基于u-net的图像分割tensorflow代码,写一个pychram可以直接实现的
时间: 2024-12-08 19:15:26 浏览: 71
基于U-Net的图像分割在TensorFlow中通常用于医学影像分析、遥感图像处理等领域。U-Net是一种经典的卷积神经网络架构,特别适合于像素级的预测任务,如语义分割。下面是一个简单的Python代码示例,使用Keras API(已集成在TensorFlow 2.x中)来创建U-Net模型。注意,这个例子需要先安装`tensorflow`, `numpy`, `keras`, 和 `matplotlib`库。
```python
# 导入所需库
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, Concatenate
from tensorflow.keras.models import Model
def unet(input_size=(256, 256, 3), num_classes=2):
inputs = Input(input_size)
# 编码阶段(下采样)
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool1)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool2)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
# 解码阶段(上采样)
conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool3)
up4 = UpSampling2D(size=(2, 2))(conv4)
merge4 = Concatenate()([up4, conv3])
conv5 = Conv2D(128, (3, 3), activation='relu', padding='same')(merge4)
up5 = UpSampling2D(size=(2, 2))(conv5)
merge5 = Concatenate()([up5, conv2])
conv6 = Conv2D(64, (3, 3), activation='relu', padding='same')(merge5)
up6 = UpSampling2D(size=(2, 2))(conv6)
merge6 = Concatenate()([up6, conv1])
output = Conv2D(num_classes, (1, 1), activation='softmax')(conv6)
model = Model(inputs=inputs, outputs=output)
return model
# 创建并编译模型
model = unet()
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 您可以在这里添加数据预处理、训练、验证和测试部分的代码
```
阅读全文
相关推荐

















