std::tuple<int, float, std::string> data;data插入初始元素

时间: 2024-10-15 14:12:52 浏览: 59
在C++中,`std::tuple` 是一种固定大小的、不可变的联合容器,用于存储不同类型的数据。如果你想给 `std::tuple` 插入初始元素,你需要在创建 tuple 的时候就指定这些元素。例如: ```cpp #include <iostream> #include <tuple> int main() { std::tuple<int, float, std::string> data(10, 3.14f, "Initial Value"); // 创建并初始化 tuple std::cout << "Tuple elements: "; std::get<0>(data) << ", " << std::get<1>(data) << ", " << std::get<2>(data) << std::endl; return 0; } ``` 在这个例子中,我们在创建 tuple `data` 时直接传入了三个参数(10, 3.14f, "Initial Value"),它们分别对应 `std::tuple<int, float, std::string>` 中的三个位置。
相关问题

#include <ros/ros.h> #include <image_transport/image_transport.h> #include <cv_bridge/cv_bridge.h> #include <sensor_msgs/image_encodings.h> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #include <stdio.h> #include <stdlib.h> #include "opencv2/opencv.hpp" #include <moveit/move_group_interface/move_group_interface.h> #include <tf/transform_listener.h> #include <moveit/planning_scene_interface/planning_scene_interface.h> #include <moveit/robot_trajectory/robot_trajectory.h> #include "myself_pkg/uart.h" #include <sys/stat.h> #include <cmath> #include <xarm_driver.h> #include <thread> // 引入线程库 #include <atomic> static const std::string OPENCV_WINDOW = "Image window"; #define M_PI 3.14159265358979323846 tf::Vector3 obj_camera_frame1, obj_robot_frame; int flag_start=1; ros::Subscriber rgb_sub; // 相机内参 double fx = 953.4568; // x轴方向的焦距 double fy = 949.837; // y轴方向的焦距 double cx = 658.66659; // x轴方向的光学中心 double cy = 366.82704; // y轴方向的光学中心 // 物体高度 double objectHeight = 0.34432666; // 假设物体的高度为1米 double k1 = 0.133507; // double k2 =-0.213178; // double p1 = 0.006242; // double p2 = 0.005494; // /* double fx = 1084.54479; // x轴方向的焦距 double fy = 950.11576; // y轴方向的焦距 double cx = 642.85519; // x轴方向的光学中心 double cy = 354.52482; // y轴方向的光学中心 // 物体高度 double objectHeight = 0.34432666; // 假设物体的高度为1米 double k1 = 0.141430; // double k2 =-0.384089; // double p1 = 0.003167; // double p2 = 0.002440; // */ cv::Mat K = (cv::Mat_<double>(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 1); // 构造畸变参数向量 cv::Mat distCoeffs = (cv::Mat_<double>(5, 1) << k1, k2, p1, p2, 0); // 待校正的像素坐标 cv::Point2d pixelPoint(640, 360); // 假设像素坐标为(320, 240) cv::Mat cameraPointMat = (cv::Mat_<double>(3, 1) << 0, 0,0); /** // 定义一个结构体表示四元数,用于三维空间中的旋转表示 struct Quaternion { double w; // 四元数的实部 double x; // 四元数的虚部 x double y; // 四元数的虚部 y double z; // 四元数的虚部 z }; Quaternion eulerToQuaternion(double roll, double pitch, double yaw) { // 计算半角 double cy = cos(yaw * 0.5); double sy = sin(yaw * 0.5); double cp = cos(pitch * 0.5); double sp = sin(pitch * 0.5); double cr = cos(roll * 0.5); double sr = sin(roll * 0.5); Quaternion q; // 根据欧拉角到四元数的转换公式计算四元数的实部 q.w = cr * cp * cy + sr * sp * sy; // 根据欧拉角到四元数的转换公式计算四元数的虚部 x q.x = sr * cp * cy - cr * sp * sy; // 根据欧拉角到四元数的转换公式计算四元数的虚部 y q.y = cr * sp * cy + sr * cp * sy; // 根据欧拉角到四元数的转换公式计算四元数的虚部 z q.z = cr * cp * sy - sr * sp * cy; return q; } */ int move_lineb_test(xarm_msgs::Move srv, ros::ServiceClient client, float x_mm0, float y_mm0, float z_mm0, double roll0, double pitch0, double yaw0, float x_mm1, float y_mm1, float z_mm1, double roll1, double pitch1, double yaw1, float x_mm2, float y_mm2, float z_mm2, double roll2, double pitch2, double yaw2, float x_mm3, float y_mm3, float z_mm3, double roll3, double pitch3, double yaw3, float x_mm4, float y_mm4, float z_mm4, double roll4, double pitch4, double yaw4); void control_suction_during_move(float x_mm4, float y_mm4, float z_mm4); // 异步吸盘控制 auto suction_control = [](int speed){ std::thread([speed](){ for(int i=0; i<1; i++){ writeSpeed(speed); std::this_thread::sleep_for(std::chrono::milliseconds(800)); } }).detach(); // 分离线程 }; class XArmAPItest { ros::NodeHandle nh_; image_transport::ImageTransport it_; image_transport::Subscriber image_sub_; tf::TransformListener listener_; tf::StampedTransform camera_to_robot_; public: XArmAPItest() : it_(nh_) { moveit::planning_interface::MoveGroupInterface arm("xarm7"); sleep(0.5); moveit::planning_interface::PlanningSceneInterface planning_scene_interface; sleep(0.5); //异步任务处理器,防阻塞 ros::AsyncSpinner spinner(1); spinner.start(); // 创建一个新的障碍物消息 moveit_msgs::CollisionObject collision_object; collision_object.header.frame_id = "world"; // 设置障碍物的参考坐标系,通常为世界坐标系 // 设置障碍物的 ID collision_object.id = "table"; // 定义障碍物的形状和尺寸 shape_msgs::SolidPrimitive primitive; primitive.type = primitive.BOX; primitive.dimensions.resize(3); primitive.dimensions[0] = 2.0; // 长 primitive.dimensions[1] = 2.0; // 宽 primitive.dimensions[2] = 0.1; // 高 // 定义障碍物的姿态 geometry_msgs::Pose obstacle_pose; obstacle_pose.orientation.w = 1.0; // 默认姿态为单位四元数 obstacle_pose.position.x = 0.0; // x 位置 obstacle_pose.position.y = 0.0; // y 位置 obstacle_pose.position.z = -0.06; // z 位置 // 将障碍物的形状和姿态添加到障碍物消息中 collision_object.primitives.push_back(primitive); collision_object.primitive_poses.push_back(obstacle_pose); // 设置操作类型为添加障碍物 collision_object.operation = collision_object.ADD; // 发送障碍物消息到规划场景 moveit_msgs::PlanningScene planning_scene; planning_scene.world.collision_objects.push_back(collision_object); planning_scene.is_diff = true; planning_scene_interface.applyPlanningScene(planning_scene); // 应用障碍物到规划场景 ROS_INFO("Obstacle added"); /** //回初位置 arm.setNamedTarget("home");//设置目标 arm.move();//执行 sleep(0.5); double targetPose[7] = {-0.166690,0.00000, -0.076904,1.173601, 0.015010,1.21220,-0.260379}; std::vector<double> joint_group_positions(7); joint_group_positions[0] = targetPose[0]; joint_group_positions[1] = targetPose[1]; joint_group_positions[2] = targetPose[2]; joint_group_positions[3] = targetPose[3]; joint_group_positions[4] = targetPose[4]; joint_group_positions[5] = targetPose[5]; joint_group_positions[6] = targetPose[6]; arm.setJointValueTarget(joint_group_positions); arm.move(); sleep(0.5); */ try { listener_.waitForTransform("link_base", "camera_link", ros::Time(0), ros::Duration(50.0)); } catch (tf::TransformException &ex) { ROS_ERROR("[adventure_tf]: (wait) %s", ex.what()); ros::Duration(1.0).sleep(); } try { listener_.lookupTransform("link_base", "camera_link", ros::Time(0), camera_to_robot_); tf::Vector3 translation = camera_to_robot_.getOrigin(); objectHeight=translation.getZ(); std::cout << objectHeight << std::endl; } catch (tf::TransformException &ex) { ROS_ERROR("[adventure_tf]: (lookup) %s", ex.what()); } // 订阅相机图像 image_sub_ = it_.subscribe("/camera/color/image_raw", 1, &XArmAPItest::Cam_RGB_Callback, this); sleep(1); } /** // 封装四元数转欧拉角的函数 std::tuple<double, double, double> quaternionToEuler(const geometry_msgs::Quaternion& q) { double x = q.x; double y = q.y; double z = q.z; double w = q.w; // 计算绕 x 轴旋转的弧度(roll) double sinr_cosp = 2 * (w * x + y * z); double cosr_cosp = 1 - 2 * (x * x + y * y); double roll = std::atan2(sinr_cosp, cosr_cosp); // 计算绕 y 轴旋转的弧度(pitch) double sinp = 2 * (w * y - z * x); double pitch; if (std::abs(sinp) >= 1) pitch = std::copysign(M_PI / 2, sinp); // 使用 90 度避免数值问题 else pitch = std::asin(sinp); // 计算绕 z 轴旋转的弧度(yaw) double siny_cosp = 2 * (w * z + x * y); double cosy_cosp = 1 - 2 * (y * y + z * z); double yaw = std::atan2(siny_cosp, cosy_cosp); return std::make_tuple(roll, pitch, yaw); } */ void Grasping(double a, double b, double z, double Angle) { std::cout << "Grasping" << std::endl; // 输出提示信息 moveit::planning_interface::MoveGroupInterface arm("xarm7"); ros::AsyncSpinner spinner(1); spinner.start(); std::string end_effector_link = arm.getEndEffectorLink(); std::string reference_frame = "link_base"; arm.setPoseReferenceFrame(reference_frame); // 声明一个变量用于存储机械臂当前的位姿信息 geometry_msgs::PoseStamped homePose; // 获取机械臂末端执行器当前的位姿并赋值给 homePose 变量 homePose = arm.getCurrentPose(); sleep(1); writeSpeed(1); writeSpeed(1); writeSpeed(1); sleep(0.8); /*******************第1次抓取*********************/ /*** if(flag_start==1) { //移动到抓取方块上方 flag_start=2; //将初始位姿加入路点列表 //waypoints.push_back(target_pose); geometry_msgs::Pose target_pose; target_pose.position.x = x; target_pose.position.y = y; target_pose.position.z = 0; double roll = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch = 0; // 绕 y 轴旋转的弧度 double yaw = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm = static_cast<float>(target_pose.position.x * 1000); float y_mm = static_cast<float>(target_pose.position.y * 1000); float z_mm = static_cast<float>(target_pose.position.z * 1000); } */ double x = a + 0.0001-0.0041; double y = b + 0.0009+0.0082+0.001; /*******************抓取*********************/ if(flag_start>=1&&flag_start<35) { //抓取物块 geometry_msgs::Pose target_pose0; target_pose0 = arm.getCurrentPose(end_effector_link).pose; target_pose0.position.z = 0+0.14+0.013; target_pose0.position.x = x; target_pose0.position.y = y; double roll0 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch0 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw0 = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm0 = static_cast<float>(target_pose0.position.x * 1000); float y_mm0 = static_cast<float>(target_pose0.position.y * 1000); float z_mm0 = static_cast<float>(target_pose0.position.z * 1000); ROS_INFO("zuobiao0: %f, %f, %f", x_mm0, y_mm0, z_mm0); // 定位抓取物块 geometry_msgs::Pose target_pose1; target_pose1 = arm.getCurrentPose(end_effector_link).pose; target_pose1.position.x = x; target_pose1.position.y = y; target_pose1.position.z = 0.09+0.0003+0.01246-0.01; double roll1 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch1 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw1 = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm1 = static_cast<float>(target_pose1.position.x * 1000); float y_mm1 = static_cast<float>(target_pose1.position.y * 1000); float z_mm1 = static_cast<float>(target_pose1.position.z * 1000); ROS_INFO("zuobiao1: %f, %f, %f", x_mm1, y_mm1, z_mm1); //抓取物块 geometry_msgs::Pose target_pose2; target_pose2 = arm.getCurrentPose(end_effector_link).pose; target_pose2.position.z = 0+0.14+0.013; target_pose2.position.x = x; target_pose2.position.y = y; double roll2 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch2 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw2 = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm2 = static_cast<float>(target_pose2.position.x * 1000); float y_mm2 = static_cast<float>(target_pose2.position.y * 1000); float z_mm2 = static_cast<float>(target_pose2.position.z * 1000); ROS_INFO("zuobiao2: %f, %f, %f", x_mm2, y_mm2, z_mm2); geometry_msgs::Pose target_pose3; target_pose3 = arm.getCurrentPose(end_effector_link).pose; //放置物块 target_pose3.position.z= 0.14+0.013; double roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw3 = Angle*M_PI/180; // 绕 z 轴旋转的弧度 /**********************************************zi色*************************************/ if(flag_start==1){ target_pose3.position.x = 0.38578-0.023+0.002; target_pose3.position.y = 0.217467-0.052;} if(flag_start==2){ target_pose3.position.x = 0.38578+0.06-0.023; target_pose3.position.y = 0.217467+0.02-0.052;} if(flag_start==3){ target_pose3.position.x = 0.38578+0.08-0.023; target_pose3.position.y = 0.217467-0.052;} /**********************************************橙色*************************************/ if(flag_start==4){ target_pose3.position.x = 0.38578+0.01-0.023; target_pose3.position.y = 0.217467+0.052-0.055;} if(flag_start==5){ target_pose3.position.x = 0.38578+0.05-0.023; target_pose3.position.y = 0.217467+0.052-0.055;} if(flag_start==6){ target_pose3.position.x = 0.38578+0.09-0.023; target_pose3.position.y = 0.217467+0.052-0.055;} /*********************************************hong色 *****************************************/ if(flag_start==7){ target_pose3.position.x = 0.38578-0.023; target_pose3.position.y = 0.217467+0.11-0.055+0.002;} if(flag_start==8){ target_pose3.position.x = 0.38578+0.02-0.023-0.002; target_pose3.position.y = 0.217467+0.11-0.055+0.002;} if(flag_start==9){ target_pose3.position.x = 0.38578+0.04-0.023-0.002; target_pose3.position.y = 0.217467+0.11-0.055;} /********************************************************huang色*****************************/ if(flag_start==10){ target_pose3.position.x = 0.38578-0.023+0.002; target_pose3.position.y = 0.217467+0.18+-0.05-0.001;} if(flag_start==11){ target_pose3.position.x = 0.38578+0.06-0.023-0.002; target_pose3.position.y = 0.217467+0.16-0.05;} if(flag_start==12){ target_pose3.position.x = 0.38578+0.08-0.023; target_pose3.position.y = 0.217467+0.18-0.05;} if(flag_start==13){ target_pose3.position.x = 0.38578+0.14-0.023-0.001; target_pose3.position.y = 0.217467+0.16-0.05;} /*****************************************************hei色*********************************** */ if(flag_start==14){ target_pose3.position.x = 0.38578+0.06-0.023; target_pose3.position.y = 0.217467+0.10-0.05;} if(flag_start==15){ target_pose3.position.x = 0.38578+0.08-0.023; target_pose3.position.y = 0.217467+0.14-0.05-0.001;} /*****************************************************zi色*************************** */ if(flag_start==16){ target_pose3.position.x = 0.38578+0.12-0.023-0.001; target_pose3.position.y = 0.217467+0.08-0.0575;} /***************************************************lan色******************************* */ if(flag_start==17){ target_pose3.position.x = 0.38578+0.11-0.023+0.001; target_pose3.position.y = 0.217467+0.12-0.05-0.001; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 + M_PI/2; // 绕 z 轴旋转的弧度 } if(flag_start==18){ target_pose3.position.x = 0.38578+0.11+0.03-0.02; target_pose3.position.y = 0.217467+0.09-0.05;} if(flag_start==19){ target_pose3.position.x = 0.38578+0.11+0.03+0.04-0.02-0.002; target_pose3.position.y = 0.217467+0.09-0.05+0.001;} if(flag_start==20){ target_pose3.position.x = 0.38578+0.11+0.03+0.04+0.02-0.02-0.02-0.07; target_pose3.position.y = 0.217467+0.09+0.02-0.05+0.002;} /***************************************************ceng色*************************** */ if(flag_start==21){ target_pose3.position.x = 0.38578+0.15-0.02-0.002; target_pose3.position.y = 0.217467+0.13-0.045-0.002;} /*****************************************************lv色**************************************** */ if(flag_start==22){ target_pose3.position.x = 0.38578+0.12-0.02-0.004; target_pose3.position.y = 0.217467+0.03-0.05;} if(flag_start==23){ target_pose3.position.x = 0.38578+0.16-0.02-0.004-0.0005; target_pose3.position.y = 0.217467+0.03-0.05;} if(flag_start==24){ target_pose3.position.x = 0.38578+0.20-0.02-0.004-0.0005; target_pose3.position.y = 0.217467+0.03-0.05;} if(flag_start==25){ target_pose3.position.x = 0.38578+0.17-0.02-0.004-0.0001; target_pose3.position.y = 0.217467+0.11+0.06-0.05-0.005; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } /***********************************************************huang色************************************** */ if(flag_start==26){ target_pose3.position.x = 0.38578+0.20-0.022; target_pose3.position.y = 0.217467+0.11+0.08-0.05-0.004-0.004;} /***********************************************************hong色************************************** */ if(flag_start==27){ target_pose3.position.x = 0.38578+0.17-0.021; target_pose3.position.y = 0.217467-0.05; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } if(flag_start==28){ target_pose3.position.x = 0.38578+0.17-0.021; target_pose3.position.y = 0.217467+0.06-0.05; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } /***************************************************************hei色************************************* */ if(flag_start==29){ target_pose3.position.x = 0.38578+0.22-0.025+0.002; target_pose3.position.y = 0.217467+0.10+0.04-0.05;} if(flag_start==30){ target_pose3.position.x = 0.38578+0.24-0.025; target_pose3.position.y = 0.217467+0.18-0.05;} /*************************************************ceng色*************************** */ if(flag_start==31){ target_pose3.position.x = 0.38578+0.23-0.02-0.002-0.0002; target_pose3.position.y = 0.217467+0.07-0.045-0.002-0.002;} /*************************************************lan色*************************** */ if(flag_start==32){ target_pose3.position.x = 0.38578+0.23-0.024; target_pose3.position.y = 0.217467+0.02-0.051-0.0001; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 + M_PI/2; // 绕 z 轴旋转的弧度 } /*************************************************zi色*************************** */ if(flag_start==33){ target_pose3.position.x = 0.38578+0.26-0.024; target_pose3.position.y = 0.217467-0.051+0.001;} /*************************************************lv色*************************** */ if(flag_start==34){ target_pose3.position.x = 0.38578+0.25-0.024; target_pose3.position.y = 0.217467+0.10-0.051+0.001; target_pose3.position.z= 0.14+0.013+0.002; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } // 将目标姿态的位置坐标从米转换为毫米 float x_mm3 = static_cast<float>(target_pose3.position.x * 1000); float y_mm3 = static_cast<float>(target_pose3.position.y * 1000); float z_mm3 = static_cast<float>(target_pose3.position.z * 1000); ROS_INFO("zuobiao3: %f, %f, %f", x_mm3, y_mm3, z_mm3); geometry_msgs::Pose target_pose4; target_pose4.position.z= 0.109+0.01236-0.0078+0.005; double roll4 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch4 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw4 = yaw3; // 绕 z 轴旋转的弧度 float x_mm4 = static_cast<float>(target_pose3.position.x * 1000); float y_mm4 = static_cast<float>(target_pose3.position.y * 1000); float z_mm4 = static_cast<float>(target_pose4.position.z * 1000); ROS_INFO("zuobiao4: %f, %f, %f", x_mm4, y_mm4, z_mm4); // 调用 move_lineb_test 函数并传递坐标 ros::NodeHandle nh; ros::ServiceClient move_lineb_client_ = nh.serviceClient<xarm_msgs::Move>("/xarm/move_lineb"); xarm_msgs::Move move_srv_; if(move_lineb_test(move_srv_, move_lineb_client_, x_mm0, y_mm0, z_mm0, roll0, pitch0, yaw0, x_mm1, y_mm1, z_mm1, roll1, pitch1, yaw1, x_mm2, y_mm2, z_mm2, roll2, pitch2, yaw2, x_mm3, y_mm3, z_mm3, roll3, pitch3, yaw3, x_mm4, y_mm4, z_mm4, roll4, pitch4, yaw4) == 1) return; control_suction_during_move(x_mm4, y_mm4, z_mm4); flag_start++; } else {ros::shutdown(); } } void Cam_RGB_Callback(const sensor_msgs::ImageConstPtr &msg)// 摄像头回调函数 { using namespace cv; image_sub_.shutdown(); // 定义一个cv_bridge指针 cv_bridge::CvImagePtr cv_ptr; try { // 将ROS图像转换为OpenCV图像 cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); } catch (cv_bridge::Exception &e) { ROS_ERROR("cv_bridge exception:%s", e.what()); } // 获取原始图像 Mat imgOriginal = cv_ptr->image; // 定义亮度增强因子 double brightness_scale = 1.8; // 应用亮度增强 Mat brightened; imgOriginal.convertTo(brightened, -1, brightness_scale); // 图像预处理:高斯模糊 Mat blurred; GaussianBlur(brightened, blurred, Size(5, 5), 0); Mat hsv; cvtColor(blurred, hsv, cv::COLOR_BGR2HSV); // 将原始图像转换为HSV图像 // 分离HSV通道 std::vector<Mat> hsv_channels; split(hsv, hsv_channels); // 增强饱和度(S 通道) double saturation_scale = 1.5; // 饱和度增强因子,可以根据实际情况调整 hsv_channels[1].convertTo(hsv_channels[1], -1, saturation_scale); // 合并通道 merge(hsv_channels, hsv); Mat mask_red, mask_green,mask_blue,mask_orange,mask_brown,mask_yellow,mask_purple; // inRange(blurred, cv::Scalar(0, 0, 130), cv::Scalar(255, 108, 226), mask_red); inRange(blurred, cv::Scalar(0, 0, 144), cv::Scalar(252, 111, 203), mask_red); inRange(blurred, cv::Scalar(0, 112, 174), cv::Scalar(159, 139, 237), mask_orange);//BGR inRange(blurred, cv::Scalar(0, 0, 0), cv::Scalar(123, 112, 108), mask_brown); inRange(blurred, cv::Scalar(0, 127, 97), cv::Scalar(157, 255, 136), mask_green); inRange(blurred, cv::Scalar(156, 119, 0), cv::Scalar(218, 146, 102), mask_blue); inRange(blurred, cv::Scalar(0, 142, 152), cv::Scalar(150, 255, 255), mask_yellow); inRange(hsv, cv::Scalar(99, 33, 120), cv::Scalar(134, 146, 181), mask_purple); Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(5, 5));// 形态学操作的内核大小 //dilate(mask_red, mask_red, kernel); //dilate(mask_green, mask_green, kernel); erode(mask_red, mask_red, kernel);//腐蚀 erode(mask_green, mask_green, kernel); erode(mask_blue, mask_blue, kernel); erode(mask_yellow, mask_yellow, kernel); erode(mask_orange, mask_orange, kernel); erode(mask_purple, mask_purple, kernel); erode(mask_brown, mask_brown, kernel); //erode(mask_purple, mask_purple, kernel); dilate(mask_orange, mask_orange, kernel); dilate(mask_brown, mask_brown, kernel); //imshow("green", mask_green);//显示原始图像 //获取储存不同颜色的灰度图 std::vector<std::vector<cv::Point>> contours_red; std::vector<std::vector<cv::Point>> contours_red_output; cv::findContours(mask_red,contours_red, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_orange; std::vector<std::vector<cv::Point>> contours_orange_output; cv::findContours(mask_orange,contours_orange, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_brown; std::vector<std::vector<cv::Point>> contours_brown_output; cv::findContours(mask_brown,contours_brown, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_green; std::vector<std::vector<cv::Point>> contours_green_output; cv::findContours(mask_green,contours_green, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_blue; std::vector<std::vector<cv::Point>> contours_blue_output; cv::findContours(mask_blue,contours_blue, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_yellow; std::vector<std::vector<cv::Point>> contours_yellow_output; cv::findContours(mask_yellow,contours_yellow, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_purple; std::vector<std::vector<cv::Point>> contours_purple_output; cv::findContours(mask_purple,contours_purple, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); //drawContours(blurred, contours, -1, Scalar(0, 255, 0), 3);//轮廓 /********************************红色********************/ for (size_t i = 0; i < contours_red.size(); i++) { std::vector<cv::Point>& contour_red = contours_red[i]; if (contour_red.size()>200) { // 检查轮廓是否为空 contours_red_output.push_back(contours_red[i]); } else { ROS_INFO("No red contours found."); } } /********************************橙色********************/ for (size_t i = 0; i < contours_orange.size(); i++) { std::vector<cv::Point>& contour_orange = contours_orange[i]; if (contour_orange.size()>200) { // 检查轮廓是否为空 contours_orange_output.push_back(contours_orange[i]); } else { ROS_INFO("No orange contours found."); } } /********************************棕色********************/ for (size_t i = 0; i < contours_brown.size(); i++) { std::vector<cv::Point>& contour_brown = contours_brown[i]; if (contour_brown.size()>200) { // 检查轮廓是否为空 contours_brown_output.push_back(contours_brown[i]); } else { ROS_INFO("No brown contours found."); } } /********************************绿色********************/ for (size_t i = 0; i < contours_green.size(); i++) { std::vector<cv::Point>& contour_green = contours_green[i]; if (contour_green.size()>200) { // 检查轮廓是否为空 contours_green_output.push_back(contours_green[i]); } else { ROS_INFO("No green contours found."); } } /********************************蓝色********************/ for (size_t i = 0; i < contours_blue.size(); i++) { std::vector<cv::Point>& contour_blue = contours_blue[i]; if (contour_blue.size()>200) { // 检查轮廓是否为空 contours_blue_output.push_back(contours_blue[i]); } else { ROS_INFO("No blue contours found."); } } /********************************黄色********************/ for (size_t i = 0; i < contours_yellow.size(); i++) { std::vector<cv::Point>& contour_yellow = contours_yellow[i]; if (contour_yellow.size()>200) { // 检查轮廓是否为空 contours_yellow_output.push_back(contours_yellow[i]); } else { ROS_INFO("No yellow contours found."); } } /********************************紫色********************/ // 存储每个轮廓的面积及其索引 std::vector<std::pair<double, size_t>> area_index_pairs; for (size_t i = 0; i < contours_purple.size(); ++i) { double area = cv::contourArea(contours_purple[i]); area_index_pairs.emplace_back(area, i); } // 按面积从大到小排序 std::sort(area_index_pairs.begin(), area_index_pairs.end(), [](const std::pair<double, size_t>& a, const std::pair<double, size_t>& b) { return a.first > b.first; }); // 处理面积最大的5个轮廓 size_t count = std::min<size_t>(5, area_index_pairs.size()); if (count == 0) { ROS_INFO("No contours found."); } for (size_t i = 0; i < count; ++i) { size_t index = area_index_pairs[i].second; contours_purple_output.push_back(contours_purple[index]); } //传递颜色灰度图像 Camera_TO_Robot_Process_YP(contours_purple_output,0,3); Camera_TO_Robot_Process_RO(contours_orange_output,0,3); Camera_TO_Robot_Process_RO(contours_red_output,0,3); Camera_TO_Robot_Process_YP(contours_yellow_output,0,4); Camera_TO_Robot_Process_brown(contours_brown_output,0,2); Camera_TO_Robot_Process_YP(contours_purple_output,3,4); Camera_TO_Robot_Process_GB(contours_blue_output,0,4); Camera_TO_Robot_Process_RO(contours_orange_output,3,4); Camera_TO_Robot_Process_GB(contours_green_output,0,4); Camera_TO_Robot_Process_YP(contours_yellow_output,4,5); Camera_TO_Robot_Process_RO(contours_red_output,3,5); Camera_TO_Robot_Process_brown(contours_brown_output,2,4); Camera_TO_Robot_Process_RO(contours_orange_output,4,5); Camera_TO_Robot_Process_GB(contours_blue_output,4,5); Camera_TO_Robot_Process_YP(contours_purple_output,4,5); Camera_TO_Robot_Process_GB(contours_green_output,4,5); // imshow("imgOriginal", imgOriginal); std::cout << "success!" << std::endl; ros::shutdown(); } //红色和橙色 void Camera_TO_Robot_Process_RO(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "Red or Orange" << std::endl; cv::Point2f center; for (start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) // 检查轮廓是否为空 { // 获取最小外接圆 // float radius; // cv::minEnclosingCircle(contours[i], center, radius); // 获取最小外接矩形 cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); center = minRect.center; if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&&center.x>=82) { cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-91.0, center.y*1.275-74.5,1); std::cout << pixelPointMat << std::endl; // pixelPointMat = (cv::Mat_<double>(3, 1) << 640, 360, 1); cameraPointMat = objectHeight * K.inv() * pixelPointMat; // std::cout << "相机坐标系下的三维坐标:" << std::endl; // std::cout << cameraPointMat << std::endl; obj_camera_frame1.setX(cameraPointMat.at<double>(0,0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1,0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2,0)); obj_robot_frame = camera_to_robot_ * obj_camera_frame1; // ros::shutdown(); //std::cout << "11111" << std::endl; /**************** 获取矩形的角度*******************/ double angle = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; //放平角度 if (width < height) { angle += 90; } // 输出角度 // std::cout << "Contour #" << start_number << " angle: " << angle << std::endl; /**************** 获取矩形的角度*******************/ Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle); } } else if(contour.size()>0&&contour.size()<100) { std::cout << "没有红橙像素坐标:" << std::endl; } } } //棕色 void Camera_TO_Robot_Process_brown(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "Brown start" << std::endl; cv::Point2f center; for (start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) // 检查轮廓是否为空 { // 获取最小外接圆 float radius; cv::minEnclosingCircle(contours[start_number], center, radius); /**************** 获取矩形的角度*******************/ // 获取最小外接矩形 cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); double angle2 = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; /**************** 获取矩形的角度*******************/ double epsilon = 0.1 * cv::arcLength(contours[start_number], true); std::cout << "1111" << std::endl; std::vector<int> lenth(8); std::vector<cv::Point2f> approx; cv::Point2f pt; cv::Point2f pt1; cv::Point2f pt0; cv::approxPolyDP(contours[start_number], approx, epsilon, true); pt0 = approx[0]; if (approx.size() == 3) { for (size_t j = 0; j < approx.size(); j++) { pt= approx[j]; pt1= approx[j+1]; lenth[j]=(pt.x-pt1.x)*(pt.x-pt1.x)+(pt.y-pt1.y)*(pt.y-pt1.y); if(j==2) { lenth[j]=(pt.x-pt0.x)*(pt.x-pt0.x)+(pt.y-pt0.y)*(pt.y-pt0.y); } } if ( lenth[0]>lenth[1]&&lenth[0]>lenth[2]) { if(width > height){ switch (start_number) { case 0: angle2 = angle2; break; case 1: angle2 -= 90; break; case 2: angle2 = angle2; break; case 3: angle2 -= 90; break; } } else if(width < height){ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 180; break; case 2: angle2 -= 90; break; case 3: angle2 += 180; break; } } } else if ( lenth[2]>lenth[1]&&lenth[2]>lenth[0]) { if(width > height){ switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 += 90; break; case 2: angle2 += 180; break; case 3: angle2 += 90; break; } } else if(width < height){ switch (start_number) { case 0: angle2 += 90; break; case 1: angle2 = angle2; break; case 2: angle2 += 90; break; case 3: angle2 = angle2; break; } } } } // center = minRect.center; if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&&center.x>=82) { //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-91.5, center.y*1.275-74.5,1); //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-92, center.y*1.285-76.5,1); cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); std::cout << pixelPointMat << std::endl; // pixelPointMat = (cv::Mat_<double>(3, 1) << 640, 360, 1); cameraPointMat = objectHeight * K.inv() * pixelPointMat; // std::cout << "相机坐标系下的三维坐标:" << std::endl; // std::cout << cameraPointMat << std::endl; obj_camera_frame1.setX(cameraPointMat.at<double>(0,0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1,0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2,0)); obj_robot_frame = camera_to_robot_ * obj_camera_frame1; if(angle2>176) angle2=176; if(angle2<-176) angle2=-176; std::cout << " angle2 :" << angle2 << std::endl; Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle2); } } else if(contour.size()>0&&contour.size()<100) { std::cout << "没有棕色像素坐标:" << std::endl; }} } //紫色和黄色 void Camera_TO_Robot_Process_YP(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "Yellow or Purple start" << std::endl; double angle2=0; for (start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) // 检查轮廓是否为空 { /**************** 获取矩形的角度*******************/ cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); angle2 = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; /**************** 获取矩形的角度*******************/ cv::Point2f center; cv::Point2f center2; double epsilon = 0.04 * cv::arcLength(contours[start_number], true); // 多边形逼近 std::vector<int> lenth(6); std::vector<cv::Point2f> approx; cv::Point2f pt; cv::Point2f pt1; cv::Point2f pt0; cv::approxPolyDP(contours[start_number], approx, epsilon, true); // std::cout <<" lenth[i] "<< approx.size() << std::endl; pt0 = approx[0]; if (approx.size() == 6) { for (size_t i = 0; i < approx.size(); i++) { pt= approx[i]; pt1= approx[i+1]; lenth[i]=(pt.x-pt1.x)*(pt.x-pt1.x)+(pt.y-pt1.y)*(pt.y-pt1.y); if(i==5) lenth[i]=(pt.x-pt0.x)*(pt.x-pt0.x)+(pt.y-pt0.y)*(pt.y-pt0.y); } /********************************purple***************************************/ if ( lenth[5]>lenth[1]&&lenth[5]>lenth[0]&&lenth[5]>lenth[2]&&lenth[5]>lenth[3]&&lenth[5]>lenth[4]) { // center2 = (approx[1]+approx[2])/2; // center = (approx[5]+center2)/2; center = (approx[5]+approx[2])/2; if(width > height){ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 90; break; case 2: angle2 -= 90; break; case 3: angle2 += 90; break; case 4: angle2 = angle2; break; }} else if(width < height){ switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 = angle2; break; case 2: angle2 += 180; break; case 3: angle2 = angle2; break; case 4: angle2 -= 90; break; }} std::cout << "555555" << std::endl; } /********************************purple***************************************/ else if ( lenth[1]>lenth[2]&&lenth[1]>lenth[0]&&lenth[1]>lenth[5]&&lenth[1]>lenth[3]&&lenth[1]>lenth[4]) { //center2 = (approx[3]+approx[4])/2; //center = (approx[1]+center2)/2; center = (approx[1]+approx[4])/2; if(width > height){ if(approx[1].y<approx[0].y&&approx[1].y<approx[2].y&&approx[1].y<approx[3].y&&approx[1].y<approx[4].y&&approx[1].y<approx[5].y){ switch (start_number) { case 0: angle2 += 90; break; case 1: angle2 -= 90; break; case 2: angle2 += 90; break; case 3: angle2 -= 90; break; case 4: angle2 += 180; break; }} else{ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 90; break; case 2: angle2 -= 90; break; case 3: angle2 += 90; break; case 4: angle2 = angle2; break; } } } else if(width < height) { switch (start_number) { case 0: angle2 = angle2; break; case 1: angle2 += 180; break; case 2: angle2 = angle2; break; case 3: angle2 += 180; break; case 4: angle2 += 90; break; }} std::cout << "11111111" << std::endl; } /********************************purple***************************************/ /********************************yellow***************************************/ else if ( lenth[0]>lenth[1]&&lenth[0]>lenth[2]&&lenth[0]>lenth[5]&&lenth[0]>lenth[3]&&lenth[0]>lenth[4]) { //center2 = (approx[4]+approx[5])/2; //center = (center2+approx[1])/2; center = (approx[4]+approx[1])/2; if(width < height){ switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 = angle2; break; case 2: angle2 += 180; break; case 3: angle2 = angle2; break; case 4: angle2 += 90; break; } } else{ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 90; break; case 2: angle2 -= 90; break; case 3: angle2 += 90; break; case 4: angle2 += 180; break; } } std::cout << "000000" << std::endl; } /********************************yellow***************************************/ else if ( lenth[4]>lenth[1]&&lenth[4]>lenth[0]&&lenth[4]>lenth[5]&&lenth[4]>lenth[3]&&lenth[4]>lenth[2])/////yellow { //center2 = (approx[2]+approx[3])/2; // center = (center2+approx[5])/2; center = (approx[2]+approx[5])/2; if(width < height){ if(approx[5].y<approx[0].y&&approx[5].y<approx[1].y&&approx[5].y<approx[2].y&&approx[5].y<approx[3].y&&approx[5].y<approx[4].y){ switch (start_number) { case 0: angle2 = angle2; break; case 1: angle2 += 180; break; case 2: angle2 = angle2; break; case 3: angle2 += 180; break; case 4: angle2 -= 90; break; } } else { switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 = angle2; break; case 2: angle2 += 180; break; case 3: angle2 = angle2; break; case 4: angle2 += 90; break; } } } else if(width > height){ switch (start_number) { case 0: angle2 += 90; break; case 1: angle2 -= 90; break; case 2: angle2 += 90; break; case 3: angle2 -= 90; break; case 4: angle2 = angle2; break; } } std::cout << "444444" << std::endl; } /********************************yellow***************************************/ } if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&&center.x>=82) { //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-92, center.y*1.285-76.5,1); cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); // std::cout << pixelPointMat << std::endl; // pixelPointMat = (cv::Mat_<double>(3, 1) << 640, 360, 1); cameraPointMat = objectHeight * K.inv() * pixelPointMat; // std::cout << "相机坐标系下的三维坐标:" << std::endl; // std::cout << cameraPointMat << std::endl; obj_camera_frame1.setX(cameraPointMat.at<double>(0,0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1,0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2,0)); obj_robot_frame = camera_to_robot_ * obj_camera_frame1; std::cout<< " X :" << obj_robot_frame.getX() << std::endl; std::cout<< " Y :" << obj_robot_frame.getY() << std::endl; std::cout<< " Z :" << obj_robot_frame.getZ() << std::endl; if(angle2>176) angle2=176; if(angle2<-176) angle2=-176; std::cout << " angle2 :" << angle2 << std::endl; Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle2); } } else if(contour.size()>0&&contour.size()<280) { std::cout << "没有黄紫像素坐标:" << std::endl; }} } //绿色和蓝色 void Camera_TO_Robot_Process_GB(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "green or blue" << std::endl; // 输出提示信息 cv::Point2f center; for(start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) { // 检查轮廓是否为空 // 获取最小外接矩形 cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); center = minRect.center; double angleInRadians = minRect.angle * M_PI / 180.0; if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&&center.x>=82) { cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); std::cout << pixelPointMat << std::endl; cameraPointMat = objectHeight * K.inv() * pixelPointMat; //平面下的坐标转为相机三维坐标 //相机坐标转为基座标 obj_camera_frame1.setX(cameraPointMat.at<double>(0, 0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1, 0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2, 0)); obj_robot_frame= camera_to_robot_ * obj_camera_frame1; std::cout << "坐标为: " << obj_robot_frame << std::endl; /**************** 获取矩形的角度*******************/ double angle = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; //放平角度 if (width > height) { angle += 90; } Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle); } } else if(contour.size()>0&&contour.size()<100) { std::cout << "没有蓝绿像素坐标:" << std::endl; } } } }; /**********调用服务运行机械臂*********************/ int move_lineb_test(xarm_msgs::Move srv, ros::ServiceClient client, float x_mm0, float y_mm0, float z_mm0, double roll0, double pitch0, double yaw0, float x_mm1, float y_mm1, float z_mm1, double roll1, double pitch1, double yaw1, float x_mm2, float y_mm2, float z_mm2, double roll2, double pitch2, double yaw2, float x_mm3, float y_mm3, float z_mm3, double roll3, double pitch3, double yaw3, float x_mm4, float y_mm4, float z_mm4, double roll4, double pitch4, double yaw4) { // 设置机械臂的运动速度 srv.request.mvvelo = 160; // 设置机械臂的运动加速度 srv.request.mvacc = 1000; // 设置机械臂的运动时间 srv.request.mvtime = 0; // 设置机械臂运动路径的圆角半径 srv.request.mvradii = 20; ROS_INFO("ZUOBIAOR: %f, %f,%f", x_mm1, y_mm1, z_mm1); std::vector<float> pose[5] = { {x_mm0, y_mm0, z_mm0, static_cast<float>(roll0), static_cast<float>(pitch0), static_cast<float>(yaw0)}, {x_mm1, y_mm1, z_mm1, static_cast<float>(roll1), static_cast<float>(pitch1), static_cast<float>(yaw1)}, {x_mm2, y_mm2, z_mm2, static_cast<float>(roll2), static_cast<float>(pitch2), static_cast<float>(yaw2)}, {x_mm3, y_mm3, z_mm3, static_cast<float>(roll3), static_cast<float>(pitch3), static_cast<float>(yaw3)}, {x_mm4, y_mm4, z_mm4, static_cast<float>(roll4), static_cast<float>(pitch4), static_cast<float>(yaw4)} }; for(int i = 0; i < 5; i++) { srv.request.pose = pose[i]; if(client.call(srv)) { ROS_INFO("%s\n", srv.response.message.c_str()); std::cout << "success111" << std::endl; } else { ROS_ERROR("Failed to call service move_lineb"); } } return 0; } bool is_at_pose(const geometry_msgs::Pose& current_pose, const geometry_msgs::Pose& target_pose, double tolerance = 0.005) { return std::abs(current_pose.position.x - target_pose.position.x) < tolerance && std::abs(current_pose.position.y - target_pose.position.y) < tolerance && std::abs(current_pose.position.z - target_pose.position.z) < tolerance; } //阻塞服务,检测是否到达目标位置 void control_suction_during_move(float x_mm4, float y_mm4, float z_mm4) { // 定义目标位 moveit::planning_interface::MoveGroupInterface arm("xarm7"); ros::AsyncSpinner spinner(1); spinner.start(); geometry_msgs::Pose target_pose4; target_pose4.position.x = x_mm4 / 1000.0; target_pose4.position.y = y_mm4 / 1000.0; target_pose4.position.z = (z_mm4-76.7398-13.9+8.5) / 1000.0; bool suction_off_triggered = false; // 循环检查当前位姿 ros::Rate rate(10); // 10 Hz 检查频率 while (ros::ok()) { geometry_msgs::Pose current_pose = arm.getCurrentPose().pose; // ROS_INFO("ZUOBIAO_SHISHI: %f, %f, %f", current_pose.position.x, current_pose.position.y, current_pose.position.z); // 检查是否到达关闭吸盘的位置 if (!suction_off_triggered && is_at_pose(current_pose, target_pose4)) { ROS_INFO("Reached suction off position, trying to turn off suction."); sleep(0.8); writeSpeed(0); writeSpeed(0); writeSpeed(0); sleep(0.5); ROS_INFO("Suction off commands sent."); suction_off_triggered = true; } // 如果两个条件都满足,退出循环 if (suction_off_triggered) { break; } rate.sleep(); } } int main(int argc, char** argv) { // 初始化ROS节点 ros::init(argc, argv, "xarm_api"); ros::NodeHandle nh; XArmAPItest ic; nh.setParam("/xarm/wait_for_finish", true); ros::Publisher sleep_pub_ = nh.advertise<std_msgs::Float32>("/xarm/sleep_sec", 1); ros::ServiceClient motion_ctrl_client_ = nh.serviceClient<xarm_msgs::SetAxis>("/xarm/motion_ctrl"); ros::ServiceClient set_mode_client_ = nh.serviceClient<xarm_msgs::SetInt16>("/xarm/set_mode"); ros::ServiceClient set_state_client_ = nh.serviceClient<xarm_msgs::SetInt16>("/xarm/set_state"); ros::ServiceClient move_lineb_client_ = nh.serviceClient<xarm_msgs::Move>("/xarm/move_lineb"); xarm_msgs::SetAxis set_axis_srv_; xarm_msgs::SetInt16 set_int16_srv_; xarm_msgs::Move move_srv_; float x_mm0, y_mm0, z_mm0; double roll0, pitch0, yaw0; float x_mm1, y_mm1, z_mm1; double roll1, pitch1, yaw1; float x_mm2, y_mm2, z_mm2; double roll2, pitch2, yaw2; float x_mm3, y_mm3, z_mm3; double roll3, pitch3, yaw3; float x_mm4, y_mm4, z_mm4; double roll4, pitch4, yaw4; set_axis_srv_.request.id = 8; set_axis_srv_.request.data = 1; if(motion_ctrl_client_.call(set_axis_srv_)) { ROS_INFO("%s\n", set_axis_srv_.response.message.c_str()); } else { ROS_ERROR("Failed to call service motion_ctrl"); return 1; } set_int16_srv_.request.data = 0; if(set_mode_client_.call(set_int16_srv_)) { ROS_INFO("%s\n", set_int16_srv_.response.message.c_str()); } else { ROS_ERROR("Failed to call service set_mode"); return 1; } set_int16_srv_.request.data = 0; if(set_state_client_.call(set_int16_srv_)) { ROS_INFO("%s\n", set_int16_srv_.response.message.c_str()); } else { ROS_ERROR("Failed to call service set_state"); return 1; } nh.setParam("/xarm/wait_for_finish", false); std_msgs::Float32 sleep_msg; sleep_msg.data = 1.0; sleep_pub_.publish(sleep_msg); if(move_lineb_test(move_srv_, move_lineb_client_, x_mm0, y_mm0, z_mm0, roll0, pitch0, yaw0, x_mm1, y_mm1, z_mm1, roll1, pitch1, yaw1, x_mm2, y_mm2, z_mm2, roll2, pitch2, yaw2, x_mm3, y_mm3, z_mm3, roll3, pitch3, yaw3, x_mm4, y_mm4, z_mm4, roll4, pitch4, yaw4) == 1) return 1; // 调用 control_suction_during_move 函数 control_suction_during_move(x_mm4, y_mm4, z_mm4); sleep(0.8); nh.setParam("/xarm/wait_for_finish", true); while(ros::ok()) { ros::spinOnce(); } return 0; }解释一下

### 图像处理与坐标转换模块 该代码段首先通过 OpenCV 处理图像数据,检测目标物体的像素坐标。通常使用颜色阈值分割或边缘检测等方法提取目标特征。例如,以下代码展示了如何将图像从 BGR 转换为 HSV 颜色空间,并对特定颜色范围进行掩码处理: ```cpp cv::Mat hsvImage; cv::cvtColor(rawImage, hsvImage, cv::COLOR_BGR2HSV); cv::Scalar lowerBound = cv::Scalar(0, 100, 100); cv::Scalar upperBound = cv::Scalar(10, 255, 255); cv::Mat mask; cv::inRange(hsvImage, lowerBound, upperBound, mask); ``` 在完成图像预处理后,通过轮廓检测获取目标物体的位置信息。OpenCV 提供了 `findContours` 函数用于查找图像中的轮廓,并计算其质心作为目标的像素坐标 [^1]。 ```cpp std::vector<std::vector<cv::Point>> contours; cv::findContours(mask, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE); if (!contours.empty()) { auto& contour = contours[0]; double area = cv::contourArea(contour); if (area > 100) { cv::Moments m = cv::moments(contour); int cx = static_cast<int>(m.m10 / m.m00); int cy = static_cast<int>(m.m01 / m.m00); pixelPoint = cv::Point2d(cx, cy); } } ``` ### 相机到机械臂的坐标转换 为了将像素坐标转换为机械臂可识别的空间坐标,需要利用相机内参矩阵 K 和畸变参数 distCoeffs。OpenCV 提供了 `undistortPoints` 函数用于去除像素坐标的畸变影响,并结合相机外参(旋转和平移向量)将其转换为世界坐标系下的三维坐标 [^1]。 ```cpp cv::Mat cameraMatrix = (cv::Mat_<double>(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 1); cv::Mat distCoeffs = (cv::Mat_<double>(5, 1) << k1, k2, p1, p2, 0); std::vector<cv::Point2f> distortedPoints(1, pixelPoint); std::vector<cv::Point2f> undistortedPoints; cv::undistortPoints(distortedPoints, undistortedPoints, cameraMatrix, distCoeffs); ``` 在获得去畸变后的归一化坐标后,还需结合深度信息(如来自 Kinect v2 的深度图)计算目标点的三维坐标。假设已知目标点的深度值 `depthValue`,则可通过以下方式计算其在相机坐标系下的位置: ```cpp double x = (undistortedPoints[0].x * depthValue); double y = (undistortedPoints[0].y * depthValue); double z = depthValue; Eigen::Vector4d cameraPoint(x, y, z, 1.0); ``` 由于相机和机械臂之间的相对位姿是已知的(通过手眼标定获取),可以将相机坐标系下的点转换为机械臂基座标系下的坐标。ROS 中常用 TF 或 Eigen 库实现坐标变换: ```cpp Eigen::Isometry3d transform; // 从相机到机械臂的变换矩阵 Eigen::Vector4d basePoint = transform * cameraPoint; ``` ### MoveIt 控制机械臂运动 MoveIt 是 ROS 中用于机械臂路径规划和运动控制的核心库。在获得目标点的世界坐标后,可以通过 MoveIt 设置机械臂末端执行器的目标位姿并执行运动规划 [^1]。 ```cpp moveit::planning_interface::MoveGroupInterface move_group("arm"); geometry_msgs::Pose target_pose; target_pose.orientation.w = 1.0; target_pose.position.x = basePoint.x(); target_pose.position.y = basePoint.y(); target_pose.position.z = basePoint.z(); move_group.setPoseTarget(target_pose); moveit::planning_interface::MoveGroupInterface::Plan my_plan; bool success = (move_group.plan(my_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS); if (success) { move_group.execute(my_plan); } ``` 此外,代码中可能还包含对夹爪的控制逻辑,例如在接近目标点后闭合夹爪以抓取物体。ROS 提供了多种方式控制夹爪,包括直接发布关节控制指令或调用服务接口: ```cpp std_msgs::Float64 gripper_cmd; gripper_cmd.data = 0.0; // 关闭夹爪 gripper_pub.publish(gripper_cmd); ``` ### 综合功能说明 该 C++ 程序实现了从图像采集、目标检测、坐标转换到机械臂运动控制的完整流程。整个系统依赖于多个关键组件的协同工作: - **OpenCV**:负责图像预处理、目标识别及像素坐标校正。 - **ROS**:提供传感器数据订阅、TF 坐标变换及机械臂控制接口。 - **MoveIt**:实现机械臂的轨迹规划与运动控制。 - **xArm SDK**:与硬件通信,确保命令正确执行。 程序的整体架构体现了机器人视觉伺服系统的典型设计模式,即通过感知环境信息指导机械臂完成自主操作任务。 ---

#include <GL/glut.h> #include <opencv2/opencv.hpp> #include <vector> #include <opencv2/core/matx.hpp> struct Vertex { float x, y, z; }; std::vector<std::vector<Vertex>> triangles; // 存储STL三角形数据 // STL文件加载函数(二进制格式) void LoadSTL(const char* filename) { FILE* file = fopen(filename, "rb"); if (!file) return; char header[80]; fread(header, 80, 1, file); uint32_t triCount; fread(&triCount, 4, 1, file); triangles.resize(triCount); for (auto& tri : triangles) { float normal[3]; fread(normal, 12, 1, file); tri.resize(3); fread(&tri[0].x, 12, 3, file); fseek(file, 2, SEEK_CUR); // 跳过属性字节 } fclose(file); } void Render() { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glBegin(GL_TRIANGLES); for (const auto& tri : triangles) { for (const auto& v : tri) { glVertex3f(v.x, v.y, v.z); } } glEnd(); glutSwapBuffers(); } void SaveImage(const char* filename) { int width = glutGet(GLUT_WINDOW_WIDTH); int height = glutGet(GLUT_WINDOW_HEIGHT); std::vector<uint8_t> pixels(3 * width * height); glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels.data()); cv::Mat img(height, width, CV_8UC3, pixels.data()); cv::flip(img, img, 0); // OpenGL坐标系翻转 cv::cvtColor(img, img, cv::COLOR_RGB2BGR); cv::imwrite(filename, img); } void SetupView(glm::vec3 eye, glm::vec3 center, glm::vec3 up) { glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45, 1.0, 0.1, 1000.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt(eye.x, eye.y, eye.z, center.x, center.y, center.z, up.x, up.y, up.z); } int main(int argc, char** argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH); glutInitWindowSize(800, 800); glutCreateWindow("STL Viewer"); glEnable(GL_DEPTH_TEST); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); LoadSTL("model.stl"); const std::vector<std::tuple<glm::vec3, glm::vec3, glm::vec3>> views = { // 前、后、左、右、顶、底视图参数 {{0,0,100}, {0,0,0}, {0,1,0}}, // Front {{0,0,-100}, {0,0,0}, {0,1,0}}, // Back {{100,0,0}, {0,0,0}, {0,1,0}}, // Left {{-100,0,0}, {0,0,0}, {0,1,0}}, // Right {{0,100,0}, {0,0,0}, {0,0,1}}, // Top {{0,-100,0}, {0,0,0}, {0,0,-1}} // Bottom }; for (int i = 0; i < views.size(); ++i) { const auto&[eye, center, up] = views[i]; SetupView(eye, center, up); Render(); SaveImage(("view_" + std::to_string(i) + ".jpg").c_str()); } return 0; } 这段代码报未定义标识符eye,, center, up

<think>好的,我现在需要帮助用户解决他们提供的C++代码中的错误。用户提到代码报未定义标识符eye、center、up。让我仔细看一下代码。 首先,用户提供的代码中,main函数里有一个views的vector,里面存储了多个tuple,每个tuple包含三个glm::vec3参数。然后在循环中,使用结构化绑定来解包这些参数: const auto&[eye, center, up] = views[i]; 但是用户说编译器报告eye、center、up未定义。可能的原因有几个: 1. 编译器不支持C++17的结构化绑定:结构化绑定是C++17引入的特性。如果用户使用的编译器版本较低,或者没有启用C++17模式,就会导致这个错误。 2. 缺少glm库的头文件:代码中使用了glm::vec3,如果没有包含正确的头文件,比如#include <glm/glm.hpp>,那么glm的vec3类型就无法识别,进而导致编译器无法解析tuple中的元素,可能间接导致结构化绑定的失败。 3. 其他可能的语法错误:比如views的初始化是否正确,或者tuple的模板参数是否正确。 接下来,我需要检查用户的代码中是否存在这些问题。首先看代码中的头文件部分,用户没有包含glm的头文件,所以在使用glm::vec3时肯定会出错。其次,代码中的结构化绑定是否正确使用了C++17。 解决方案应该是: 1. 包含glm的头文件,例如#include <glm/glm.hpp>。 2. 确保编译器支持C++17,并在编译时启用该标准。例如,使用GCC时需要添加-std=c++17选项。 3. 如果编译器不支持C++17,可以将结构化绑定改为使用std::get来获取tuple的元素。 此外,用户可能在代码中没有正确使用glm的命名空间,或者没有正确安装glm库,导致无法找到vec3的定义。这也是需要检查的一点。 另外,在代码中使用了glm::vec3作为tuple的元素类型,需要确认glm库是否正确安装,并且头文件路径被正确包含到项目中。 总结,用户的问题主要是两个:缺少glm头文件导致未定义的glm::vec3,以及结构化绑定需要C++17支持。因此,解决方案是添加头文件,并确保启用C++17标准。 最后,提醒用户检查编译命令是否正确,是否链接了必要的库,比如GLUT、OpenGL、OpenCV等,但这些问题可能不直接导致当前的错误。</think><< 该代码报错的主要原因是缺少`glm`命名空间的定义和C++17结构化绑定的支持问题。以下是具体分析和解决方案: 1. **缺少头文件包含**: 代码使用了`glm::vec3`但未包含GLM数学库的头文件 2. **结构化绑定需要C++17**: `const auto&[eye, center, up]`语法属于C++17特性 **修改后的代码**: ```cpp // 添加glm头文件 #include <glm/glm.hpp> // 必须包含GLM核心库 #include <GL/glut.h> #include <opencv2/opencv.hpp> #include <vector> #include <tuple> // 需要包含tuple头文件 // ...其他代码保持不变... int main(int argc, char** argv) { // ...初始化代码... // 修改为C++11兼容写法(如果编译器不支持C++17) for (size_t i = 0; i < views.size(); ++i) { const auto& view = views[i]; const glm::vec3& eye = std::get<0>(view); const glm::vec3& center = std::get<1>(view); const glm::vec3& up = std::get<2>(view); SetupView(eye, center, up); Render(); SaveImage(("view_" + std::to_string(i) + ".jpg").c_str()); } return 0; } ``` **编译建议**: ```bash # 需要添加C++17编译选项 g++ -std=c++17 your_code.cpp -lglut -lGL -lGLU -lopencv_core -lopencv_imgcodecs ``` **其他可能需要添加的依赖**: 1. 安装GLM数学库(通常只需头文件) 2. 确保OpenGL、GLUT和OpenCV开发库已正确安装 3. 检查头文件包含路径是否正确 **完整修正方案**: 1. 安装GLM:`sudo apt-get install libglm-dev` 2. 在代码开头添加:`#include <glm/glm.hpp>` 3. 添加编译选项:`-std=c++17` 4. 使用tuple需要包含`#include <tuple>` >>
阅读全文

相关推荐

最新推荐

recommend-type

C++11新特性std::tuple的使用方法

std::tuple&lt;int, std::string, float&gt; t1(10, "Test", 3.14); ``` 需要注意的是,不是所有C++11编译器都支持列表初始化(list initialization),如`{}`语法。对于不支持的编译器,可以使用`std::make_tuple`函数...
recommend-type

新版青岛奥博软件公司营销标准手册.docx

新版青岛奥博软件公司营销标准手册.docx
recommend-type

网站安全管理制度(1).doc

网站安全管理制度(1).doc
recommend-type

500强企业管理表格模板大全

在当今商业环境中,管理表格作为企业运营和管理的重要工具,是确保组织高效运作的关键。世界500强企业在管理层面的成功,很大程度上得益于它们的规范化和精细化管理。本文件介绍的“世界500强企业管理表格经典”,是一份集合了多种管理表格模板的资源,能够帮助管理者们更有效地进行企业规划、执行和监控。 首先,“管理表格”这个概念在企业中通常指的是用于记录、分析、决策和沟通的各种文档和图表。这些表格不仅仅局限于纸质形式,更多地是以电子形式存在,如Excel、Word、PDF等文件格式。它们帮助企业管理者收集和整理数据,以及可视化信息,从而做出更加精准的决策。管理表格可以应用于多个领域,例如人力资源管理、财务预算、项目管理、销售统计等。 标题中提及的“世界500强”,即指那些在全球范围内运营且在《财富》杂志每年公布的全球500强企业排行榜上出现的大型公司。这些企业通常具备较为成熟和先进的管理理念,其管理表格往往经过长时间的实践检验,并且能够有效地提高工作效率和决策质量。 描述中提到的“规范化”是企业管理中的一个核心概念。规范化指的是制定明确的标准和流程,以确保各项管理活动的一致性和可预测性。管理表格的使用能够帮助实现管理规范化,使得管理工作有据可依、有章可循,减少因个人经验和随意性带来的风险和不确定性。规范化管理不仅提高了企业的透明度,还有利于培养员工的规则意识,加强团队之间的协调与合作。 “经典”一词在这里强调的是,这些管理表格模板是经过实践验证,能够适用于大多数管理场景的基本模式。由于它们的普适性和高效性,这些表格模板被广泛应用于不同行业和不同规模的企业之中。一个典型的例子是SWOT分析表,它可以帮助企业识别内部的优势(Strengths)、弱点(Weaknesses)以及外部的机会(Opportunities)和威胁(Threats)。SWOT分析表就是一个在世界500强企业中普遍使用的管理表格。 标签中的“表格模板”则是对上述管理工具的具体描述。这些模板通常是预先设计好的,能够帮助企业管理者快速开始工作,无需从零开始制作新的表格。它们包含了一些必备的字段和格式,用户可以根据自己的具体需求对模板进行调整和填充。 文件名称列表中的“index.html”可能是压缩包内的一个网页文件,用于展示管理表格的索引或介绍。如果这是一个在线资源,它将允许用户通过网页界面访问和下载各种表格模板。而“menu”可能是一个导航文件,用来帮助用户在多个表格模板之间进行选择。“data”文件夹可能包含了实际的表格模板文件,它们可能以Excel、Word等格式存在。 总的来说,管理表格是企业成功管理不可或缺的工具。通过使用世界500强企业所采纳的管理表格模板,其他企业可以借鉴这些顶级企业的管理经验,帮助自己在管理实践中达到更高的效率和质量。通过规范化和模板化的管理表格,企业可以确保其管理活动的一致性和标准化,这对于保持竞争力和实现长期发展至关重要。
recommend-type

YOLOv8目标检测算法深度剖析:从零开始构建高效检测系统(10大秘诀)

# 1. YOLOv8目标检测算法概述 ## 1.1 YOLOv8的简介与定位 YOLOv8(You Only Look Once version 8)作为一种前沿的目标检测算法,是由YOLO系列算法演化而来。该算法特别强调快速与准确的平衡,它被设计用于实时图像识别
recommend-type

mclmcrrt9_8.dll下载

<think>我们正在处理用户关于"mclmcrrt9_8.dll"文件的下载请求。根据引用内容,这个文件是MATLAB运行时库的一部分,通常与特定版本的MATLABRuntime相关联。用户需求:下载mclmcrrt9_8.dll的官方版本。分析:1.根据引用[2]和[3],mclmcrrt9_0_1.dll和mclmcrrt9_13.dll都是MATLABRuntime的文件,版本号对应MATLAB的版本(如9_0对应R2016a,9_13对应2022b)。2.因此,mclmcrrt9_8.dll应该对应于某个特定版本的MATLAB(可能是R2016b?因为9.8版本通常对应MATLABR
recommend-type

林锐博士C++编程指南与心得:初学者快速提能

首先,这份文件的核心在于学习和提高C++编程能力,特别是针对初学者。在这个过程中,需要掌握的不仅仅是编程语法和基本结构,更多的是理解和运用这些知识来解决实际问题。下面将详细解释一些重要的知识点。 ### 1. 学习C++基础知识 - **基本数据类型**: 在C++中,需要熟悉整型、浮点型、字符型等数据类型,以及它们的使用和相互转换。 - **变量与常量**: 学习如何声明变量和常量,并理解它们在程序中的作用。 - **控制结构**: 包括条件语句(if-else)、循环语句(for、while、do-while),它们是构成程序逻辑的关键。 - **函数**: 理解函数定义、声明、调用和参数传递机制,是组织代码的重要手段。 - **数组和指针**: 学习如何使用数组存储数据,以及指针的声明、初始化和运算,这是C++中的高级话题。 ### 2. 林锐博士的《高质量的C++编程指南》 林锐博士的著作《高质量的C++编程指南》是C++学习者的重要参考资料。这本书主要覆盖了以下内容: - **编码规范**: 包括命名规则、注释习惯、文件结构等,这些都是编写可读性和可维护性代码的基础。 - **设计模式**: 在C++中合理使用设计模式可以提高代码的复用性和可维护性。 - **性能优化**: 学习如何编写效率更高、资源占用更少的代码。 - **错误处理**: 包括异常处理和错误检测机制,这对于提高程序的鲁棒性至关重要。 - **资源管理**: 学习如何在C++中管理资源,避免内存泄漏等常见错误。 ### 3. 答题与测试 - **C++C试题**: 通过阅读并回答相关试题,可以帮助读者巩固所学知识,并且学会如何将理论应用到实际问题中。 - **答案与评分标准**: 提供答案和评分标准,使读者能够自我评估学习成果,了解哪些方面需要进一步加强。 ### 4. 心得体会与实践 - **实践**: 理论知识需要通过大量编程实践来加深理解,动手编写代码,解决问题,是学习编程的重要方式。 - **阅读源码**: 阅读其他人的高质量代码,可以学习到许多编程技巧和最佳实践。 - **学习社区**: 参与C++相关社区,比如Stack Overflow、C++论坛等,可以帮助解答疑惑,交流心得。 ### 5. 拓展知识 - **C++标准库**: 学习C++标准模板库(STL),包括vector、map、list、algorithm等常用组件,是构建复杂数据结构和算法的基础。 - **面向对象编程**: C++是一种面向对象的编程语言,理解类、对象、继承、多态等概念对于写出优雅的C++代码至关重要。 - **跨平台编程**: 了解不同操作系统(如Windows、Linux)上的C++编程差异,学习如何编写跨平台的应用程序。 - **现代C++特性**: 学习C++11、C++14、C++17甚至C++20中的新特性,如智能指针、lambda表达式、自动类型推导等,可以提高开发效率和代码质量。 ### 总结 学习C++是一个系统工程,需要从基础语法开始,逐步深入到设计思想、性能优化、跨平台编程等领域。通过不断的学习和实践,初学者可以逐步成长为一个具有高代码质量意识的C++程序员。而通过阅读经典指南书籍,参与测试与评估,以及反思和总结实践经验,读者将更加扎实地掌握C++编程技术。此外,还需注意编程社区的交流和现代C++的发展趋势,这些都对于保持编程技能的前沿性和实用性是必不可少的。
recommend-type

线性代数方程组求解全攻略:直接法vs迭代法,一文搞懂

# 摘要 线性代数方程组求解是数学和工程领域中的基础而重要的问题。本文首先介绍了线性方程组求解的基础知识,然后详细阐述了直接法和迭代法两种主要的求解策略。直接法包括高斯消元法和LU分解方法,本文探讨了其理论基础、实践应用以及算法优化。迭代法则聚焦于雅可比和高斯-赛德尔方法,分析了其原理、实践应用和收敛性。通过比较分析,本文讨论了两种方法在
recommend-type

怎么下载mysql8.0.33版本

<think>我们正在处理用户关于下载并安装MySQL8.0.33版本的问题。根据引用[1]和引用[2],我们可以提供两种方法:一种是使用RPM包在CentOS上安装,另一种是使用ZIP包在Windows上安装。另外,引用[3]提到了安装过程中需要注意Python环境,但根据MySQL官方文档,Python并不是必须的,除非使用某些特定功能(如MySQLShell的Python模式)。因此,我们主要关注下载和安装步骤。用户没有明确操作系统,因此我们将分别介绍Windows和CentOS(Linux)下的安装方法。步骤概述:1.下载MySQL8.0.332.安装(根据系统不同步骤不同)3.初始化
recommend-type

C#学籍管理系统开发完成,信管专业的福音

标题中提到的“C#设计的学籍系统”涉及到几个重要的知识点。首先是“C#”,这是微软公司开发的一种面向对象的、运行在.NET框架上的高级编程语言。C#语言广泛用于开发Windows应用程序、游戏开发、分布式组件和客户端服务器应用程序等。在该标题中,它被用于构建一个学籍系统,这意味着系统的核心逻辑和功能是通过C#语言实现的。 其次是“学籍系统”,这通常是指用于管理学生个人信息、成绩、课程和学籍状态等数据的软件应用系统。学籍系统能够帮助教育机构高效地维护和更新学生档案,实现学生信息的电子化管理。它通常包括学生信息管理、成绩管理、课程安排、毕业资格审核等功能。 从描述中我们可以得知,这个学籍系统是“专门为信管打造”的。这里的“信管”很可能是对“信息管理”或者“信息系统管理”专业的简称。信息管理是一个跨学科领域,涉及信息技术在收集、存储、保护、处理、传输和安全地管理和开发信息资源方面的应用。这个系统可能是针对该专业学生的实际需求来定制开发的,包括一些特有的功能或者界面设计,以便更好地满足专业学习和实践操作的需要。 描述中还提到“请大家积极下载”,这可能意味着该学籍系统是一个开源项目,或者至少是一个允许公众访问的软件资源。由于开发者提出了“如有不足之处请大家多多包涵”,我们可以推断这个系统可能还处于测试或早期使用阶段,因此可能还不是完全成熟的版本,或者可能需要使用者反馈意见以便进行后续改进。 标签中的“C#的啊,大家注意,嘻嘻哈哈”表达了开发者轻松的态度和对C#语言的特定提及。这个标签可能是在一个非正式的交流环境中发布的,所以用词带有一定的随意性。尽管如此,它还是说明了该学籍系统是基于C#语言开发的,并提醒用户对这一点给予关注。 关于压缩包子文件的文件名称列表中,“学生成绩管理系统”直接指出了这个软件系统的主要功能之一,即管理学生的成绩。这通常包括录入成绩、查询成绩、统计分析成绩、成绩报告等功能。一个优秀的学生成绩管理系统可以让教师和学校管理人员更加高效地处理学生的成绩数据,同时也能让学生本人了解自己的学业进展。 综合以上信息,我们可以提炼出以下知识点: 1. C#语言:是一种面向对象的编程语言,适用于.NET框架,用于开发各种类型的应用程序。 2. 学籍系统:是管理学生基本信息、成绩、课程和学籍状态的软件应用系统,目的是实现学生信息的电子化管理。 3. 信息系统管理专业:该系统可能是针对信息系统管理专业的学生或教师的需求设计和开发的。 4. 开源项目或公众访问资源:鼓励用户下载使用,并接受用户的反馈和建议。 5. 学生成绩管理系统:是学籍系统的一个重要组成部分,专注于管理学生的成绩数据。 在开发一个C#设计的学籍系统时,开发者需要考虑的因素很多,比如系统的用户界面设计、数据库设计、数据安全、网络通信等。此外,系统还应该有良好的扩展性和易用性,以便未来可以根据用户反馈和新需求进行升级和优化。