SDXL controlnet canny 模型训练
时间: 2025-02-09 08:09:44 浏览: 157
### 使用Canny边缘检测作为ControlNet模块进行SDXL模型训练的方法
#### 准备工作
为了使用Canny边缘检测作为ControlNet模块来增强Stable Diffusion XL (SDXL) 的图像生成能力,需先完成环境配置和依赖库的安装。确保已按照官方文档中的说明设置好Python虚拟环境并安装必要的包[^1]。
#### 加载预训练模型
加载用于实验的基础模型`controlnet-canny-sdxl-1.0.safetensors`文件以及对应的Diffusers管道组件。这一步骤对于初始化项目至关重要,因为这些权重决定了网络架构及其初始性能水平[^2]。
```python
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
# Load the pre-trained model and pipeline components.
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0",
torch_dtype=torch.float16
)
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16
).to("cuda")
```
#### 数据集准备与处理
构建适合于训练的数据集,并对其进行适当转换以便输入到神经网络中。通常情况下会采用自定义Dataset类实现数据读取逻辑,在此过程中可以应用OpenCV或其他计算机视觉工具来进行图片预处理操作,比如调整大小、裁剪等。特别需要注意的是要提取每张原图对应的Canny边缘特征图作为额外条件信息传递给ControlNet层。
```python
import cv2
import numpy as np
from PIL import Image
from torchvision.transforms.functional import to_tensor
class CustomImageDataset(torch.utils.data.Dataset):
def __init__(self, image_paths):
self.image_paths = image_paths
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
img_path = self.image_paths[idx]
# Read an RGB image from file path using OpenCV
bgr_img = cv2.imread(img_path)
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
# Convert it into grayscale for edge detection with Canny algorithm
gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2GRAY)
edges = cv2.Canny(gray_img, threshold1=100, threshold2=200)
# Normalize both images between [-1, 1], convert them to tensors
tensor_rgb = to_tensor(Image.fromarray(np.uint8(rgb_img))).float()
tensor_edges = to_tensor(Image.fromarray(edges)).float()
return {"image": tensor_rgb * 2 - 1., "conditioning_image": tensor_edges * 2 - 1.}
```
#### 训练流程设计
设定超参数如批次大小(batch size),迭代次数(epochs),优化器(optimizer settings)等;编写损失函数计算部分以指导反向传播更新权值的过程。考虑到任务特性可能还需要加入正则化项防止过拟合现象发生。此外,定期保存checkpoint有助于后续恢复中断的任务继续执行下去。
```python
optimizer = torch.optim.AdamW(pipeline.unet.parameters(), lr=5e-6)
loss_fn = torch.nn.MSELoss(reduction='mean')
for epoch in range(num_epochs):
running_loss = []
for batch_idx, data in enumerate(dataloader):
optimizer.zero_grad(set_to_none=True)
prompt_embeds = pipeline.text_encoder(data["prompt"])[0]
noise_pred_clean = pipeline.unet(
data['image'].half().to('cuda'),
timestep=timesteps[batch_idx].repeat(BATCH_SIZE),
encoder_hidden_states=prompt_embeds.half().to('cuda')
).sample
conditioning_zero_out = torch.zeros_like(data['conditioning_image']).half().to('cuda')
noise_pred_inpaint = pipeline.unet(
data['image'].half().to('cuda'),
timestep=timesteps[batch_idx].repeat(BATCH_SIZE),
encoder_hidden_states=prompt_embeds.half().to('cuda'),
down_block_additional_residuals=[
state[half_key].clone() for half_key in down_keys],
mid_block_additional_residual=state[mid_key].clone(),
).sample
loss = F.mse_loss(noise_pred_clean, target=data['target'], reduction="none").mean([1, 2, 3]).mean((0)) + \
config.control_alpha * F.mse_loss(noise_pred_inpaint, target=data['target'], reduction="none").mean([1, 2, 3]).mean((0))
loss.backward()
optimizer.step()
running_loss.append(loss.item())
avg_epoch_loss = sum(running_loss)/len(running_loss)
print(f'Epoch {epoch}, Loss: {avg_epoch_loss}')
```
阅读全文
相关推荐


















