ddpg算法的matlab代码详细讲解
时间: 2025-02-26 13:29:45 浏览: 114
### DDPG算法的MATLAB代码实现与详解
#### 1. 初始化参数和环境设置
为了使DDPG能够在MATLAB中运行,首先需要设定一些基本参数以及初始化环境。
```matlab
% 参数配置
MAX_EPISODES = 200;
MAX_EP_STEPS = 200;
MEMORY_CAPACITY = 1e4;
var = 3; % 初始方差用于增强actor探索性
env = gym.make('Maze-v0'); % 创建迷宫环境实例[^1]
state_dim = size(env.observation_space.high);
action_dim = size(env.action_space.high);
% 构建记忆库
memory = Memory(MEMORY_CAPACITY, state_dim, action_dim);
```
#### 2. 定义Actor-Critic网络结构
接着定义两个主要组成部分——Actor(策略网络)和Critic(价值评估网络)。这里采用两层全连接神经网络作为基础架构。
```matlab
function net = createNetwork(inputSize,outputSize)
layers = [
featureInputLayer(inputSize,'Name','input')
fullyConnectedLayer(30,'WeightLearnRateFactor',0.001,...
'BiasLearnRateFactor',0.002,'Name','fc1')
reluLayer('Name','relu1')
fullyConnectedLayer(outputSize,'WeightLearnRateFactor',...
0.001,'BiasLearnRateFactor',0.002,'Name','fc2')];
options = trainingOptions('adam',...
'MaxEpochs',50,...
'MiniBatchSize',64,...
'Plots','training-progress');
net = dlnetwork(layers);
end
actor_net = createNetwork(state_dim, action_dim);
critic_net = createNetwork([state_dim + action_dim], 1);
```
#### 3. 学习过程描述
在每次迭代过程中,先执行动作并观察新状态及奖励值,随后存储这些经验到记忆库中。当记忆库积累足够多的经验后,则从中随机抽取一批样本进行训练。
```matlab
for episode = 1:MAX_EPISODES
s = env.reset();
ep_reward = 0;
for t = 1:MAX_EP_STEPS
a = predict(actor_net,dlnarray(s));
a_with_noise = clip(randn(size(a))*var+a,-2,2); % 添加噪声增加探索能力
[next_state,reward,is_done,_] = env.step(double(a_with_noise));
memory.addExperience({s,a_with_noise,reward/10,next_state});
if length(memory.experiences)>=MEMORY_CAPACITY && mod(t,5)==0
batch_data = memory.sampleBatch(BATCH_SIZE);
states_batch = cat(3,batch_data{:,1});
actions_batch = cat(3,batch_data{:,2});
rewards_batch = cat(3,batch_data{:,3});
next_states_batch = cat(3,batch_data{:,4});
target_q_values = double(predict(critic_net,[dlnarray(next_states_batch),...
predict(target_actor_net,dlnarray(next_states_batch))]));
y_i = squeeze(rewards_batch)+gamma*target_q_values;
critic_loss = mse(dlnarray(y_i)-predict(critic_net,...
[dlnarray(states_batch),dlnarray(actions_batch)]));
adamupdate(critic_net.Learnables,critic_optim.State,...
critic_loss,"iteration",t);
[~,grad]=dlgradient(critic_loss,critic_net.Learnables.Weights);
policy_grad=-mean(grad,3)';
adamupdate(actor_net.Learnables,actor_optim.State,policy_grad,...
"iteration",t);
softUpdateWeights!(actor_net,target_actor_net,tau);
softUpdateWeights!(critic_net,target_critic_net,tau);
var=var*(1-1e-4); % 减少行动噪音幅度
end
s = next_state;
ep_reward = ep_reward + reward;
if is_done || t==MAX_EP_STEPS
disp(['Episode:',num2str(episode),' Reward:',num2str(ep_reward)]);
break;
end
end
end
```
上述代码实现了DDPG的核心逻辑,并针对特定的任务进行了调整以适应实际应用场景的需求[^2]。
阅读全文
相关推荐









