deeplabv3遥感影像
时间: 2025-03-04 09:45:26 浏览: 28
### 使用 DeepLabV3 处理和分析遥感影像
#### 预备工作
为了使用 DeepLabV3 进行遥感影像处理,需先安装必要的库。通常情况下,PyTorch 或 TensorFlow 是首选框架之一。
对于 PyTorch 用户来说:
```bash
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117
```
接着安装特定于语义分割的任务包 `segmentation-models-pytorch`:
```bash
pip install segmentation-models-pytorch albumentations
```
#### 加载与预处理数据
加载并准备用于训练的数据集至关重要。这里展示了一个简单的例子来说明如何读取一张图片,并将其转换成适合输入给定模型的形式[^1]。
```python
import cv2
from PIL import Image
import numpy as np
def img_process(image_path):
"""Preprocess image to fit the model input requirements."""
# Read an image with OpenCV and convert it from BGR to RGB color space.
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Resize the image according to your needs or based on pre-trained models' expectations.
resized_image = cv2.resize(image_rgb, dsize=(512, 512), interpolation=cv2.INTER_LINEAR)
# Normalize pixel values between [0., 1.] range.
normalized_image = resized_image / 255.
# Convert HWC format into CHW which is expected by most deep learning frameworks including PyTorch.
transposed_image = np.transpose(normalized_image, axes=[2, 0, 1])
return transposed_image.astype(np.float32)
source = "./test_set/test_15.jpg"
processed_data = img_process(source)
print(f"Processed data shape: {processed_data.shape}")
```
这段代码展示了如何从文件路径加载图像、调整大小以及标准化像素值以便它们可以被送入神经网络中作为输入。
#### 构建 DeepLabV3 模型实例
创建一个基于 ResNet 的 DeepLabV3 实例来进行预测操作。此部分假设已经完成了上述提到的所有准备工作。
```python
import torch
import segmentation_models_pytorch as smp
model = smp.DeepLabV3(
encoder_name="resnet34", # choose encoder, e.g. resnet34, efficientnet-b7 etc.
encoder_weights="imagenet", # use `imagenet` pretrained weights for encoder initialization
in_channels=3, # number of input channels for network
classes=2 # define a binary classification task here; adjust accordingly
).cuda()
checkpoint = torch.load('path_to_your_checkpoint.pth')
model.load_state_dict(checkpoint['state_dict'])
model.eval()
```
以上脚本初始化了一个带有预训练权重的编码器(如ResNet),并将该模型设置为评估模式以进行推理任务。
#### 执行推断过程
最后一步涉及实际执行前向传播并通过已训练好的模型获得输出结果。
```python
with torch.no_grad():
tensor_input = torch.from_numpy(processed_data[np.newaxis,...]).cuda() # Add batch dimension before feeding into NN
prediction_mask = model(tensor_input)[0].cpu().numpy() # Remove single-element batch size after inference
predicted_class = np.argmax(prediction_mask, axis=0) # Get class labels instead of probabilities
# Optionally visualize results using matplotlib library...
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 5))
plt.subplot(121); plt.imshow(cv2.cvtColor(cv2.imread(source), cv2.COLOR_BGR2RGB)); plt.title('Original Image');
plt.axis('off')
plt.subplot(122); plt.imshow(predicted_class, cmap='gray'); plt.title('Predicted Segmentation Mask');
plt.axis('off');
plt.show();
```
通过这种方式,能够直观地看到原始遥感图像及其对应的分类掩码之间的对比效果。
阅读全文
相关推荐


















