如何在VGG16中融入注意力机制
时间: 2025-07-05 12:06:38 浏览: 3
### 实现 VGG16 模型与注意力机制的融合
在计算机视觉领域,将注意力机制引入到现有的卷积神经网络(如VGG16)中可以显著提升模型的表现力和鲁棒性。下面介绍一种方法来实现这一目标。
#### 方法概述
通过修改传统的VGG16架构,在其顶部添加自定义的注意力模块,使得网络能够聚焦于输入图片中的重要区域。这种做法不仅有助于提高分类准确性,而且对于解释模型决策也有着积极意义[^1]。
#### PyTorch代码示例
以下是基于PyTorch框架的一个简单例子,展示了如何构建带有CBAM (Convolutional Block Attention Module) 注意力机制的VGG16模型:
```python
import torch.nn as nn
from torchvision import models
class CBAM(nn.Module):
def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']):
super(CBAM, self).__init__()
# Channel attention module
self.channel_attention = ChannelAttention(gate_channels, reduction_ratio, pool_types)
def forward(self, x):
out = self.channel_attention(x) * x # broadcasting
return out
def add_cbam_to_vgg(vgg_model):
features = list(vgg_model.features.children())
# Inserting CBAM after each conv block of VGG16 except the last one.
insert_positions = [i for i in range(len(features)) if isinstance(features[i], nn.MaxPool2d)][:-1]
new_features = []
for idx, layer in enumerate(features):
new_features.append(layer)
if idx in insert_positions:
num_channels = next(layer.parameters()).size()[0]
cbam_layer = CBAM(num_channels)
new_features.append(cbam_layer)
vgg_model.features = nn.Sequential(*new_features)
vgg16 = models.vgg16(pretrained=True)
add_cbam_to_vgg(vgg16)
print(vgg16)
```
此段程序首先定义了一个`CBAM`类用于创建通道注意力模块;接着编写辅助函数`add_cbam_to_vgg()`用来遍历原始VGG16结构并插入新的注意力层实例。最后加载预训练好的VGG16权重,并调用该函数完成改造后的打印输出[^4]。
#### TensorFlow/Keras代码示例
如果偏好使用TensorFlow平台,则可以通过Keras API轻松实现相同的功能:
```python
from tensorflow.keras.applications import VGG16
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, GlobalAveragePooling2D, Multiply, Reshape, Dense, Permute, Concatenate
from tensorflow.keras.models import Model
def channel_attention(input_feature, ratio=8):
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
channel = input_feature.shape[channel_axis]
shared_layer_one = Dense(channel//ratio,
activation='relu',
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')
shared_layer_two = Dense(channel,
kernel_initializer='he_normal',
use_bias=True,
bias_initializer='zeros')
avg_pool = GlobalAveragePooling2D()(input_feature)
avg_pool = Reshape((1,1,channel))(avg_pool)
assert avg_pool.shape[1:] == (1,1,channel)
avg_pool = shared_layer_one(avg_pool)
assert avg_pool.shape[1:] == (1,1,channel//ratio)
avg_pool = shared_layer_two(avg_pool)
assert avg_pool.shape[1:] == (1,1,channel)
max_pool = GlobalMaxPooling2D()(input_feature)
max_pool = Reshape((1,1,channel))(max_pool)
assert max_pool.shape[1:] == (1,1,channel)
max_pool = shared_layer_one(max_pool)
assert max_pool.shape[1:] == (1,1,channel//ratio)
max_pool = shared_layer_two(max_pool)
assert max_pool.shape[1:] == (1,1,channel)
cbam_feature = Add()([avg_pool,max_pool])
cbam_feature = Activation('sigmoid')(cbam_feature)
if K.image_data_format() == "channels_first":
cbam_feature = Permute((3, 1, 2))(cbam_feature)
return multiply([input_feature, cbam_feature])
base_model = VGG16(weights="imagenet", include_top=False, input_shape=(224, 224, 3))
for layer in base_model.layers[:-4]:
layer.trainable = False
output = base_model.output
attention_output = channel_attention(output)
final_output = Flatten()(attention_output)
model = Model(inputs=[base_model.input], outputs=[final_output])
model.summary()
```
这段脚本同样实现了向VGG16注入CBAM的过程,不过采用了更加面向对象的方式组织代码逻辑。值得注意的是,这里还包含了冻结部分原有层的操作以加速收敛过程[^2]。
阅读全文
相关推荐


















