C:\Users\ZhaiRX\LLaMA-Factory>pip install numpy setuptools==65.0.0 Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', FileNotFoundError(2, 'No such file or directory'))': /simple/numpy/ WARNING: Retrying (Retry(total=3, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', FileNotFoundError(2, 'No such file or directory'))': /simple/numpy/ WARNING: Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', FileNotFoundError(2, 'No such file or directory'))': /simple/numpy/ WARNING: Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', FileNotFoundError(2, 'No such file or directory'))': /simple/numpy/ WARNING: Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', FileNotFoundError(2, 'No such file or directory'))': /simple/numpy/ ERROR: Could not find a version that satisfies the requirement numpy (from versions: none) ERROR: No matching distribution found for numpy

时间: 2025-05-12 19:43:40 浏览: 39
### 解决 Pip 安装 Numpy 时的 ProxyError 连接问题 当遇到 `pip` 安装依赖时报错,提示代理配置错误或连接被拒绝的情况时,可以通过以下方法解决问题。 #### 方法一:清除系统中的代理设置 有时操作系统级别的代理设置可能会干扰 `pip` 的正常工作。可以尝试清理 Windows 注册表中与代理相关的键值对: 1. 按下 `Win + R` 组合键,输入 `regedit` 并回车以打开注册表编辑器。 2. 导航至路径 `HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings`。 3. 删除该分支下的所有以 `Proxy` 开头的键值对(如 `ProxyEnable`, `ProxyOverride`, 和 `ProxyServer`)。这一步操作会移除系统级代理设置[^4]。 完成上述步骤后重新运行 `pip install numpy` 命令即可。 #### 方法二:手动指定无代理环境变量 如果不想永久更改全局代理设置,则可以在当前命令行窗口临时禁用代理: ```bash set HTTP_PROXY= set HTTPS_PROXY= pip install numpy ``` 此方式仅影响当前 shell session 中的行为,并不会改变其他程序或者后续启动的新终端行为[^2]。 #### 方法三:升级 PIP 版本并绕过 SSL 验证 对于某些特定版本的 pip,在处理 HTTPS 请求时可能存在兼容性缺陷。建议先下载最新版 pip whl 文件再离线安装更新工具链;之后执行不验证证书选项来规避潜在网络层面上的问题: 1. 访问官方 PyPI 页面获取对应平台架构适用的 wheel 包链接地址 https://pypi.org/project/pip/#files 下载适合自己的 `.whl` 文件到本地磁盘某目录比如 D:\temp\[ ^3 ]. 2. 使用如下指令序列完成自举过程以及最终的目标库部署动作: ```bash python -m pip install --upgrade --force-reinstall d:/temp/pip-20.0.1-py2.py3-none-any.whl --trusted-host files.pythonhosted.org --index-url https://pypi.org/simple/ python -m pip install numpy --trusted-host pypi.org --trusted-host files.pythonhosted.org ``` 这种方法强制信任指定主机名从而跳过了部分安全校验逻辑环节以便适应复杂的企业防火墙策略场景需求. --- ### 注意事项 确保所使用的 Python 环境本身已经正确初始化完毕并且能够访问互联网资源如果没有特别必要的话尽量不要长期关闭SSL/TLS保护机制因为这样容易遭受中间人攻击威胁降低整体安全性水平另外还要记得定期审查维护个人电脑上的各种敏感数据防止泄露风险发生最后提醒一下有时候即使解决了技术层面障碍也可能由于镜像源不同步等原因造成短暂不可达现象所以适时切换国内常用开源软件仓库站点不失为一种明智之举例如阿里云腾讯云等等都提供了稳定可靠的Python生态服务支持[^5].
阅读全文

相关推荐

(xinference) PS C:\Windows\system32> pip install llama-cpp-python Collecting llama-cpp-python Using cached llama_cpp_python-0.3.7.tar.gz (66.7 MB) Installing build dependencies ... done Getting requirements to build wheel ... done Installing backend dependencies ... done Preparing metadata (pyproject.toml) ... done Collecting typing-extensions>=4.5.0 (from llama-cpp-python) Using cached typing_extensions-4.12.2-py3-none-any.whl.metadata (3.0 kB) Collecting numpy>=1.20.0 (from llama-cpp-python) Using cached numpy-2.2.3-cp311-cp311-win_amd64.whl.metadata (60 kB) Collecting diskcache>=5.6.1 (from llama-cpp-python) Using cached diskcache-5.6.3-py3-none-any.whl.metadata (20 kB) Collecting jinja2>=2.11.3 (from llama-cpp-python) Using cached jinja2-3.1.5-py3-none-any.whl.metadata (2.6 kB) Collecting MarkupSafe>=2.0 (from jinja2>=2.11.3->llama-cpp-python) Using cached MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl.metadata (4.1 kB) Using cached diskcache-5.6.3-py3-none-any.whl (45 kB) Using cached jinja2-3.1.5-py3-none-any.whl (134 kB) Using cached numpy-2.2.3-cp311-cp311-win_amd64.whl (12.9 MB) Using cached typing_extensions-4.12.2-py3-none-any.whl (37 kB) Using cached MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl (15 kB) Building wheels for collected packages: llama-cpp-python Building wheel for llama-cpp-python (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for llama-cpp-python (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [306 lines of output] *** scikit-build-core 0.11.0 using CMake 3.31.6 (wheel) *** Configuring CMake... 2025-03-04 00:24:37,103 - scikit_build_core - WARNING - Can't find a Python library, got libdir=None, ldlibrary=None, multiarch=None, masd=None loading initial cache file C:\Users\admin\AppData\Local\Temp\tmphkbm01o4\build\CMakeInit.txt -- Building for: Visual Studio 17 2022 -- Selecting Windows SDK version 10.0.22621.0 to target Windows 10.0.1

现在报这个错误[INFO|2025-03-14 11:38:36] llamafactory.data.template:143 >> Add <|im_end|> to stop words. Traceback (most recent call last): File "/usr/local/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) File "/mnt/workspace/.cache/modelscope/LLaMA-Factory/src/llamafactory/cli.py", line 118, in main run_exp() File "/mnt/workspace/.cache/modelscope/LLaMA-Factory/src/llamafactory/train/tuner.py", line 103, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/mnt/workspace/.cache/modelscope/LLaMA-Factory/src/llamafactory/train/tuner.py", line 68, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/mnt/workspace/.cache/modelscope/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 51, in run_sft dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) File "/mnt/workspace/.cache/modelscope/LLaMA-Factory/src/llamafactory/data/loader.py", line 297, in get_dataset dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) File "/mnt/workspace/.cache/modelscope/LLaMA-Factory/src/llamafactory/data/loader.py", line 171, in _get_merged_dataset for dataset_name, dataset_attr in zip(dataset_names, get_dataset_list(dataset_names, data_args.dataset_dir)): File "/mnt/workspace/.cache/modelscope/LLaMA-Factory/src/llamafactory/data/parser.py", line 129, in get_dataset_list raise ValueError(f"Undefined dataset {name} in {DATA_CONFIG}.") ValueError: Undefined dataset /mnt/workspace/.cache/modelscope/datasets/liucong/Chinese-DeepSeek-R1-Distill-data-110k/distill_r1_110k in dataset_info.json.

timestamp, hostname, api, model, precision, input_tokens, output_tokens, prefill_time, prefill_rate, decode_time, decode_rate, memory 20250518 15:24:27, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-1B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.015906775333333335, 1152.1491596025971, 1.4829113754540684, 86.31680311712834, 1077.296875 20250518 15:28:46, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-3B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.03446315800000001, 531.902004795764, 3.269266599979003, 39.152582515347646, 1181.3359375 20250518 15:35:20, lyan-desktop, mlc, HF://dusty-nv/Llama-3.1-8B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.07374422466666666, 248.6317380453315, 6.871479741816272, 18.62775617455641, 1304.65625 20250518 15:41:21, lyan-desktop, mlc, HF://dusty-nv/Llama-2-7b-chat-hf-q4f16_ft-MLC, MLC, 20, 128, 0.06836841133333334, 292.5336252554004, 6.002553366173228, 21.32425965156252, 1055.89453125 20250518 15:43:42, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-0.5B-Instruct-q4f16_ft-MLC, MLC, 1, 114, 0.009421591, 106.18970215740416, 0.8550749830796254, 133.7521586434499, 1119.296875 20250518 15:46:37, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-1.5B-Instruct-q4f16_ft-MLC, MLC, 19, 115, 0.01937756733333334, 980.6365887546056, 1.610312740818777, 71.24470297966548, 1148.78515625 20250518 15:52:09, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-7B-Instruct-q4f16_ft-MLC, MLC, 19, 128, 0.06954662866666667, 273.19829106044574, 6.629001840209975, 19.309103655140483, 1232.62890625 20250518 15:56:17, lyan-desktop, mlc, HF://mlc-ai/gemma-2-2b-it-q4f16_1-MLC, MLC, 13, 128, 0.08149855200000002, 135.47223927944813, 3.651719763653544, 35.05265878612133, 1350.98828125 20250518 16:00:08, lyan-desktop, mlc, HF://dusty-nv/Phi-3.5-mini-instruct-q4f16_ft-MLC, MLC, 12, 128, 0.037959572000000004, 275.3450370674631, 3.610325953511811, 35.45386568470883, 1004.4296875 20250518 16:03:11, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-135M-Instruct-q4f16_ft-MLC, MLC, 14, 128, 0.01486336666666667, 815.9287017266039, 0.659275389312336, 194.22638971451948, 1062.95703125 20250518 16:06:26, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-360M-Instruct-q4f16_ft-MLC, MLC, 14, 110, 0.016463410333333334, 732.8045080487393, 0.6842916086847877, 160.87697704944213, 1115.4140625 20250518 16:09:36, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-1.7B-Instruct-q4f16_ft-MLC, MLC, 14, 128, 0.02005880666666667, 625.9932727795469, 1.973092667128609, 64.87279019410019, 1018.12890625 20250518 16:17:01, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-1B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.015236920000000001, 1202.960634832396, 1.44522712928084, 88.56740168877337, 1056.38671875 20250518 16:21:33, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-3B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.034624267, 529.7432062949644, 3.259655160272966, 39.267977634764236, 1194.76953125 20250518 16:28:13, lyan-desktop, mlc, HF://dusty-nv/Llama-3.1-8B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.07327828566666668, 250.12485665218432, 6.834818684976378, 18.72763683946975, 1302.98046875 20250518 16:34:42, lyan-desktop, mlc, HF://dusty-nv/Llama-2-7b-chat-hf-q4f16_ft-MLC, MLC, 20, 120, 0.06829140233333333, 292.8626724860238, 5.599301619388121, 21.43515084814026, 1058.5234375 20250518 16:36:59, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-0.5B-Instruct-q4f16_ft-MLC, MLC, 7, 128, 0.008347386333333333, 779.5177224666528, 0.9061044315380578, 141.3598096817907, 1082.25390625 20250518 16:40:09, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-1.5B-Instruct-q4f16_ft-MLC, MLC, 19, 108, 0.018811383, 1010.1042056478245, 1.492941049692798, 72.67303515868629, 1129.6015625 20250518 16:46:27, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-7B-Instruct-q4f16_ft-MLC, MLC, 19, 119, 0.07009660033333334, 271.06619029022124, 6.142558513069099, 19.427134623721756, 1245.9453125 20250518 16:50:39, lyan-desktop, mlc, HF://mlc-ai/gemma-2-2b-it-q4f16_1-MLC, MLC, 13, 126, 0.08088827000000001, 136.36136642323896, 3.5498229806472006, 35.397779561694016, 1370.6953125 20250518 16:54:27, lyan-desktop, mlc, HF://dusty-nv/Phi-3.5-mini-instruct-q4f16_ft-MLC, MLC, 12, 128, 0.03716280366666667, 283.0125363745294, 3.586102897889764, 35.69345110773751, 1019.16796875 20250518 16:57:24, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-135M-Instruct-q4f16_ft-MLC, MLC, 20, 128, 0.008601623333333334, 2363.705761481012, 0.5499296702152231, 232.7570912557338, 1054.53125 20250518 17:00:34, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-360M-Instruct-q4f16_ft-MLC, MLC, 8, 112, 0.008005688666666667, 752.27271816386, 0.666063508656693, 168.79378782298483, 1106.52734375 20250518 17:03:35, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-1.7B-Instruct-q4f16_ft-MLC, MLC, 20, 111, 0.02133993233333334, 952.7117527879018, 1.685485941457729, 65.8915225054968, 1010.81640625 output as table

[rank1]: Traceback (most recent call last): [rank1]: File "/liindata/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank1]: launch() [rank1]: File "/liindata/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank1]: run_exp() [rank1]: File "/liindata/LLaMA-Factory/src/llamafactory/train/tuner.py", line 103, in run_exp [rank1]: _training_function(config={"args": args, "callbacks": callbacks}) [rank1]: File "/liindata/LLaMA-Factory/src/llamafactory/train/tuner.py", line 68, in _training_function [rank1]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank1]: File "/liindata/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 102, in run_sft [rank1]: train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/liindata/miniconda3/envs/llama-factory-0.9.2/lib/python3.12/site-packages/transformers/trainer.py", line 2241, in train [rank1]: return inner_training_loop( [rank1]: ^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/liindata/miniconda3/envs/llama-factory-0.9.2/lib/python3.12/site-packages/transformers/trainer.py", line 2318, in _inner_training_loop [rank1]: self.optimizer, self.lr_scheduler = deepspeed_init(self, num_training_steps=max_steps) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/liindata/miniconda3/envs/llama-factory-0.9.2/lib/python3.12/site-packages/transformers/integrations/deepspeed.py", line 416, in deepspeed_init [rank1]: optimizer, lr_scheduler = deepspeed_optim_sched( [rank1]: ^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/liindata/miniconda3/envs/llama-factory-0.9.2/lib/python3.12/site-packages/transformers/integrations/deepspeed.py", line 341, in deepspeed_optim_sched [rank1]

/root/autodl-tmp/ai/models/DeepSeek-R1-Distill-Qwen-1.5B does not have a padding token! Will use pad_token = <|vision_pad|>. [INFO|2025-03-04 19:29:52] llamafactory.model.model_utils.checkpointing:157 >> Gradient checkpointing enabled. [INFO|2025-03-04 19:29:52] llamafactory.model.adapter:157 >> Upcasting trainable params to float32. [INFO|2025-03-04 19:29:52] llamafactory.model.adapter:157 >> Fine-tuning method: LoRA [INFO|2025-03-04 19:29:52] llamafactory.model.model_utils.misc:157 >> Found linear modules: q_proj,gate_proj,up_proj,o_proj,k_proj,v_proj,down_proj [WARNING|logging.py:329] 2025-03-04 19:29:54,381 >> Unsloth 2025.2.15 patched 28 layers with 28 QKV layers, 28 O layers and 28 MLP layers. [INFO|2025-03-04 19:29:55] llamafactory.model.loader:157 >> trainable params: 9,232,384 || all params: 1,786,320,384 || trainable%: 0.5168 [INFO|trainer.py:746] 2025-03-04 19:29:55,961 >> Using auto half precision backend [WARNING|<string>:181] 2025-03-04 19:29:56,296 >> ==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1 \\ /| Num examples = 56 | Num Epochs = 30 O^O/ \_/ \ Batch size per device = 2 | Gradient Accumulation steps = 4 \ / Total batch size = 8 | Total steps = 210 "-____-" Number of trainable parameters = 9,232,384 swanlab: swanlab version 0.4.10 is available! Upgrade: pip install -U swanlab swanlab: Tracking run with swanlab version 0.4.9 swanlab: Run data will be saved locally in /root/autodl-tmp/ai/LLaMA-Factory/swanlog/run-20250304_192958-a3b1799d swanlab: 👋 Hi chrisfang, welcome to swanlab! swanlab: Syncing run dragon-6 to the cloud swanlab: 🌟 Run swanlab watch /root/autodl-tmp/ai/LLaMA-Factory/swanlog to view SwanLab Experiment Dashboard locally swanlab: 🏠 View project at https://swanlab.cn/@chrisfang/llamafactory-test swanlab: 🚀 View run at https://swanlab.cn/@chrisfang/llamafactory-test/runs/l0n927vfjxvq6iclvs3a8 2%|███▍ | 5/210 [00:17<07:34, 2.22s/it][INFO|2025-03-04 19:30:17] llamafactory.train.callbacks:157 >> {'loss': 4.6313, 'learning_rate': 2.5000e-06, 'epoch': 0.71, 'throughput': 737.83} {'loss': 4.6313, 'grad_norm': 0.6764227747917175, 'learning_rate': 2.5e-06, 'epoch': 0.71, 'num_input_tokens_seen': 15344} 5%|██████▊ | 10/210 [00:28<05:33, 1.67s/it][INFO|2025-03-04 19:30:28] llamafactory.train.callbacks:157 >> {'loss': 4.3760, 'learning_rate': 5.0000e-06, 'epoch': 1.43, 'throughput': 1091.49} {'loss': 4.376, 'grad_norm': 0.6041202545166016, 'learning_rate': 5e-06, 'epoch': 1.43, 'num_input_tokens_seen': 34624} 7%|██████████▏ | 15/210 [00:33<03:49, 1.18s/it][INFO|2025-03-04 19:30:33] llamafactory.train.callbacks:157 >> {'loss': 4.1816, 'learning_rate': 7.5000e-06, 'epoch': 2.14, 'throughput': 1398.99} {'loss': 4.1816, 'grad_norm': 0.44446107745170593, 'learning_rate': 7.5e-06, 'epoch': 2.14, 'num_input_tokens_seen': 51360}

[WARNING|logging.py:329] 2025-03-04 18:56:07,620 >> Unsloth: Input IDs of length 8200 > the model's max sequence length of 8192. We shall truncate it ourselves. It's imperative if you correct this issue first. swanlab: Error happened while training swanlab: 🌟 Run swanlab watch /root/autodl-tmp/ai/LLaMA-Factory/swanlog to view SwanLab Experiment Dashboard locally swanlab: 🏠 View project at https://swanlab.cn/@chrisfang/llamafactory-test swanlab: 🚀 View run at https://swanlab.cn/@chrisfang/llamafactory-test/runs/up1xn9h4tc0ynh9sfnogq File "/root/miniconda3/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/cli.py", line 112, in main run_exp() File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/tuner.py", line 93, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/tuner.py", line 67, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/root/autodl-tmp/ai/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 102, in run_sft train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/transformers/trainer.py", line 2241, in train return inner_training_loop( ^^^^^^^^^^^^^^^^^^^^ File "<string>", line 329, in _fast_inner_training_loop File "<string>", line 31, in _unsloth_training_step File "/root/miniconda3/lib/python3.12/site-packages/unsloth/models/_utils.py", line 1077, in _unsloth_pre_compute_loss return self._old_compute_loss(model, inputs, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/lib/python3.12/site-packages/transformers/trainer.py", line 3759, in compute_loss outputs = model(**inputs) ^^^^^^^^^^^^^^^ 但是我的数据集最大长度也才6000多

最新推荐

recommend-type

电气工程及其自动化在电力系统的发展.docx

电气工程及其自动化在电力系统的发展.docx
recommend-type

掌握Java端口扫描器:从入门到实践

标题中提到的“java端口扫描器”,从字面上理解,这是一个使用Java编程语言编写的网络端口扫描工具。端口扫描是一种网络探测技术,它用于确定哪些网络服务(应用层协议)在运行,并且哪些端口号上是开放的。端口扫描通常用于网络管理、故障排除、安全评估等场景。 描述中提到的“简单易懂”,意味着这款Java端口扫描器可能采用了简单直观的编程逻辑和用户界面设计,让即使是编程初学者也能够快速理解和使用它。 标签“java 端口 扫描器”强调了这项技术的三个关键词:Java编程语言、端口和扫描器。这意味着这项工作不仅涉及网络编程,还涉及到Java语言的特定知识。 至于“压缩包子文件的文件名称列表”,此处提及的“CH07”和“java端口扫描器”可能是相关代码或者文档的名称。在软件开发中,文件名称通常会反映文件内容或功能,比如“CH07”可能指的是某种教程或指南的第七章,而“java端口扫描器”很可能就是我们讨论的端口扫描器项目或代码文件的名称。 现在让我们详细探讨相关的知识点: 1. Java编程语言 Java是一种广泛使用的面向对象的编程语言,设计上具有跨平台兼容性。它运行在Java虚拟机(JVM)上,可以一次编写,到处运行。端口扫描器选择使用Java开发,可能是因为Java的跨平台特性,使得它可以在不同的操作系统上运行而无需修改代码。 2. 网络编程基础 网络编程主要涉及到使用套接字(sockets)进行网络通信。端口扫描器会使用套接字连接到目标服务器的不同端口,以尝试发现哪些端口是开放的。在Java中,这通常涉及到java.net包中的Socket和ServerSocket类的使用。 3. TCP/IP协议和端口 端口扫描器主要关注的是TCP/IP协议栈中的传输控制协议(TCP)和用户数据报协议(UDP)。端口是网络服务监听和接收请求的网络地址的一部分。常见的端口有21(FTP),22(SSH),25(SMTP),80(HTTP),443(HTTPS)等。端口扫描器通过尝试建立连接到这些端口来检查它们是否开放。 4. 端口扫描技术 端口扫描技术有多种,包括但不限于全连接扫描(TCP connect()扫描)、半开放扫描(SYN扫描)、UDP扫描、TCP ACK扫描等。全连接扫描是最基本也是最简单的一种扫描方法,它会尝试与目标端口建立完整的TCP连接。如果连接成功,说明端口是开放的。 5. 安全性考虑 尽管端口扫描在合法的情况下用于网络安全和维护,但未经授权的扫描可能违反法律法规。因此,端口扫描器的开发和使用应当遵守相关的法律法规和道德准则。 6. Java端口扫描器的实现 一个简单的Java端口扫描器可能会按照以下步骤实现: - 使用循环结构遍历要扫描的端口号。 - 对于每一个端口,尝试创建到目标IP地址的TCP连接。 - 如果连接成功,打印出开放的端口号;如果连接失败或超时,则说明端口未开放或关闭。 - 可能还需要添加异常处理机制,以便于扫描过程中应对各种可能出现的网络异常。 最后,考虑到文件名称列表中提到的“CH07”,如果指的是某个教程或者书籍的第七章,那么可能涉及的内容包括对Java网络编程的深入解释,或者是端口扫描器的设计思路、源代码分析以及可能的进阶用法等。对于“java端口扫描器”这个文件名,则可能是一个现成的项目文件,包含了所有实现端口扫描器的Java代码文件、文档说明以及运行程序所需的全部资源。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

vllm部署大模型为什么只用一张卡怎么设置成多卡

<think>嗯,用户的问题是关于如何将vLLM的大模型部署从单GPU改为多GPU设置。用户提供了两条参考引用,其中引用[1]提到通过设置tensorparallelsize在每个节点上使用多个GPU,引用[2]则给出了启动API服务时的CUDA设备指定示例。用户的实际需求是在使用vLLM部署时充分利用多GPU资源,可能遇到性能瓶颈或希望提升推理速度。用户身份推测是AI部署工程师或研究人员,对技术细节有明确要求。在回复设计上,需要强调三个关键点:1)设备指定:通过CUDA_VISIBLE_DEVICES环境变量控制可用GPU2)张量并行:直接修改tensor_parallel_size参数3)
recommend-type

ASP+access实现的新闻管理系统开发教程

ASP新闻发布系统是一种利用ASP(Active Server Pages)技术结合Microsoft Access数据库来实现内容发布和管理的系统。ASP是一种服务器端脚本环境,使用它可以创建动态交互式网页。Access数据库则用于存储新闻文章、用户信息、评论等数据。以下从几个方面详细说明标题和描述中提到的知识点: ### 1. ASP技术基础 ASP技术允许开发者使用VBScript或JavaScript等脚本语言编写程序,这些程序在服务器上运行,动态生成HTML页面。ASP页面的文件通常以.asp为扩展名。在新闻发布系统中,ASP可用于实现以下功能: - 用户身份验证:检查用户输入的用户名和密码是否合法,从而允许或拒绝访问。 - 数据库交互:通过ADO(ActiveX Data Objects)连接和操作Access数据库,实现数据的增删改查。 - 动态内容生成:根据数据库中的新闻数据动态生成网页内容。 - 文件上传和下载:允许管理员上传新闻图片或文件,用户可以下载这些内容。 ### 2. Microsoft Access数据库 Access是一个桌面数据库系统,适合存储小型到中型的数据集。它使用结构化查询语言(SQL)作为其查询语言,允许开发者对数据进行管理。在ASP新闻发布系统中,Access数据库通常包含以下表: - 新闻内容表:存储新闻标题、内容、发布日期、作者等信息。 - 用户表:存储注册用户的用户名、密码、联系方式等信息。 - 评论表:存储用户对新闻的评论内容以及评论者的相关信息。 ### 3. 系统功能模块 ASP新闻发布系统一般包含以下几个核心功能模块: - 用户管理模块:包括用户注册、登录、个人信息管理、密码修改等。 - 新闻发布模块:允许授权用户发布、编辑和删除新闻。 - 新闻浏览模块:展示新闻列表和新闻内容,可能支持按类别或时间排序。 - 搜索功能模块:通过关键词搜索新闻文章。 - 系统设置模块:进行网站基础信息设置,如新闻分类设置、网站标题设置等。 ### 4. 开发环境与工具 - 开发语言:主要使用VBScript或JavaScript作为ASP的脚本语言。 - 开发环境:可以使用微软的Visual InterDev或者任何支持ASP开发的IDE。 - 数据库管理:使用Microsoft Access作为数据库管理工具。 - 测试工具:利用浏览器作为测试工具,查看ASP页面在服务器上的表现。 ### 5. 关键技术点 - SQL语句的使用:在ASP中通过ADO技术执行SQL查询和更新数据库。 - Session和Cookies的应用:用于在用户会话期间存储和管理用户信息。 - HTML和CSS的布局:为了创建用户友好的界面。 - 安全措施:包括输入验证、防止SQL注入、XSS攻击等。 ### 6. 教材与学习资源 - 教材选择:通常选用ASP编程、网络编程基础或网页设计相关的书籍。 - 在线资源:可以通过网上教程、视频课程和开发社区来学习ASP和Access的进一步应用。 - 实践操作:通过实际开发新闻发布系统来深入理解和掌握知识点。 ### 7. 系统部署 - 服务器配置:需要配置支持ASP和IIS(Internet Information Services)的服务器。 - 文件上传:将ASP文件和Access数据库文件上传至服务器。 - 网站域名绑定:将新闻发布系统与一个域名绑定,以便用户访问。 ### 总结 ASP+Access制作的新闻发布系统是一个实践性强的项目,适合学习动态网页和数据库交互的基础。它涉及编程、数据库设计和网站维护等多个方面的知识。通过具体实施这个项目,开发者不仅可以提高自己的编程能力,而且能对网站开发的整个流程有更深入的了解。在教材的指导下,学生能够结合理论和实践,为日后的IT职业生涯打下坚实的基础。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的
recommend-type

ruoyi 定时任务纯后端

<think>嗯,用户这次明确询问RuoYi框架纯后端定时任务的实现方案,看来是个具体的技术实践问题。结合之前提供的引用内容,尤其是引用[1]提到RuoYiJobApplication是定时任务模块,引用[3]也强调了定时任务调度功能,基本确定核心实现就在job模块。用户应该是个Java开发者,正在使用RuoYi框架搭建后台系统。ta可能遇到的情况是:前端资源还没就绪,或者任务本身不需要界面操作,需要直接通过后端控制定时任务。深层需求可能包含两点:一是快速掌握基础配置流程,二是了解如何避开常见坑点(比如任务阻塞问题)。需要区分用户说的“纯后端实现”具体指哪种场景:是不要前端页面触发?还是不要依
recommend-type

基于PowerDesigner的三层架构C#学生信息系统设计

标题中的知识点涵盖了使用PowerDesigner软件设计基于C#语言的三层架构应用系统,特别是针对学校系统中的班级和学生信息管理。描述中提到了具体的实现细节,包括实体关系图(ER图)、数据访问层(DAL)、业务逻辑层(BLL)等。下面详细介绍这些知识点。 1. PowerDesigner软件概述 PowerDesigner是一款由Sybase公司开发的软件工具,广泛应用于数据建模和企业架构管理。PowerDesigner支持多种建模类型,包括概念数据模型(CDM)、物理数据模型(PDM)、业务流程模型(BPM)以及架构框架模型等。在软件开发的早期阶段,使用PowerDesigner能够帮助开发者通过图形化的方式设计和理解复杂的系统结构,尤其是数据库设计和数据流设计。 2. 三层架构概念 三层架构(也称为n层架构)是一种软件设计模式,它将应用程序分成三个逻辑层:表示层(用户界面)、业务逻辑层(BLL)和数据访问层(DAL)。这种架构模式有助于提高应用程序的可维护性、可扩展性和可测试性。 - 表示层:通常指的是用户界面,即用户与系统交互的部分,负责展示数据和接收用户输入。在C#中,这一层通常由WinForms、WPF、ASP.NET等技术实现。 - 业务逻辑层:是应用程序的核心,它包含处理业务需求、业务规则和业务流程的代码。业务逻辑层与数据访问层分离,确保了系统的灵活性和可维护性。 - 数据访问层:负责与数据存储进行交互,它封装了数据的访问细节,提供数据操作接口,使得业务逻辑层可以不必关心数据存储的具体细节。 3. 实体关系图(ER图) ER图是数据建模中常用的一种图形化工具,用于表示实体类型、实体属性以及实体之间的关系。在ER图中,实体通常表示为矩形,属性表示为椭圆,而实体之间的关系用菱形表示。ER图有助于设计者理解业务需求,并将这些需求转化为数据库设计的基础。 4. Model 在三层架构中,Model通常指的是数据模型层,它定义了系统中数据的结构。在PowerDesigner中,模型可能包含实体、属性、关系等元素,它们共同组成了数据的蓝图。在C#应用中,Model层通常对应于系统中的实体类(Entity Class)。 5. DALFactory、IDAL和DAL - DALFactory:数据访问层工厂模式的实现,用于根据不同的条件创建具体的数据访问对象。 - IDAL:是数据访问层的接口(Interface),定义了数据访问层应实现的方法,以供上层调用。 - DAL:实现了IDAL接口的具体类,负责与数据库交互的实现细节。 6. DBUtility DBUtility类或组件通常封装了数据库操作的常用方法,如连接字符串管理、数据库连接建立、查询执行、异常处理等。它为开发人员提供了一种方便的方式来执行常见数据库操作,同时保证了数据库操作代码的重用性和一致性。 在实际开发中,开发者会使用PowerDesigner导出的数据模型来生成C#代码框架,这包括定义数据实体类、创建接口和实现类,以及设置数据访问工厂。通过这样的方式,开发者能够减少代码编写的工作量,同时确保应用程序的结构清晰、易于维护。 最后,压缩包子文件的文件名称“3.27SchoolSystem”可能表示该三层架构C#项目是在3月27日创建或更新的学校系统。它代表了项目名称,也是文件存储时的标识符。 综合以上内容,可以看出PowerDesigner在设计C#三层架构应用程序中发挥的重要作用。通过使用PowerDesigner设计数据模型和架构,开发者能够更加高效地构建出结构清晰、功能完善、易于维护的软件系统。
recommend-type

【故障恢复策略】:RK3588与NVMe固态硬盘的容灾方案指南

# 1. RK3588处理器与NVMe固态硬盘的概述 ## 1.1 RK3588处理器简介 RK3588是Rockchip推出的一款高端处理器,具备强大的性能和多样的功能,集成了八核CPU和六核GPU,以及专用的AI处理单元,主要用于高端移动设备、边缘计算和
recommend-type

嵌入式环境监测设计

<think>嗯,用户这次明确提出了关于嵌入式环境监测系统的设计需求,看来是想了解具体的技术方案和实现细节。从ta的提问方式看,应该是工程技术人员或相关专业学生,需要实际可落地的技术参考。我注意到用户特别强调要参考之前的对话,但当前对话历史中并没有相关讨论。用户提到的“嵌入式系统环境监测设计方案实现”这几个关键词非常聚焦,说明ta需要的是硬核技术方案而不是概念介绍。这种需求通常出现在课程设计、项目立项或产品研发前期阶段。关于嵌入式环境监测系统,核心难点在于如何平衡实时性、低功耗和成本控制。在设计方案中需要重点考虑三点:首先是传感器选型,不同环境参数需要不同精度的传感器;其次是通讯方式的选择,短