear=False)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
```
此段代码定义了一个基本版的Res-U-Net神经网络类`ResUNet`, 它包含了卷积操作、池化以及上采样等必要组成部分,并利用跳跃连接来增强性能表现[^3].
阅读全文
相关推荐











