活动介绍

backbone.bn1

时间: 2025-04-11 14:04:09 浏览: 30
<think>好的,用户的问题是关于查找backbone.bn1相关的代码或模块。首先,我需要理解用户提到的backbone.bn1是什么。通常在神经网络中,bn1可能指代第一个批归一化层(Batch Normalization),而Backbone指的是模型的主干网络,比如在YOLO或者MobileNet这样的模型中。 用户提到了几个引用,特别是引用[2]和[4],涉及YOLOv11的改进,使用MobileNetV1替换Backbone。我需要先查看这些引用中的代码结构。根据引用[2],MobileNetV1作为Backbone被集成到YOLOv11中,所以可能需要查看MobileNetV1的实现部分是否有bn1层。 在MobileNetV1的结构中,通常会有多个卷积层,每个卷积层后面可能跟着批归一化层。例如,第一个卷积层后面可能命名为bn1。因此,用户可能在寻找MobileNetV1的Backbone中的第一个批归一化层。 接下来,我需要参考用户提供的引用中的代码位置。引用[1]提到实现代码在ultralytics/nn/modules/head.py,但head.py通常处理的是检测头,可能不包含Backbone部分。引用[2]和[4]涉及将MobileNetV1作为Backbone,所以应该查看相关的模块文件,比如backbone.py或mobilenetv1.py。 在MobileNetV1的实现中,通常会有一个类,比如MobileNetV1,其中包含多个Sequential块。每个块中的卷积层可能后接批归一化层。例如,第一个卷积层后的bn1可能是在初始层定义中。 假设在MobileNetV1的代码中,定义了一个卷积层和bn1,可能像这样: class MobileNetV1(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1) self.bn1 = nn.BatchNorm2d(32) ... 这样,用户可以在代码中找到backbone.bn1的引用。此外,在forward方法中,可能会有self.bn1的应用。 另外,引用[4]提到的yolov8-EVC.yaml配置文件可能包含Backbone的结构定义,用户需要检查该文件中的层配置,查看是否有bn1相关的设置。 总结来说,用户需要检查MobileNetV1的Backbone实现代码,通常在相关的模块文件中查找bn1的定义和使用。此外,配置文件中可能也会提及层的名称,帮助定位bn1的位置。</think>根据您提供的信息,我将通过以下步骤帮助您定位与`backbone.bn1`相关的代码实现: 1. **MobileNetV1 Backbone结构分析** - 在MobileNetV1的标准实现中,`bn1`通常出现在第一个深度可分离卷积块内,例如: ```python self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1) self.bn1 = nn.BatchNorm2d(32) # ← 这里定义bn1 self.relu = nn.ReLU(inplace=True) ``` 对应YOLOv11中的调用方式为`backbone.bn1`[^2] 2. **YOLOv11集成代码定位** - 根据引用[2]的描述,改进后的Backbone定义应位于: ``` /models/backbone/mobilenetv1.py ``` 在该文件中可找到完整的`MobileNetV1`类实现,其中包含`bn1`的定义和调用 3. **配置文件关联** - 如引用[4]提到的`yolov8-EVC.yaml`配置文件,Backbone部分会有类似结构映射: ```yaml backbone: name: MobileNetV1 layers: - [conv1, bn1, relu] # ← 层级配置 ```
阅读全文

相关推荐

RuntimeError: Error(s) in loading state_dict for HRNet: Missing key(s) in state_dict: "conv2.weight", "bn2.weight", "bn2.bias", "bn2.running_mean", "bn2.running_var", "layer1.3.conv1.weight", "layer1.3.bn1.weight", "layer1.3.bn1.bias", "layer1.3.bn1.running_mean", "layer1.3.bn1.running_var", "layer1.3.conv2.weight", "layer1.3.bn2.weight", "layer1.3.bn2.bias", "layer1.3.bn2.running_mean", "layer1.3.bn2.running_var", "layer1.3.conv3.weight", "layer1.3.bn3.weight", "layer1.3.bn3.bias", "layer1.3.bn3.running_mean", "layer1.3.bn3.running_var", "transition1.0.0.weight", "transition1.0.1.weight", "transition1.0.1.bias", "transition1.0.1.running_mean", "transition1.0.1.running_var", "transition1.1.0.0.weight", "transition1.1.0.1.weight", "transition1.1.0.1.bias", "transition1.1.0.1.running_mean", "transition1.1.0.1.running_var", "stage2.0.branches.0.0.conv1.weight", "stage2.0.branches.0.0.bn1.weight", "stage2.0.branches.0.0.bn1.bias", "stage2.0.branches.0.0.bn1.running_mean", "stage2.0.branches.0.0.bn1.running_var", "stage2.0.branches.0.0.conv2.weight", "stage2.0.branches.0.0.bn2.weight", "stage2.0.branches.0.0.bn2.bias", "stage2.0.branches.0.0.bn2.running_mean", "stage2.0.branches.0.0.bn2.running_var", "stage2.0.branches.0.1.conv1.weight", "stage2.0.branches.0.1.bn1.weight", "stage2.0.branches.0.1.bn1.bias", "stage2.0.branches.0.1.bn1.running_mean", "stage2.0.branches.0.1.bn1.running_var", "stage2.0.branches.0.1.conv2.weight", "stage2.0.branches.0.1.bn2.weight", "stage2.0.branches.0.1.bn2.bias", "stage2.0.branches.0.1.bn2.running_mean", "stage2.0.branches.0.1.bn2.running_var", "stage2.0.branches.0.2.conv1.weight", "stage2.0.branches.0.2.bn1.weight", "stage2.0.branches.0.2.bn1.bias", "stage2.0.branches.0.2.bn1.running_mean", "stage2.0.branches.0.2.bn1.running_var", "stage2.0.branches.0.2.conv2.weight", "stage2.0.branches.0.2.bn2.weight", "stage2.0.branches.0.2.bn2.bias", "stage2.0.branches.0.2.bn2.running_mean", "stage2.0.branches.0.2.bn2.running_var", "stage2.0.branches.0

import torch import torch.nn as nn from skimage.segmentation import chan_vese import numpy as np from torch.nn import Conv2d from torchvision.ops import FeaturePyramidNetwork from torchvision.models import resnet50 import os os.environ['KMP_DUPLICATE_LIB_OK']='TRUE' def process_conv_output(conv_output): assert conv_output.shape == (64, 16, 3, 3), "Input tensor shape is not correct!" chunks = torch.chunk(conv_output, chunks=4, dim=0) for idx, chunk in enumerate(chunks): print(f"Chunk {idx} Shape: ", chunk.shape) assert chunk.shape == (16, 16, 3, 3) return chunks class ImageSegmentationModel(nn.Module): def __init__(self): super(ImageSegmentationModel,self).__init__() self.conv_layers = nn.Sequential( nn.Conv2d(1,128,kernel_size=3,stride=2), nn.MaxPool2d(kernel_size=3,stride=2), nn.ReLU(), nn.Conv2d(128,64, kernel_size=3, stride=2), nn.MaxPool2d(kernel_size=3, stride=2), nn.ReLU(), nn.Conv2d(64,32,kernel_size=3,stride=2), nn.MaxPool2d(kernel_size=3,stride=2), nn.ReLU(), nn.Conv2d(32,16,kernel_size=3,stride=2) ) self.resnet = resnet50(pretrained=True) self.initial_layer = nn.Sequential( self.resnet.conv1, # 输出通道64 self.resnet.bn1, self.resnet.relu, self.resnet.maxpool # 输出通道64 ) self.layer1 = self.resnet.layer1 self.layer2 = self.resnet.layer2 self.layer3 = self.resnet.layer3 self.layer4 = self.resnet.layer4 self.fpn = FeaturePyramidNetwork([256,512,1024,2048],256) self.conv_layers11 = nn.Conv2d(256,1,kernel_size=1,stride=1) self.final_conv = nn.Conv2d(16,21,kernel_size=1,stride=1) self.softmax = nn.Softmax(dim=1) def preprocess(self,x): x = torch.nn.functional.interpolate(x,size=(511,511),mode='bilinear',align_corners=False) x = torch.mean(x,dim=1,keepdim=True) x_np = x.detach().cpu().numpy() segmented = [] for i in range(x_np.shape[0]): img = x_np[i,0] #init =np.array([[img.shape[1]-1,0],[img.shape[1]-1,img.shape[0]-1],[0,img.shape[0]-1,],[0,0]]) snake = chan_vese(img,mu=0.25, lambda1=1.0, lambda2=1.0, tol=0.001, max_num_iter=500, dt=0.5) seg = np.zeros_like(img) from skimage.draw import polygon rr, cc = polygon(snake[:,1],snake[:,0],seg.shape) seg[rr, cc] = 1 segmented.append(seg) segmented = np.array(segmented) segmented = torch.from_numpy(segmented).unsqueeze(1).float().to(x.device) return segmented def forward(self,x): y = torch.nn.functional.interpolate(x,size=(511,511),mode='bilinear',align_corners=False) x = self.preprocess(x) conv_output = self.conv_layers(x) conv_output_tuple = process_conv_output(conv_output) print("conv_output:", conv_output.shape) z = self.initial_layer(y) c1 = self.layer1(z) # [batch,256,H,W] c2 = self.layer2(c1) # [batch,512,H,W] c3 = self.layer3(c2) # [batch,1024,H,W] c4 = self.layer4(c3) # [batch,2048,H,W] fpn_input = { 'feat1': c1, 'feat2': c2, 'feat3': c3, 'feat4': c4 } fpn_output = self.fpn(fpn_input) fpn_output_upsampled = torch.nn.functional.interpolate(fpn_output['feat1'], size=(511, 511), mode='bilinear', align_corners=False) final_output = nn.functional.conv2d(fpn_output_upsampled,conv_output_tuple,stride=1,padding=1,groups=16) final_output = self.final_conv(final_output) final_output = self.softmax(final_output) return final_output改动不涉及fpn_output请重新修改

--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[24], line 298 295 else: 296 download_weights(backbone) --> 298 model = PSPNet(num_classes=num_classes, backbone=backbone, downsample_factor=downsample_factor, pretrained=pretrained, pretrained_model_path=pretrained_model_path, aux_branch=aux_branch) 299 if not pretrained: 300 weights_init(model) Cell In[5], line 145, in PSPNet.__init__(self, num_classes, downsample_factor, backbone, pretrained, pretrained_model_path, aux_branch) 143 norm_layer = nn.BatchNorm2d 144 if backbone=="resnet50": --> 145 self.backbone = Resnet(downsample_factor, pretrained, pretrained_model_path) 146 aux_channel = 1024 147 out_channel = 2048 Cell In[5], line 13, in Resnet.__init__(self, dilate_scale, pretrained, pretrained_model_path) 11 super(Resnet, self).__init__() 12 from functools import partial ---> 13 model = resnet50(pretrained, pretrained_model_path) 15 #--------------------------------------------------------------------------------------------# 16 # 根据下采样因子修改卷积的步长与膨胀系数 17 # 当downsample_factor=16的时候,我们最终获得两个特征层,shape分别是:30,30,1024和30,30,2048 18 #--------------------------------------------------------------------------------------------# 19 if dilate_scale == 8: Cell In[4], line 173, in resnet50(pretrained, pretrained_model_path, **kwargs) 170 state_dict = torch.load(pretrained_model_path, map_location=device) 171 # Load the state dictionary into the model 172 # 将加载的参数字典加载到模型中 --> 173 model.load_state_dict(state_dict, strict=False) 174 # 打印加载成功的信息 175 print("Model weights have been loaded.") File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:2041, in Module.load_state_dict(self, state_dict, strict) 2036 error_msgs.insert( 2037 0, 'Missing key(s) in state_dict: {}. '.format( 2038 ', '.join('"{}"'.format(k) for k in missing_keys))) 2040 if len(error_msgs) > 0: -> 2041 raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( 2042 self.__class__.__name__, "\n\t".join(error_msgs))) 2043 return _IncompatibleKeys(missing_keys, unexpected_keys) RuntimeError: Error(s) in loading state_dict for ResNet: size mismatch for bn1.weight: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for bn1.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for bn1.running_mean: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for bn1.running_var: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer1.0.conv1.weight: copying a param with shape torch.Size([64, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]). size mismatch for layer1.0.downsample.0.weight: copying a param with shape torch.Size([256, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 128, 1, 1]).这个警告是哪里出错了

AxialAttention和AxialBlock的模块代码如下: def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class qkv_transform(nn.Conv1d): """Conv1d for qkv_transform""" pass #AxialAttention:通道数可以自适应,无需特意指定 class AxialAttention(nn.Module): def __init__(self, in_planes, out_planes, groups=8, kernel_size=56, stride=1, bias=False, width=False): assert (in_planes % groups == 0) and (out_planes % groups == 0) super(AxialAttention, self).__init__() self.in_planes = in_planes self.out_planes = out_planes self.groups = groups self.group_planes = out_planes // groups self.kernel_size = kernel_size self.stride = stride self.bias = bias self.width = width # Multi-head self attention self.qkv_transform = qkv_transform(in_planes, out_planes * 2, kernel_size=1, stride=1, padding=0, bias=False) self.bn_qkv = nn.BatchNorm1d(out_planes * 2) self.bn_similarity = nn.BatchNorm2d(groups * 3) #self.bn_qk = nn.BatchNorm2d(groups) #self.bn_qr = nn.BatchNorm2d(groups) #self.bn_kr = nn.BatchNorm2d(groups) self.bn_output = nn.BatchNorm1d(out_planes * 2) # Position embedding self.relative = nn.Parameter(torch.randn(self.group_planes * 2, kernel_size * 2 - 1), requires_grad=True) query_index = torch.arange(kernel_size).unsqueeze(0) key_index = torch.arange(kernel_size).unsqueeze(1) relative_index = key_index - query_index + kernel_size - 1 self.register_buffer('flatten_index', relative_index.view(-1)) if stride > 1: self.pooling = nn.AvgPool2d(stride, stride=stride) self.reset_parameters() def forward(self, x): if self.width: x = x.permute(0, 2, 1, 3) else: x = x.permute(0, 3, 1, 2) # N, W, C, H N, W, C, H = x.shape x = x.contiguous().view(N * W, C, H) # Transformations qkv = self.bn_qkv(self.qkv_transform(x)) q, k, v = torch.split(qkv.reshape(N * W, self.groups, self.group_planes * 2, H), [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=2) # Calculate position embedding all_embeddings = torch.index_select(self.relative, 1, self.flatten_index).view(self.group_planes * 2, self.kernel_size, self.kernel_size) q_embedding, k_embedding, v_embedding = torch.split(all_embeddings, [self.group_planes // 2, self.group_planes // 2, self.group_planes], dim=0) qr = torch.einsum('bgci,cij->bgij', q, q_embedding) kr = torch.einsum('bgci,cij->bgij', k, k_embedding).transpose(2, 3) qk = torch.einsum('bgci, bgcj->bgij', q, k) stacked_similarity = torch.cat([qk, qr, kr], dim=1) stacked_similarity = self.bn_similarity(stacked_similarity).view(N * W, 3, self.groups, H, H).sum(dim=1) #stacked_similarity = self.bn_qr(qr) + self.bn_kr(kr) + self.bn_qk(qk) # (N, groups, H, H, W) similarity = F.softmax(stacked_similarity, dim=3) sv = torch.einsum('bgij,bgcj->bgci', similarity, v) sve = torch.einsum('bgij,cij->bgci', similarity, v_embedding) stacked_output = torch.cat([sv, sve], dim=-1).view(N * W, self.out_planes * 2, H) output = self.bn_output(stacked_output).view(N, W, self.out_planes, 2, H).sum(dim=-2) if self.width: output = output.permute(0, 2, 1, 3) else: output = output.permute(0, 2, 3, 1) if self.stride > 1: output = self.pooling(output) return output def reset_parameters(self): self.qkv_transform.weight.data.normal_(0, math.sqrt(1. / self.in_planes)) #nn.init.uniform_(self.relative, -0.1, 0.1) nn.init.normal_(self.relative, 0., math.sqrt(1. / self.group_planes)) #AxialBlock:中间通道plane×2=输出通道。inc=outc时,plane=0.5×inc。 class AxialBlock(nn.Module): expansion = 2 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, kernel_size=56): super(AxialBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv_down = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.hight_block = AxialAttention(width, width, groups=groups, kernel_size=kernel_size) self.width_block = AxialAttention(width, width, groups=groups, kernel_size=kernel_size, stride=stride, width=True) self.conv_up = conv1x1(width, planes * self.expansion) self.bn2 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv_down(x) out = self.bn1(out) out = self.relu(out) out = self.hight_block(out) out = self.width_block(out) out = self.relu(out) out = self.conv_up(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out ultralytics.nn.tasks.py中的parse_model函数中,AxialAttention和AxialBlock的elif分支如下: elif m is AxialAttention: c1 = ch[f] # 输入通道 (自动适应) # 解析参数并设置默认值 (与类定义严格匹配) # 参数顺序: [out_planes, groups, kernel_size, stride, bias, width] c2 = args[0] # 必需: 输出通道 groups = args[1] if len(args) > 1 else 8 kernel_size = args[2] if len(args) > 2 else 56 stride = args[3] if len(args) > 3 else 1 bias = args[4] if len(args) > 4 else False width_flag = args[5] if len(args) > 5 else False # 避免与width变量冲突 # 重建参数列表 new_args = [c1, c2, groups, kernel_size, stride, bias, width_flag] args = new_args elif m is AxialBlock: c1 = ch[f] # 输入通道 (自动适应) # 解析参数并设置默认值 (与类定义严格匹配) # 参数顺序: [planes, stride, groups, base_width, dilation, kernel_size] planes = args[0] # 必需: 基础通道数 stride = args[1] if len(args) > 1 else 1 groups = args[2] if len(args) > 2 else 1 base_width = args[3] if len(args) > 3 else 64 dilation = args[4] if len(args) > 4 else 1 kernel_size = args[5] if len(args) > 5 else 56 # 计算实际输出通道 (考虑expansion系数) c2 = planes * AxialBlock.expansion # 重建参数列表 new_args = [ c1, # inplanes planes, # planes stride, # stride None, # downsample (由框架自动处理) groups, # groups base_width, # base_width dilation, # dilation None, # norm_layer (使用默认) kernel_size # kernel_size ] args = new_args Yaml结构如下: # Ultralytics YOLO 🚀, AGPL-3.0 license # YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment # Parameters nc: 80 # number of classes scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n' # [depth, width, max_channels] n: [0.33, 0.25, 1024] s: [0.33, 0.50, 1024] m: [0.67, 0.75, 768] l: [1.00, 1.00, 512] x: [1.00, 1.25, 512] # YOLOv8.0n backbone backbone: # [from, repeats, module, args] - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 - [-1, 1, AxialAttention, [32, 8, 128, 1, False, False]] # 1-P2/4 - [-1, 3, C2f, [128, True]] - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 - [-1, 6, C2f, [256, True]] - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 - [-1, 6, C2f, [512, True]] - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 - [-1, 3, C2f, [1024, True]] - [-1, 1, SPPF, [1024, 5]] # 9 # YOLOv8.0n head head: - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 6], 1, Concat, [1]] # cat backbone P4 - [-1, 3, C2f, [512]] # 12 - [-1, 1, nn.Upsample, [None, 2, "nearest"]] - [[-1, 4], 1, Concat, [1]] # cat backbone P3 - [-1, 3, C2f, [256]] # 15 (P3/8-small) - [-1, 1, Conv, [256, 3, 2]] - [[-1, 12], 1, Concat, [1]] # cat head P4 - [-1, 3, C2f, [512]] # 18 (P4/16-medium) - [-1, 1, Conv, [512, 3, 2]] - [[-1, 9], 1, Concat, [1]] # cat head P5 - [-1, 3, C2f, [1024]] # 21 (P5/32-large) - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5) 当第1层- [-1, 1, AxialAttention, [32, 8, 128, 1, False, False]] # 1-P2/4 的kernel_size取128时,网络正常加载,训练时报错: Traceback (most recent call last): File "E:\42yolo_model_change\yolov8-42\42_demo\start_train.py", line 27, in <module> results = model.train(data='A_my_data.yaml', epochs=100, imgsz=640, batch=8, workers=8, deterministic=True, seed=42, conf=0.25) # 开始训练 File "E:\42yolo_model_change\yolov8-42\ultralytics\engine\model.py", line 813, in train self.trainer.train() File "E:\42yolo_model_change\yolov8-42\ultralytics\engine\trainer.py", line 208, in train self._do_train(world_size) File "E:\42yolo_model_change\yolov8-42\ultralytics\engine\trainer.py", line 385, in _do_train self.loss, self.loss_items = self.model(batch) File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\tasks.py", line 108, in forward return self.loss(x, *args, **kwargs) File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\tasks.py", line 289, in loss preds = self.forward(batch["img"]) if preds is None else preds File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\tasks.py", line 109, in forward return self.predict(x, *args, **kwargs) File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\tasks.py", line 127, in predict return self._predict_once(x, profile, visualize, embed) File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\tasks.py", line 148, in _predict_once x = m(x) # run File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\modules\block.py", line 1299, in forward qr = torch.einsum('bgci,cij->bgij', q, q_embedding) File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\functional.py", line 377, in einsum return _VF.einsum(equation, operands) # type: ignore[attr-defined] RuntimeError: einsum(): subscript i has size 128 for operand 1 which does not broadcast with previously seen size 320 当第1层- [-1, 1, AxialAttention, [32, 8, 128, 1, False, False]] # 1-P2/4 的kernel_size取320时,网络不能正常加载,报错: Traceback (most recent call last): File "E:\42yolo_model_change\yolov8-42\42_demo\start_train.py", line 25, in <module> model = YOLO(r'E:\42yolo_model_change\yolov8-42\ultralytics\cfg\models\v8\yolov8-seg-AxialAttention-H1.yaml') # load a pretrained model (recommended for training) File "E:\42yolo_model_change\yolov8-42\ultralytics\models\yolo\model.py", line 23, in __init__ super().__init__(model=model, task=task, verbose=verbose) File "E:\42yolo_model_change\yolov8-42\ultralytics\engine\model.py", line 140, in __init__ self._new(model, task=task, verbose=verbose) File "E:\42yolo_model_change\yolov8-42\ultralytics\engine\model.py", line 260, in _new self.model = (model or self._smart_load("model"))(cfg_dict, verbose=verbose and RANK == -1) # build model File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\tasks.py", line 409, in __init__ super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\tasks.py", line 333, in __init__ m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\tasks.py", line 331, in _forward return self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x) File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\tasks.py", line 109, in forward return self.predict(x, *args, **kwargs) File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\tasks.py", line 127, in predict return self._predict_once(x, profile, visualize, embed) File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\tasks.py", line 148, in _predict_once x = m(x) # run File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "E:\42yolo_model_change\yolov8-42\ultralytics\nn\modules\block.py", line 1299, in forward qr = torch.einsum('bgci,cij->bgij', q, q_embedding) File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\functional.py", line 377, in einsum return _VF.einsum(equation, operands) # type: ignore[attr-defined] RuntimeError: einsum(): subscript i has size 320 for operand 1 which does not broadcast with previously seen size 128 两次报错运行的是相同的一个脚本: from ultralytics import YOLO import random import numpy as np import torch if __name__ == "__main__": random.seed(42) np.random.seed(42) torch.manual_seed(42) torch.cuda.manual_seed_all(42) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False model = YOLO(r'E:\42yolo_model_change\yolov8-42\ultralytics\cfg\models\v8\yolov8-seg-AxialAttention-H1.yaml') # load a pretrained model (recommended for training) model.load('yolov8n-seg.pt') results = model.train(data='A_my_data.yaml', epochs=100, imgsz=640, batch=8, workers=8, deterministic=True, seed=42, conf=0.25) # 开始训练 #time.sleep(10) # 睡眠10s,主要是用于服务器多次训练的过程中使用 分析报错原因。注意,前后两次报错对应的yaml只有第1层的一个参数发生变化,分析为什么会取128时报错320,取320时报错128。

import torch import torch.nn as nn from solver.nms import box_nms from model.modules.cnn.vgg_backbone import VGGBackbone,VGGBackboneBN from model.modules.cnn.cnn_heads import DetectorHead, DescriptorHead class SuperPointBNNet(torch.nn.Module): """ Pytorch definition of SuperPoint Network. """ def __init__(self, config, input_channel=1, grid_size=8, device='cpu', using_bn=True): super(SuperPointBNNet, self).__init__() self.nms = config['nms'] self.det_thresh = config['det_thresh'] self.topk = config['topk'] if using_bn: self.backbone = VGGBackboneBN(config['backbone']['vgg'], input_channel, device=device) else: self.backbone = VGGBackbone(config['backbone']['vgg'], input_channel, device=device) ## self.detector_head = DetectorHead(input_channel=config['det_head']['feat_in_dim'], grid_size=grid_size, using_bn=using_bn) self.descriptor_head = DescriptorHead(input_channel=config['des_head']['feat_in_dim'], output_channel=config['des_head']['feat_out_dim'], grid_size=grid_size, using_bn=using_bn) def forward(self, x): """ Forward pass that jointly computes unprocessed point and descriptor tensors. Input x: Image pytorch tensor shaped N x 1 x H x W. Output semi: Output point pytorch tensor shaped N x 65 x H/8 x W/8. desc: Output descriptor pytorch tensor shaped N x 256 x H/8 x W/8. """ if isinstance(x, dict): feat_map = self.backbone(x['img']) else: feat_map = self.backbone(x) det_outputs = self.detector_head(feat_map) prob = det_outputs['prob'] if self.nms is not None: prob = [box_nms(p.unsqueeze(dim=0), self.nms, min_prob=self.

大家在看

recommend-type

蒙特卡罗剂量模拟和可视化工具包:一组旨在帮助临床医生和研究人员使用 GEANT4 或 TOPAS 的 Matlab 函数-matlab开发

这里有 3 组代码,旨在帮助临床医生和研究人员将 GEANT4 或 TOPAS (MC) 与 3D Slicer 结合使用进行剂量可视化和比较 第一段代码“STLfromDicomRN.m”采用 Varian Eclipse 生成的双散射质子计划的 Dicom 计划文件,并以“.STL”格式生成计划中的Kong径和补偿器模型。 此文件使用 zip 文件中包含的“stlwrite”和“surf2solid”函数。 这些文件可以导入到 MC 模拟几何中。 第二个是一组用于处理Dicom剂量文件和分析剂量的代码。 “NormalizeDicomDose.m”代码将 MC 剂量标准化为 Eclipse 剂量等中心处的剂量,并包含有关如何标准化为其他点或体积的说明。 “ProfilePlot.m”代码只是生成比较两点之间两个剂量文件的剂量的剂量曲线。 包含的是一个 matlab gui,它在您
recommend-type

中科大版苏淳概率论答案

本资料是中科大版本 苏淳编著的概率论答案,此为本书前半部分答案,其中包含书中部分习题,系老师所布置的重点习题答案。包含初等概率论,随机变量,随机向量,数字特征与特征函数极限定理几章的内容
recommend-type

公开公开公开公开-openprotocol_specification 2.7

LY-WCS-2012-01-06-01 V 1.0 公开公开公开公开 产品名称:产品名称:产品名称:产品名称: WCS 系统简介系统简介系统简介系统简介-公开版公开版公开版公开版 共共共共 13 页页页页 WCSWCSWCSWCS 系统简介系统简介系统简介系统简介 ((((客户交流用客户交流用客户交流用客户交流用)))) 文文文文 档档档档 作作作作 者:者:者:者: 王 超 日期:日期:日期:日期:2012/01/06 开发开发开发开发/测试经理:测试经理:测试经理:测试经理: 程 达 日期:日期:日期:日期:2012/01/06 项项项项 目目目目 经经经经 理:理:理:理: 程 达 日期:日期:日期:日期:2012/01/06 文文文文 档档档档 编编编编 号:号:号:号: ___________ ___ LY-WCS-2012-01-06-01______________ 上海朗因智能科技有限公司上海朗因智能科技有限公司上海朗因智能科技有限公司上海朗因智能科技有限公司 版权所有版权所有版权所有版权所有 不得复制不得复制不得复制不得复制
recommend-type

xilinx.com_user_IIC_AXI_1.0.zip

可以直接用在vivado 2017.4版本里。查看各个寄存器就知道用来干什么了,一号寄存器分频系数,二号的start、stop信号,三号寄存器8bit数据,四号寄存器只读,返回IIC状态和ACK信号,其中二号的一个bit可以用来不等待从机ACK,方便使用。
recommend-type

extjs6.2加SenchaCmd-6.5.3.6-windows-64bit

SenchaCmd-6.5.3.6-windows-64bit ext6.2.0gpl SenchaCmd-6.5.3.6-windows-64bit ext6.2.0gpl

最新推荐

recommend-type

员工工资管理系统VBSQL样本 (1)(1).doc

员工工资管理系统VBSQL样本 (1)(1).doc
recommend-type

精选Java案例开发技巧集锦

从提供的文件信息中,我们可以看出,这是一份关于Java案例开发的集合。虽然没有具体的文件名称列表内容,但根据标题和描述,我们可以推断出这是一份包含了多个Java编程案例的开发集锦。下面我将详细说明与Java案例开发相关的一些知识点。 首先,Java案例开发涉及的知识点相当广泛,它不仅包括了Java语言的基础知识,还包括了面向对象编程思想、数据结构、算法、软件工程原理、设计模式以及特定的开发工具和环境等。 ### Java基础知识 - **Java语言特性**:Java是一种面向对象、解释执行、健壮性、安全性、平台无关性的高级编程语言。 - **数据类型**:Java中的数据类型包括基本数据类型(int、short、long、byte、float、double、boolean、char)和引用数据类型(类、接口、数组)。 - **控制结构**:包括if、else、switch、for、while、do-while等条件和循环控制结构。 - **数组和字符串**:Java数组的定义、初始化和多维数组的使用;字符串的创建、处理和String类的常用方法。 - **异常处理**:try、catch、finally以及throw和throws的使用,用以处理程序中的异常情况。 - **类和对象**:类的定义、对象的创建和使用,以及对象之间的交互。 - **继承和多态**:通过extends关键字实现类的继承,以及通过抽象类和接口实现多态。 ### 面向对象编程 - **封装、继承、多态**:是面向对象编程(OOP)的三大特征,也是Java编程中实现代码复用和模块化的主要手段。 - **抽象类和接口**:抽象类和接口的定义和使用,以及它们在实现多态中的不同应用场景。 ### Java高级特性 - **集合框架**:List、Set、Map等集合类的使用,以及迭代器和比较器的使用。 - **泛型编程**:泛型类、接口和方法的定义和使用,以及类型擦除和通配符的应用。 - **多线程和并发**:创建和管理线程的方法,synchronized和volatile关键字的使用,以及并发包中的类如Executor和ConcurrentMap的应用。 - **I/O流**:文件I/O、字节流、字符流、缓冲流、对象序列化的使用和原理。 - **网络编程**:基于Socket编程,使用java.net包下的类进行网络通信。 - **Java内存模型**:理解堆、栈、方法区等内存区域的作用以及垃圾回收机制。 ### Java开发工具和环境 - **集成开发环境(IDE)**:如Eclipse、IntelliJ IDEA等,它们提供了代码编辑、编译、调试等功能。 - **构建工具**:如Maven和Gradle,它们用于项目构建、依赖管理以及自动化构建过程。 - **版本控制工具**:如Git和SVN,用于代码的版本控制和团队协作。 ### 设计模式和软件工程原理 - **设计模式**:如单例、工厂、策略、观察者、装饰者等设计模式,在Java开发中如何应用这些模式来提高代码的可维护性和可扩展性。 - **软件工程原理**:包括软件开发流程、项目管理、代码审查、单元测试等。 ### 实际案例开发 - **项目结构和构建**:了解如何组织Java项目文件,合理使用包和模块化结构。 - **需求分析和设计**:明确项目需求,进行系统设计,如数据库设计、系统架构设计等。 - **代码编写和实现**:根据设计编写符合要求的代码,实现系统的各个模块功能。 - **测试和维护**:进行单元测试、集成测试,确保代码质量,对项目进行维护和升级。 ### 其他相关知识点 - **Java虚拟机(JVM)**:了解JVM的基本工作原理,包括类加载机制、内存管理、垃圾回收算法等。 - **常用Java框架**:比如Spring、Hibernate、MyBatis等,在实际开发中常常与Java基础结合使用,提高开发效率。 以上知识点可以作为学习Java案例开发的基础框架。在实际的开发实践中,开发者需要结合具体的项目需求,对这些知识点进行灵活运用。通过反复的案例实践,可以加深对Java编程的理解,并逐步提升开发技能。这份集锦可能包含的案例可能涉及上述知识点的具体应用,能够帮助学习者更好地理解理论与实践的结合,从而快速提升个人的Java开发能力。
recommend-type

【VASP报错深度解析】:5大技巧识别并永久解决离子距离太近警告

# 1. VASP软件简介及离子距离太近问题概述 ## 1.1 VASP软件简介 **VASP(Vienna Ab initio Simulation Package)** 是一款广泛应用于计算材料科学的软件,它基于密度泛函理论(DFT)计算固体、表面和分子的电子结构和性质。
recommend-type

npm error A complete log of this run can be found in: D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log

<think>好的,我需要帮助用户找到npm的错误调试日志位置,并解决他们遇到的npm错误。首先,用户已经提供了一个具体的日志路径:'D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log',但看起来这个路径可能有问题,因为日期是2025年,这可能是一个示例或输入错误。我需要确认正确的日志路径生成方式。 根据npm的默认配置,日志文件通常位于npm的缓存目录下的_logs文件夹中。默认情况下,Windows系统中npm的缓存路径是%AppData%\npm-cache,而日志文件会以当前日期和
recommend-type

深入理解内存技术文档详解

由于文件内容无法查看,仅能根据文件的标题、描述、标签以及文件名称列表来构建相关知识点。以下是对“内存详解”这一主题的详细知识点梳理。 内存,作为计算机硬件的重要组成部分,负责临时存放CPU处理的数据和指令。理解内存的工作原理、类型、性能参数等对优化计算机系统性能至关重要。本知识点将从以下几个方面来详细介绍内存: 1. 内存基础概念 内存(Random Access Memory,RAM)是易失性存储器,这意味着一旦断电,存储在其中的数据将会丢失。内存允许计算机临时存储正在执行的程序和数据,以便CPU可以快速访问这些信息。 2. 内存类型 - 动态随机存取存储器(DRAM):目前最常见的RAM类型,用于大多数个人电脑和服务器。 - 静态随机存取存储器(SRAM):速度较快,通常用作CPU缓存。 - 同步动态随机存取存储器(SDRAM):在时钟信号的同步下工作的DRAM。 - 双倍数据速率同步动态随机存取存储器(DDR SDRAM):在时钟周期的上升沿和下降沿传输数据,大幅提升了内存的传输速率。 3. 内存组成结构 - 存储单元:由存储位构成的最小数据存储单位。 - 地址总线:用于选择内存中的存储单元。 - 数据总线:用于传输数据。 - 控制总线:用于传输控制信号。 4. 内存性能参数 - 存储容量:通常用MB(兆字节)或GB(吉字节)表示,指的是内存能够存储多少数据。 - 内存时序:指的是内存从接受到请求到开始读取数据之间的时间间隔。 - 内存频率:通常以MHz或GHz为单位,是内存传输数据的速度。 - 内存带宽:数据传输速率,通常以字节/秒为单位,直接关联到内存频率和数据位宽。 5. 内存工作原理 内存基于电容器和晶体管的工作原理,电容器存储电荷来表示1或0的状态,晶体管则用于读取或写入数据。为了保持数据不丢失,动态内存需要定期刷新。 6. 内存插槽与安装 - 计算机主板上有专用的内存插槽,常见的有DDR2、DDR3、DDR4和DDR5等不同类型。 - 安装内存时需确保兼容性,并按照正确的方向插入内存条,避免物理损坏。 7. 内存测试与优化 - 测试:可以使用如MemTest86等工具测试内存的稳定性和故障。 - 优化:通过超频来提高内存频率,但必须确保稳定性,否则会导致数据损坏或系统崩溃。 8. 内存兼容性问题 不同内存条可能由于制造商、工作频率、时序、电压等参数的不匹配而产生兼容性问题。在升级或更换内存时,必须检查其与主板和现有系统的兼容性。 9. 内存条的常见品牌与型号 诸如金士顿(Kingston)、海盗船(Corsair)、三星(Samsung)和芝奇(G.Skill)等知名品牌提供多种型号的内存条,针对不同需求的用户。 由于“内存详解.doc”是文件标题指定的文件内容,我们可以预期在该文档中将详细涵盖以上知识点,并有可能包含更多的实践案例、故障排查方法以及内存技术的最新发展等高级内容。在实际工作中,理解并应用这些内存相关的知识点对于提高计算机性能、解决计算机故障有着不可估量的价值。
recommend-type

【机械特性分析进阶秘籍】:频域与时域对比的全面研究

# 1. 机械特性分析的频域与时域概述 ## 1.1 频域与时域分析的基本概念 机械特性分析是通
recommend-type

dslicsrv安装报错Too many errors

<think>好的,用户遇到了安装dslicsrv时出现“Too many errors”的问题,需要帮助解决。首先,我需要明确dslicsrv是什么。可能是指某个特定的软件服务,但根据常见软件库和搜索引擎的信息,没有直接对应的结果。可能是拼写错误,或者是某个特定领域的专有软件?比如,可能与Dell的某个服务有关?例如,Dell System License Manager Service(dsLicSvc)可能更接近。假设用户可能拼写错误,将dslicsrv理解为dsLicSvc,即Dell的系统许可证管理服务。 接下来,用户遇到的错误是安装时出现“Too many errors”,这通常
recommend-type

深入解析Pro Ajax与Java技术的综合应用框架

根据提供的文件信息,我们可以推断出一系列与标题《Pro Ajax and Java》相关的IT知识点。这本书是由Apress出版,关注的是Ajax和Java技术。下面我将详细介绍这些知识点。 ### Ajax技术 Ajax(Asynchronous JavaScript and XML)是一种无需重新加载整个页面即可更新网页的技术。它通过在后台与服务器进行少量数据交换,实现了异步更新网页内容的目的。 1. **异步通信**:Ajax的核心是通过XMLHttpRequest对象或者现代的Fetch API等技术实现浏览器与服务器的异步通信。 2. **DOM操作**:利用JavaScript操作文档对象模型(DOM),能够实现页面内容的动态更新,而无需重新加载整个页面。 3. **数据交换格式**:Ajax通信中常使用的数据格式包括XML和JSON,但近年来JSON因其轻量级和易用性更受青睐。 4. **跨浏览器兼容性**:由于历史原因,实现Ajax的JavaScript代码需要考虑不同浏览器的兼容性问题。 5. **框架和库**:有许多流行的JavaScript库和框架支持Ajax开发,如jQuery、Dojo、ExtJS等,这些工具简化了Ajax的实现和数据操作。 ### Java技术 Java是一种广泛使用的面向对象编程语言,其在企业级应用、移动应用开发(Android)、Web应用开发等方面有着广泛应用。 1. **Java虚拟机(JVM)**:Java程序运行在Java虚拟机上,这使得Java具有良好的跨平台性。 2. **Java标准版(Java SE)**:包含了Java的核心类库和API,是Java应用开发的基础。 3. **Java企业版(Java EE)**:为企业级应用提供了额外的API和服务,如Java Servlet、JavaServer Pages(JSP)、Enterprise JavaBeans(EJB)等。 4. **面向对象编程(OOP)**:Java是一种纯粹的面向对象语言,它的语法和机制支持封装、继承和多态性。 5. **社区和生态系统**:Java拥有庞大的开发者社区和丰富的第三方库和框架,如Spring、Hibernate等,这些资源极大丰富了Java的应用范围。 ### 结合Ajax和Java 在结合使用Ajax和Java进行开发时,我们通常会采用MVC(模型-视图-控制器)架构模式,来构建可维护和可扩展的应用程序。 1. **服务器端技术**:Java经常被用来构建服务器端应用逻辑。例如,使用Servlet来处理客户端的请求,再将数据以Ajax请求的响应形式返回给客户端。 2. **客户端技术**:客户端的JavaScript(或使用框架库如jQuery)用于发起Ajax请求,并更新页面内容。 3. **数据格式**:Java后端通常会使用JSON或XML格式与Ajax进行数据交换。 4. **安全性**:Ajax请求可能涉及敏感数据,因此需要考虑如跨站请求伪造(CSRF)等安全问题。 5. **性能优化**:合理使用Ajax可以提升用户体验,但同时也需要注意对服务器和网络的负载,以及客户端脚本的执行性能。 ### 出版信息及文件信息 《Pro Ajax and Java》由Apress出版社出版,通常这种出版物会包含丰富的实例代码、开发指导、最佳实践以及相关的技术讨论。它旨在帮助开发者深化对Ajax和Java技术的理解和应用能力。 文件名“Apress.Pro.Ajax.and.Java.Frameworks.Jul.2006.HAPPY.NEW.YEAR.pdf”暗示了这份文档可能是一本专业的技术书籍。从文件名可以看出,该书还可能包含了框架使用方面的内容,并且是2006年出版的。标题中的“HAPPY.NEW.YEAR”可能仅仅是为了庆祝新年而加入的非标准部分。 总结而言,了解Ajax和Java的结合使用,不仅需要掌握两种技术的基本原理和使用方法,还要熟悉如何将它们整合到实际项目中,解决可能出现的技术挑战,从而构建功能强大且用户友好的Web应用。
recommend-type

【频域分析深度解读】:揭秘机械系统分析中的实用应用

# 1. 频域分析基础理论 频域分析是信号处理领域的一个重要分支,其核心在于研究信号在频率维度上的特性。与时域分析不同,频域分析关注的是信号频率成分的组成,这允许我们以一种直观的方式识别和处理信号中的特定频率特征。通过对信号进行傅里叶变换,原始的时域信号可以被转换为频域信号,这样就可以清晰地显示出各频率成分的幅度和相位信息。这种分析手段对于信号去噪、特征提取、压缩编码等应用场景至关重
recommend-type

openmv与stm32通信的时候,openmv的vin接5v会出问题吗

<think>我们正在处理用户关于OpenMV与STM32通信时,将OpenMV的VIN引脚连接到5V是否会引发问题。 根据引用[3]中的信息,AMG8833传感器在STM32上使用时,由单片机的3.3V和GND引脚供电。同时,引用[3]提到OpenMV相机作为配套计算机的情况,但用户的问题具体是OpenMV的VIN引脚接5V的问题。 我们需要明确OpenMV的电源要求: - OpenMV Cam的VIN引脚是电源输入引脚,其可接受电压范围通常在3.6V至5V。因此,5V是在可接受范围内的。 但是,我们还需要注意: 1. OpenMV Cam内部有稳压电路,会将输入电压降到3.3V