resnet18的网络结构图绘制
时间: 2025-06-20 17:55:55 浏览: 20
### ResNet18 网络架构图绘制方法
ResNet18 是一种经典的卷积神经网络,其设计引入了跳跃连接来解决深层网络中的梯度消失问题。该网络由多个残差单元组成,这些单元通过短路连接(skip connections)将输入直接传递到后续层[^1]。
#### 构建基础模块
每个残差单元通常包含两个3×3的卷积层以及一个用于跨层传输特征映射的恒等映射或线性投影变换。对于ResNet18而言,具体结构可以描述为:
- 输入图像尺寸一般设定为224x224像素大小;
- 初始阶段采用7x7, stride=2的卷积核进行第一次下采样操作,并接MaxPooling池化层进一步缩小空间维度;
- 接下来分为四个stage,每个stage内部重复应用相同配置的基础block若干次;
```python
import torch.nn as nn
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
```
#### 完整网络定义
根据上述基本构建块,完整的ResNet18可以通过堆叠不同数量的基础blocks形成各个stages,最终得到整个网络框架。
```python
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=1000):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def ResNet18():
return ResNet(BasicBlock, [2, 2, 2, 2])
```
此代码片段展示了如何创建一个简单的PyTorch版本的ResNet18模型。实际绘制成图表时,可以根据各层之间的关系使用图形工具如TensorBoard或其他可视化库来进行展示。
阅读全文
相关推荐

















