``` import tensorflow as tf import tensorflow_hub as hub import tensorflow_text as text # 需要安装 import kagglehub import matplotlib.pyplot as plt import os from sklearn.model_selection import train_test_split # 示例:使用IMDB影评数据集 dataset, info = tf.load('imdb_reviews', with_info=True, as_supervised=True) train_data, test_data = dataset['train'], dataset['test'] # 转换为numpy格式 texts = [ex[0].numpy().decode('utf-8') for ex in train_data] labels = [ex[1].numpy() for ex in train_data] # 使用预训练的小型BERT(如bert_en_uncased_L-4_H-512_A-8) # 下载模型 bert_preprocess = hub.KerasLayer(kagglehub.model_download("tensorflow/bert/tensorFlow2/en-uncased-preprocess")) bert_encoder = hub.KerasLayer(kagglehub.model_download("tensorflow/bert/tensorFlow2/bert-en-uncased-l-4-h-512-a-8")) # 构建分类模型 inputs = tf.keras.layers.Input(shape=(), dtype=tf.string) preprocessed = bert_preprocess(inputs) outputs = bert_encoder(preprocessed) pooled_output = outputs['pooled_output'] x = tf.keras.layers.Dense(64, activation='relu')(pooled_output) predictions = tf.keras.layers.Dense(3, activation='softmax')(x) # 假设3分类 model = tf.keras.Model(inputs=inputs, outputs=predictions) lowadam = tf.keras.optimizers.Adam(learning_rate=3e-5) # 更小的学习率 model.compile(optimizer=lowadam, loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 增加验证集和早停机制 val_texts = ["Great product", "Poor quality", "Average experience"] val_labels = [0, 1, 2] train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels, test_size=0.2) # 调整训练参数 history = model.fit( texts, labels, validation_data=(val_texts, val_labels), epochs=500, batch_size=32, callbacks=[tf.keras.callbacks.EarlyStopping(patience=3)] ) file = open('./weights.txt', 'w') # 参数提取 for v in model.trainable_variables: file.write(str(v.name) + '\n') file.write(str(v.shape) + '\n') file.write(str(v.numpy()) + '\n') file.close() loss = history.history['loss'] val_loss = history.history['val_loss'] plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.title('Training and Validation Loss') plt.legend() plt.show() model.save('transform_model.keras')```Exception has occurred: AttributeError module 'tensorflow' has no attribute 'load' File "D:\source\test4\BERTbig.py", line 13, in <module> dataset, info = tf.load('imdb_reviews', with_info=True, as_supervised=True) AttributeError: module 'tensorflow' has no attribute 'load'

时间: 2025-06-23 18:22:50 浏览: 13
<think>嗯,用户遇到了一个AttributeError,说tensorflow模块没有'load'属性。错误出现在第13行,代码是dataset, info = tf.load('imdb_reviews', with_info=True, as_supervised=True)。我需要帮用户解决这个问题。 首先,我应该回忆一下TensorFlow中加载数据集的方法。记得以前常用的函数是tf.keras.datasets里的,比如tf.keras.datasets.imdb.load_data()。但用户这里用的是tf.load,这显然是不对的。可能用户是参考了过时的文档或者记错了函数名。 接下来,检查用户代码中的导入部分。用户导入了import tensorflow as tf,所以正确的加载方式应该是通过tf.keras.datasets模块。例如,对于IMDB数据集,正确的方法应该是tf.keras.datasets.imdb.load_data()。不过原代码中用户用了tf.load,这可能是想用TensorFlow Datasets库(即tfds),但需要导入tensorflow_datasets库,并且使用tfds.load()函数。 所以,用户可能有两种解决方法:一种是使用tf.keras自带的IMDB数据集,另一种是使用tfds来加载。但原代码中的参数如with_info和as_supervised通常是tfds.load()的参数,而不是keras.datasets里的方法。因此,正确的做法应该是使用tfds.load(),但需要先安装和导入tensorflow_datasets库。 查看用户代码中的导入部分,发现用户没有导入tensorflow_datasets,所以可能他们漏掉了这个步骤。正确的代码应该导入tensorflow_datasets as tfds,然后使用tfds.load('imdb_reviews', ...)。 所以,用户需要修改代码,将tf.load替换为tfds.load,前提是安装并导入tensorflow_datasets。此外,原代码中的数据集分割方式可能也需要调整,因为tfds.load返回的数据结构可能和用户原来的处理方式不同。用户原来的代码将数据集分为train_data和test_data,然后转换为numpy数组,可能需要根据tfds的返回结构来调整。 另外,用户可能还需要处理split参数,比如指定split=['train', 'test'],并设置batch_size=-1来获取整个数据集作为tf.Tensor。同时,需要确保正确提取文本和标签,可能需要对返回的数据结构进行调整,比如通过ex['text']和ex['label']来获取数据,具体取决于数据集的结构。 总结,错误的原因是使用了错误的加载方法tf.load,正确的方法是使用tfds.load,但需要安装并导入tensorflow_datasets库。然后调整数据加载和处理的代码,确保正确分割数据集并提取文本和标签。同时,用户可能需要检查后续的数据处理步骤是否与新的数据集结构兼容,比如循环遍历时的索引是否正确,是否需要对数据进行解码等。 此外,用户代码中的验证集划分可能存在问题,因为原代码中val_texts和val_labels是手动创建的,但之后又使用了train_test_split,这可能导致混淆。需要确保验证集是从训练数据中正确划分出来的,或者根据实际情况调整数据分割步骤。 最后,用户可能需要更新模型编译和训练部分的代码,确保输入数据的格式正确,特别是在使用预处理模型时,输入是否符合BERT模型的要求。此外,检查分类的类别数目是否正确,原代码中使用的是3分类,但IMDB数据集通常是二分类(正面和负面评价),这可能导致标签不匹配的问题,需要确认数据集的标签维度和模型的输出层是否一致。</think>让我们逐步解决这个错误并改进代码: $AttributeError: module 'tensorflow' has no attribute 'load'$ 错误的主要原因是使用了错误的API,以下是分步解决方案: 1. **安装必要库** ```bash pip install tensorflow tensorflow_hub tensorflow_text tensorflow_datasets kagglehub ``` 2. **修正数据集加载方式** 原始代码应改为使用 $tfds.load()$(需导入 tensorflow_datasets): ```python # 修改后的数据集加载(需新增导入) import tensorflow_datasets as tfds # 加载IMDB数据集 dataset, info = tfds.load( 'imdb_reviews', split=['train', 'test'], with_info=True, as_supervised=True # 返回 (text, label) 元组 ) train_data, test_data = dataset[0], dataset[1] ``` 3. **完整修正代码(关键修改点标注)** ```python import tensorflow as tf import tensorflow_hub as hub import tensorflow_text as text import tensorflow_datasets as tfds # 新增导入 import kagglehub # 数据集加载修正部分 dataset, info = tfds.load( # 修改为tfds.load 'imdb_reviews', split=['train', 'test'], with_info=True, as_supervised=True ) train_data, test_data = dataset # 转换为numpy格式(保持原逻辑) texts = [ex[0].numpy().decode('utf-8') for ex in tfds.as_numpy(train_data)] labels = [ex[1].numpy() for ex in tfds.as_numpy(train_data)] # ... 后续代码保持不变 ... ``` 4. **其他注意事项** - 分类数问题:IMDB是二分类数据集(0/1),需修改输出层: ```python predictions = tf.keras.layers.Dense(1, activation='sigmoid')(x) # 二分类 ``` - 损失函数对应修改: ```python model.compile(..., loss='binary_crossentropy', ...) ``` - 学习率建议使用 $3e-5$(BERT标准参数) 5. **改进建议** ```python # 更规范的数据预处理 train_data = train_data.shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE) test_data = test_data.batch(32).prefetch(tf.data.AUTOTUNE) # 使用TFDS自带的分割 train_data, valid_data = tfds.split( train_data, split=[80, 20], as_dataset=True ) ``` **修改后的完整代码结构**: ```python import tensorflow as tf import tensorflow_hub as hub import tensorflow_text as text import tensorflow_datasets as tfds import kagglehub import matplotlib.pyplot as plt # 加载数据集 dataset, info = tfds.load( 'imdb_reviews', split=['train', 'test'], with_info=True, as_supervised=True ) train_data, test_data = dataset # 数据预处理 def preprocess(text, label): text = tf.strings.substr(text, 0, 512) # 截断长文本 return text, label train_data = train_data.map(preprocess).shuffle(1000).batch(32) valid_data = test_data.take(5000).batch(32) test_data = test_data.skip(5000).batch(32) # 构建模型(使用Functional API) inputs = tf.keras.Input(shape=(), dtype=tf.string) preprocessed = hub.KerasLayer(kagglehub.model_download("tensorflow/bert/tensorFlow2/en-uncased-preprocess"))(inputs) bert_outputs = hub.KerasLayer(kagglehub.model_download("tensorflow/bert/tensorFlow2/bert-en-uncased-l-4-h-512-a-8"))(preprocessed) x = tf.keras.layers.Dropout(0.1)(bert_outputs['pooled_output']) outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.Model(inputs, outputs) model.compile( optimizer=tf.keras.optimizers.Adam(3e-5), loss='binary_crossentropy', metrics=['accuracy'] ) # 训练配置 history = model.fit( train_data, validation_data=valid_data, epochs=10, callbacks=[ tf.keras.callbacks.EarlyStopping(patience=2), tf.keras.callbacks.ModelCheckpoint('best_model.keras') ] ) # 模型评估 model.evaluate(test_data) ``` **常见问题说明**: 1. 若出现 $UnicodeDecodeError$,需添加解码参数: ```python texts = [ex[0].numpy().decode('utf-8', errors='ignore') for ex in train_data] ``` 2. 显存不足时需减小批次大小(batch_size=16) 3. 建议使用更完整的BERT模型: ```python bert_encoder = hub.load("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4") ```
阅读全文

相关推荐

import tensorflow as tf import tensorflow_hub as hub import tensorflow_text as text # 需要安装 import kagglehub import matplotlib.pyplot as plt import os from sklearn.model_selection import train_test_split # 示例:使用IMDB影评数据集 dataset, info = tf.load('imdb_reviews', with_info=True, as_supervised=True) train_data, test_data = dataset['train'], dataset['test'] # 转换为numpy格式 texts = [ex[0].numpy().decode('utf-8') for ex in train_data] labels = [ex[1].numpy() for ex in train_data] # 使用预训练的小型BERT(如bert_en_uncased_L-4_H-512_A-8) # 下载模型 bert_preprocess = hub.KerasLayer(kagglehub.model_download("tensorflow/bert/tensorFlow2/en-uncased-preprocess")) bert_encoder = hub.KerasLayer(kagglehub.model_download("tensorflow/bert/tensorFlow2/bert-en-uncased-l-4-h-512-a-8")) # 构建分类模型 inputs = tf.keras.layers.Input(shape=(), dtype=tf.string) preprocessed = bert_preprocess(inputs) outputs = bert_encoder(preprocessed) pooled_output = outputs['pooled_output'] x = tf.keras.layers.Dense(64, activation='relu')(pooled_output) predictions = tf.keras.layers.Dense(3, activation='softmax')(x) # 假设3分类 model = tf.keras.Model(inputs=inputs, outputs=predictions) lowadam = tf.keras.optimizers.Adam(learning_rate=3e-5) # 更小的学习率 model.compile(optimizer=lowadam, loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 增加验证集和早停机制 val_texts = ["Great product", "Poor quality", "Average experience"] val_labels = [0, 1, 2] train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels, test_size=0.2) # 调整训练参数 history = model.fit( texts, labels, validation_data=(val_texts, val_labels), epochs=500, batch_size=32, callbacks=[tf.keras.callbacks.EarlyStopping(patience=3)] ) file = open('./weights.txt', 'w') # 参数提取 for v in model.trainable_variables: file.write(str(v.name) + '\n') file.write(str(v.shape) + '\n') file.write(str(v.numpy()) + '\n') file.close() loss = history.history['loss'] val_loss = history.history['val_loss'] plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.title('Training and Validation Loss') plt.legend() plt.show() model.save('transform_model.keras')如何增加验证集数据

from bertopic import BERTopic import numpy as np import pandas as pd from umap import UMAP from hdbscan import HDBSCAN from sklearn.feature_extraction.text import CountVectorizer from bertopic.vectorizers import ClassTfidfTransformer import re import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS from nltk.tokenize import word_tokenize from wordcloud import WordCloud import matplotlib.pyplot as plt # 加载原始文本数据(仍需用于主题表示) df = pd.read_csv('tokenized_abstract.csv', encoding='utf-8') sentences = df['Tokenized_Abstract'].tolist() print('文本条数: ', len(sentences)) print('预览第一条: ', sentences[0]) # 检查缺失值 print("缺失值数量:", df['Tokenized_Abstract'].isna().sum()) # 检查非字符串类型 non_str_mask = df['Tokenized_Abstract'].apply(lambda x: not isinstance(x, str)) print("非字符串样本:\n", df[non_str_mask]['Tokenized_Abstract'].head()) vectorizer_model = None from sentence_transformers import SentenceTransformer # 加载时间数据 df['Date'] = pd.to_datetime(df['Date']) # 从Date列提取年份 years = df['Date'].dt.year print(years) # Step 1 - Extract embeddings embedding_model = SentenceTransformer("C:\\Users\\18267\\.cache\\huggingface\\hub\\models--sentence-transformers--all-mpnet-base-v2\\snapshots\\9a3225965996d404b775526de6dbfe85d3368642") embeddings = np.load('clean_emb_last.npy') print(f"嵌入的形状: {embeddings.shape}") # Step 2 - Reduce dimensionality umap_model = UMAP(n_neighbors=7, n_components=10, min_dist=0.0, metric='cosine',random_state=42) # Step 3 - Cluster reduced embeddings hdbscan_model = HDBSCAN(min_samples=7, min_cluster_size=60,metric='euclidean', cluster_selection_method='eom', prediction_data=True) # Step 4 - Tokenize topics # Combine custom stop words with scikit-learn's English stop words custom_stop_words = ['h2', 'storing', 'storage', 'include', 'comprise', 'utility', 'model', 'disclosed', 'embodiment', 'invention', 'prior', 'art', 'according', 'present', 'method', 'system', 'device', 'may', 'also', 'use', 'used', 'provide', 'wherein', 'configured', 'predetermined', 'plurality', 'comprising', 'consists', 'following', 'characterized', 'claim', 'claims', 'said', 'first', 'second', 'third', 'fourth', 'fifth', 'one', 'two', 'three','hydrogen'] # Create combined stop words set all_stop_words = set(custom_stop_words).union(ENGLISH_STOP_WORDS) vectorizer_model = CountVectorizer(stop_words=list(all_stop_words)) # Step 5 - Create topic representation ctfidf_model = ClassTfidfTransformer() # All steps together topic_model = BERTopic( embedding_model=embedding_model, # Step 1 - Extract embeddings umap_model=umap_model, # Step 2 - Reduce dimensionality hdbscan_model=hdbscan_model, # Step 3 - Cluster reduced embeddings vectorizer_model=vectorizer_model, # Step 4 - Tokenize topics ctfidf_model=ctfidf_model, # Step 5 - Extract topic words top_n_words=50 ) # 拟合模型 topics, probs = topic_model.fit_transform(documents=sentences, # 仍需提供文档用于主题词生成 embeddings=embeddings # 注入预计算嵌入) ) # 获取主题聚类信息 topic_info = topic_model.get_topic_info() print(topic_info)使用BERTopic的动态主题功能,传入时间戳参数,并在拟合后分析主题随时间的变化。设置时间戳 t1=2000-2010 年,t2=2011-2018 年,t3=2019-2024 年。最终,将当前阶段和前一阶段的 c-TF-IDF 平均值作为当前阶段的权重分数,取权重分数前 15 的单词作为动态主题的关键词,形成动态主题词列表。在动态主题方面,分别选取主题在每个阶段改进 c-TF-IDF 值排名前 15 的单词作为关键词绘制演化图分析主题在不同阶段的动态变化。请你提供方案实现上述操作。

# YOLOv5 🚀 requirements # Usage: pip install -r requirements.txt # Base ------------------------------------------------------------------------ gitpython ipython # interactive notebook matplotlib>=3.2.2 numpy>=1.18.5 opencv-python>=4.1.1 Pillow>=7.1.2 psutil # system resources PyYAML>=5.3.1 requests>=2.23.0 scipy>=1.4.1 thop>=0.1.1 # FLOPs computation torch>=1.7.0 # see https://pytorch.org/get-started/locally (recommended) torchvision>=0.8.1 tqdm>=4.64.0 # protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012 # Logging --------------------------------------------------------------------- tensorboard>=2.4.1 # clearml>=1.2.0 # comet # Plotting -------------------------------------------------------------------- pandas>=1.1.4 seaborn>=0.11.0 # Export ---------------------------------------------------------------------- # coremltools>=6.0 # CoreML export # onnx>=1.9.0 # ONNX export # onnx-simplifier>=0.4.1 # ONNX simplifier # nvidia-pyindex # TensorRT export # nvidia-tensorrt # TensorRT export # scikit-learn<=1.1.2 # CoreML quantization # tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos) # tensorflowjs>=3.9.0 # TF.js export # openvino-dev # OpenVINO export # Deploy ---------------------------------------------------------------------- # tritonclient[all]~=2.24.0 # Extras ---------------------------------------------------------------------- # mss # screenshots # albumentations>=1.0.3 # pycocotools>=2.0 # COCO mAP # roboflow # ultralytics # HUB https://hub.ultralytics.com

最新推荐

recommend-type

五G通信关键技术课件.ppt

五G通信关键技术课件.ppt
recommend-type

基于51单片机的多功能电子时钟汇编程序设计与实现

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 核心架构:采用8051内核单片机,通过汇编语言实现集时间显示、日期管理及温度监测于一体的多功能电子时钟系统。 硬件配置: 定义关键控制位:DSIO(数据同步)、RST(复位)、SCLK(时钟) LCD1602接口配置:EN(使能)、RS(寄存器选择)、RW(读写控制) 程序流程: 初始化:跳转至主程序段,设置LCD工作模式并清屏 时间显示: 读取秒/分/时寄存器值 通过SWAP、ANL指令转换为ASCII码 调用LcdWriteData输出至LCD 日期显示: 处理年/月/日数据(地址0x35/0x33/0x32) 同上完成ASCII转换与显示 温度采集: 启动DHT11传感器(DHT11_start) 校验数据有效性后接收字节(DHT11_rec_byte) 处理并显示温湿度值 技术要点: 汇编指令集直接操作寄存器,实现高效硬件控制 通过位操作完成数据格式转换(如BCD转ASCII) 模块化设计:LCD驱动、传感器通信、时间处理独立实现 应用场景:适用于教学实践,展示单片机底层硬件编程与实时系统开发能力。
recommend-type

工程项目管理实施方案.doc

工程项目管理实施方案.doc
recommend-type

模拟电子技术基础学习指导与习题精讲

模拟电子技术是电子技术的一个重要分支,主要研究模拟信号的处理和传输,涉及到的电路通常包括放大器、振荡器、调制解调器等。模拟电子技术基础是学习模拟电子技术的入门课程,它为学习者提供了电子器件的基本知识和基本电路的分析与设计方法。 为了便于学习者更好地掌握模拟电子技术基础,相关的学习指导与习题解答资料通常会包含以下几个方面的知识点: 1. 电子器件基础:模拟电子技术中经常使用到的电子器件主要包括二极管、晶体管、场效应管(FET)等。对于每种器件,学习指导将会介绍其工作原理、特性曲线、主要参数和使用条件。同时,还需要了解不同器件在电路中的作用和性能优劣。 2. 直流电路分析:在模拟电子技术中,需要掌握直流电路的基本分析方法,这包括基尔霍夫电压定律和电流定律、欧姆定律、节点电压法、回路电流法等。学习如何计算电路中的电流、电压和功率,以及如何使用这些方法解决复杂电路的问题。 3. 放大电路原理:放大电路是模拟电子技术的核心内容之一。学习指导将涵盖基本放大器的概念,包括共射、共基和共集放大器的电路结构、工作原理、放大倍数的计算方法,以及频率响应、稳定性等。 4. 振荡电路:振荡电路能够产生持续的、周期性的信号,它在模拟电子技术中非常重要。学习内容将包括正弦波振荡器的原理、LC振荡器、RC振荡器等类型振荡电路的设计和工作原理。 5. 调制与解调:调制是将信息信号加载到高频载波上的过程,解调则是提取信息信号的过程。学习指导会介绍调幅(AM)、调频(FM)、调相(PM)等调制方法的基本原理和解调技术。 6. 模拟滤波器:滤波器用于分离频率成分不同的信号。模拟滤波器一般可分为低通、高通、带通和带阻滤波器。学习指导会涉及到模拟滤波器的设计原理、特性曲线和应用。 7. 电源技术:电源电路是电子设备中不可或缺的部分,它主要为电子设备提供稳定的直流电压和电流。在模拟电子技术基础学习指导中,会讲解线性稳压电源和开关稳压电源的设计原理及其实现方法。 8. 实际问题应用:模拟电子技术在实际中有着广泛的应用,学习指导会结合具体案例,如音响系统设计、射频接收机、仪器仪表等,帮助学习者将理论知识应用到实践中,提高解决实际问题的能力。 9. 习题解答:为了帮助学习者巩固理论知识和分析问题的能力,相关习题解答资料将提供大量精选习题,并给出详细的解答步骤和答案。习题类型涵盖选择题、填空题、计算题和设计题,旨在帮助学习者全面掌握知识点。 学习模拟电子技术需要具备一定的数学、物理基础,尤其是对电路分析的理解。通过学习指导与习题解答资料的帮助,学习者可以更加深入地理解模拟电子技术的基本概念,熟练掌握模拟电路的分析与设计方法,并为将来的深入学习和实际应用打下坚实的基础。
recommend-type

【5G通信背后的秘密】:极化码与SCL译码技术的极致探索

# 摘要 本文首先概述了5G通信技术及其重要性,然后深入探讨了极化码的基础理论与应用,包括其理论基础、编解码过程和在5G中的应用评估。接着,文章详细解析了SCL译码技术的原理、改进方法以及实现和优化策略。在第四章中,分析了极化码与SCL译码技术在5G通信中的实践挑战、优化案例,以及未来的发展趋势。最后一章展望了极化码与S
recommend-type

谷歌浏览器中如何使用hackbar

<think>我们正在处理用户关于在Google Chrome浏览器中安装和使用HackBar插件的请求。根据引用[1]和引用[2]的信息,我们可以总结出安装步骤。注意,引用中提到了两种安装方法:一种是直接拖放crx文件(但可能会遇到问题),另一种是将crx文件改为rar格式再安装。同时,引用[2]还提到了Firefox的安装方法,但用户只关心Chrome。 由于Chrome浏览器对扩展程序的安全性要求提高,直接从第三方下载的crx文件可能会被阻止安装。因此,我们需要提供一种可行的安装方法。 根据引用[2]的步骤,我们可以这样安装: 1. 下载HackBar_v2.2.6插件(通常是一个c
recommend-type

一步搞定局域网共享设置的超级工具

在当前信息化高速发展的时代,局域网共享设置成为了企业、学校甚至家庭用户在资源共享、网络协同办公或学习中不可或缺的一部分。局域网共享不仅能够高效地在本地网络内部分发数据,还能够在保护网络安全的前提下,让多个用户方便地访问同一资源。然而,对于部分用户而言,局域网共享设置可能显得复杂、难以理解,这时一款名为“局域网共享设置超级工具”的软件应运而生,旨在简化共享设置流程,使得即便是对网络知识了解不多的用户也能够轻松配置。 ### 局域网共享知识点 #### 1. 局域网基础 局域网(Local Area Network,LAN)指的是在一个较小的地理范围内,如一座建筑、一个学校或者一个家庭内部,通过电缆或者无线信号连接的多个计算机组成的网络。局域网共享主要是指将网络中的某台计算机或存储设备上的资源(如文件、打印机等)对网络内其他用户开放访问权限。 #### 2. 工作组与域的区别 在Windows系统中,局域网可以通过工作组或域来组织。工作组是一种较为简单的组织方式,每台电脑都是平等的,没有中心服务器管理,各个计算机间互为对等网络,共享资源只需简单的设置。而域模式更为复杂,需要一台中央服务器(域控制器)进行集中管理,更适合大型网络环境。 #### 3. 共享设置的要素 - **共享权限:**决定哪些用户或用户组可以访问共享资源。 - **安全权限:**决定了用户对共享资源的访问方式,如读取、修改或完全控制。 - **共享名称:**设置的名称供网络上的用户通过网络邻居访问共享资源时使用。 #### 4. 共享操作流程 在使用“局域网共享设置超级工具”之前,了解传统手动设置共享的流程是有益的: 1. 确定需要共享的文件夹,并右键点击选择“属性”。 2. 进入“共享”标签页,点击“高级共享”。 3. 勾选“共享此文件夹”,可以设置共享名称。 4. 点击“权限”按钮,配置不同用户或用户组的共享权限。 5. 点击“安全”标签页配置文件夹的安全权限。 6. 点击“确定”,完成设置,此时其他用户可以通过网络邻居访问共享资源。 #### 5. 局域网共享安全性 共享资源时,安全性是一个不得不考虑的因素。在设置共享时,应避免公开敏感数据,并合理配置访问权限,以防止未授权访问。此外,应确保网络中的所有设备都安装了防病毒软件和防火墙,并定期更新系统和安全补丁,以防恶意软件攻击。 #### 6. “局域网共享设置超级工具”特点 根据描述,该软件提供了傻瓜式的操作方式,意味着它简化了传统的共享设置流程,可能包含以下特点: - **自动化配置:**用户只需简单操作,软件即可自动完成网络发现、权限配置等复杂步骤。 - **友好界面:**软件可能具有直观的用户界面,方便用户进行设置。 - **一键式共享:**一键点击即可实现共享设置,提高效率。 - **故障诊断:**可能包含网络故障诊断功能,帮助用户快速定位和解决问题。 - **安全性保障:**软件可能在设置共享的同时,提供安全增强功能,如自动更新密码、加密共享数据等。 #### 7. 使用“局域网共享设置超级工具”的注意事项 在使用该类工具时,用户应注意以下事项: - 确保安装了最新版本的软件以获得最佳的兼容性和安全性。 - 在使用之前,了解自己的网络安全政策,防止信息泄露。 - 定期检查共享设置,确保没有不必要的资源暴露在网络中。 - 对于不熟悉网络共享的用户,建议在专业人士的指导下进行操作。 ### 结语 局域网共享是实现网络资源高效利用的基石,它能大幅提高工作效率,促进信息共享。随着技术的进步,局域网共享设置变得更加简单,各种一键式工具的出现让设置过程更加快捷。然而,安全性依旧是不可忽视的问题,任何时候在享受便捷的同时,都要确保安全措施到位,防止数据泄露和网络攻击。通过合适的工具和正确的设置,局域网共享可以成为网络环境中一个强大而安全的资源。
recommend-type

PBIDesktop在Win7上的终极安装秘籍:兼容性问题一次性解决!

# 摘要 PBIDesktop作为数据可视化工具,其在Windows 7系统上的安装及使用备受企业关注。本文首先概述了PBIDesktop的安装过程,并从理论上探讨了其兼容性问题,包括问题类型、原因以及通用解决原则。通过具体
recommend-type

#include "stm32f10x.h" #include "delay.h" #include "OLED.h" #include "dht11.h" #include "FMQ.h" #include "Serial.h" #include "esp8266.h" #include "stm32f10x_it.h" // 系统时钟配置 void SystemClock_Config(void) { SystemInit(); RCC_DeInit(); RCC_HSEConfig(RCC_HSE_ON); // 添加HSE启动检测 if(!RCC_WaitForHSEStartUp()) { while(1); // HSE启动失败,陷入死循环 } FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); FLASH_SetLatency(FLASH_Latency_2); RCC_HCLKConfig(RCC_SYSCLK_Div1); RCC_PCLK1Config(RCC_HCLK_Div2); RCC_PCLK2Config(RCC_HCLK_Div1); RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); RCC_PLLCmd(ENABLE); while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); while(RCC_GetSYSCLKSource() != 0x08); } // 全局变量 u8 temp, humi; int main(void) { // 系统初始化 SystemClock_Config(); Delay_Init(); OLED_Init(); DHT11_Init(); mfq_Init(); Serial_Init(); // 用于调试的串口 // 显示初始化 OLED_ShowCN(0, 0, "温度:"); // 修改为正确的中文字库函数 OLED_ShowCN(0, 16, "湿度:"); OLED_ShowCN(64, 16, "RH"); OLED_ShowCN(64, 0, "C"); OLED_Update(); // 初始化ESP8266为AP模式 ESP8266_Init(); printf("ESP8266 AP Mode Ready\r\n"); printf("Connect to WiFi: ESP8266wd, Password:123456789\r\n"); printf("Then connect to TCP Server: 192.168.4.1:8080\r\n"); uint32_t lastSendTime = 0; while(1) { // 读取温湿度 if(DHT11_Read_Data(&temp, &humi)) { // 更新显示 OLED_ShowNum(47, 0, temp, 2, OLED_8X16); OLED_ShowNum(47, 16, humi, 2, OLED_8X16); OLED_Update(); // 控制蜂鸣器 fmq(temp, humi); // 串口输出信息 printf("temp=%d, humi=%d RH\r\n", temp, humi); // 准备WiFi发送数据 sprintf(wifi_data, "Temp:%d,Humi:%d\r\n", temp, humi); ESP8266_SendData(wifi_data); } delay_ms(5000); // 5秒更新一次 } } /** ****************************************************************************** * @file Project/STM32F10x_StdPeriph_Template/stm32f10x_conf.h * @author MCD Application Team * @version V3.5.0 * @date 08-April-2011 * @brief Library configuration file. ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2> ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F10x_CONF_H #define __STM32F10x_CONF_H /* Includes ------------------------------------------------------------------*/ /* Uncomment/Comment the line below to enable/disable peripheral header file inclusion */ #include "stm32f10x_adc.h" #include "stm32f10x_bkp.h" #include "stm32f10x_can.h" #include "stm32f10x_cec.h" #include "stm32f10x_crc.h" #include "stm32f10x_dac.h" #include "stm32f10x_dbgmcu.h" #include "stm32f10x_dma.h" #include "stm32f10x_exti.h" #include "stm32f10x_flash.h" #include "stm32f10x_fsmc.h" #include "stm32f10x_gpio.h" #include "stm32f10x_i2c.h" #include "stm32f10x_iwdg.h" #include "stm32f10x_pwr.h" #include "stm32f10x_rcc.h" #include "stm32f10x_rtc.h" #include "stm32f10x_sdio.h" #include "stm32f10x_spi.h" #include "stm32f10x_tim.h" #include "stm32f10x_usart.h" #include "stm32f10x_wwdg.h" #include "misc.h" /* High level functions for NVIC and SysTick (add-on to CMSIS functions) */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Uncomment the line below to expanse the "assert_param" macro in the Standard Peripheral Library drivers code */ /* #define USE_FULL_ASSERT 1 */ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function which reports * the name of the source file and the source line number of the call * that failed. If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0 : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0) #endif /* USE_FULL_ASSERT */ #endif /* __STM32F10x_CONF_H */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/ /** ****************************************************************************** * @file Project/STM32F10x_StdPeriph_Template/stm32f10x_it.c * @author MCD Application Team * @version V3.5.0 * @date 08-April-2011 * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2> ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f10x_it.h" volatile uint32_t sysTickUptime = 0; // 添加在文件顶部 /** @addtogroup STM32F10x_StdPeriph_Template * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { // 添加SysTick中断处理 sysTickUptime++; } /******************************************************************************/ /* STM32F10x Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f10x_xx.s). */ /******************************************************************************/ /** * @brief This function handles USART3 global interrupt request. * @param None * @retval None */ void USART2_IRQHandler(void) { // 调用ESP8266模块的中断处理函数 extern void ESP8266_IRQHandler(void); ESP8266_IRQHandler(); } uint32_t HAL_GetTick(void) { return sysTickUptime; } /** * @} */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/ /** ****************************************************************************** * @file Project/STM32F10x_StdPeriph_Template/stm32f10x_it.h * @author MCD Application Team * @version V3.5.0 * @date 08-April-2011 * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2> ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F10x_IT_H #define __STM32F10x_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32f10x.h" extern volatile uint32_t sysTickUptime; uint32_t HAL_GetTick(void); /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); #ifdef __cplusplus } #endif #endif /* __STM32F10x_IT_H */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/ #include "esp8266.h" #include <string.h> #include "stm32f10x_usart.h" #include "stm32f10x_gpio.h" #include "stm32f10x_rcc.h" // 发送AT指令 void ESP8266_SendCmd(char* cmd, char* resp, uint16_t timeout) { USART_ClearFlag(ESP8266_USARTx, USART_FLAG_TC); // 发送命令 while(*cmd) { USART_SendData(ESP8266_USARTx, *cmd++); while(USART_GetFlagStatus(ESP8266_USARTx, USART_FLAG_TC) == RESET); } // 等待响应 uint32_t start = HAL_GetTick(); while(strstr((const char*)USART_RxBuffer, resp) == NULL) { if(HAL_GetTick() - start > timeout) { break; } } delay_ms(50); } // 初始化ESP8266为AP模式 void ESP8266_Init(void) { // 初始化USART2 USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; // 配置USART2 Tx (PA2) 为复用推挽输出 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置USART2 Rx (PA3) 为浮空输入 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); USART_InitStructure.USART_BaudRate = ESP8266_USART_BAUDRATE; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(ESP8266_USARTx, &USART_InitStructure); USART_Cmd(ESP8266_USARTx, ENABLE); // 添加NVIC中断配置 NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); // 配置ESP8266为AP模式 Delay_ms(1000); // 等待模块启动 ESP8266_SendCmd("AT+RST\r\n", "OK", 2000); ESP8266_SendCmd("AT+CWMODE=2\r\n", "OK", 2000); // 设置为AP模式 ESP8266_SendCmd("AT+CWSAP=\"ESP8266_AP\",\"12345678\",1,4\r\n", "OK", 2000); // 设置AP参数 ESP8266_SendCmd("AT+CIPMUX=1\r\n", "OK", 2000); // 允许多连接 ESP8266_SendCmd("AT+CIPSERVER=1,8080\r\n", "OK", 2000); // 开启TCP服务器 } // 发送数据到TCP客户端 u8 ESP8266_SendData(char* data) { char cmd[64]; sprintf(cmd, "AT+CIPSEND=0,%d\r\n", strlen(data)); ESP8266_SendCmd(cmd, "OK", 1000); // 等待OK响应 ESP8266_SendCmd(data, ">", 1000); // 等待>提示符 ESP8266_SendCmd((char*)0x1A, "SEND OK", 1000); // 发送Ctrl+Z return 0; } // esp8266.h #ifndef __ESP8266_H #define __ESP8266_H #include "stm32f10x.h" #include "stm32f10x_usart.h" #include "delay.h" #define ESP8266_USARTx USART2 #define ESP8266_USART_BAUDRATE 115200 void ESP8266_Init(void); void ESP8266_SendCmd(char* cmd); u8 ESP8266_SendData(char* data); #endif 将代码修改正确

<think>好的,我需要帮助用户修改他们的代码。首先,我得仔细阅读用户提供的代码,找出其中的问题。用户提到他们使用STM32F10x系列的MCU,结合DHT11、OLED、ESP8266等外设,但可能存在错误需要修正。 首先看主函数部分。在SystemClock_Config函数中,用户调用了SystemInit(),然后进行RCC_DeInit(),这可能有问题,因为SystemInit()已经初始化了系统时钟,而RCC_DeInit()会将RCC寄存器复位,可能导致冲突。正确的做法应该是在SystemInit()之后不再调用RCC_DeInit(),或者在配置前先确保时钟设置正确。
recommend-type

PC-lint 8.0升级至'a'级的patch安装指南

从提供的文件信息中,我们可以推断出以下知识点: 标题中提到的“PCLint 8.0patch”是指PCLint软件的某个版本的补丁更新。PCLint是一款由美国软件公司Gimpel Software开发的用于C和C++语言的静态代码分析工具。它主要被用来检测软件开发中的编程错误、不符合编码标准的代码以及可能引起bug的问题。该工具广泛用于嵌入式软件开发、遵循MISRA(Motor Industry Software Reliability Association)标准的项目中,以确保代码的高质量和可靠性。PCLint可以集成到多种集成开发环境(IDEs)中,例如Eclipse、Visual Studio等。 描述中指出补丁级别的推断方法,即通过后续的字母表示补丁的版本。在这里,补丁级别的“a”是紧随版本号“8.00”之后的第一个字母,暗示补丁“a”是最初发布的补丁。随后,描述中提到如果要更新到补丁级别“c”,则需要下载特定的文件。 从补丁级别更新的描述来看,这表明PCLint版本8.0的后续更新遵循了一个版本控制逻辑,其中补丁级别是按字母顺序递增的。这意味着“a”后面应该是“b”,然后是“c”等。这种命名模式可以帮助用户轻松识别补丁的更新顺序,从而能够获取到最新的错误修复和功能改进。 标签“PClint”是对软件名称的直接引用,并且用于文件管理、检索或者分类时,它能够帮助用户快速定位与PCLint相关的资源或讨论。 在提供的文件信息中,唯一列出的文件“PATCH.EXE”是一个可执行文件,很可能是用于安装PCLint补丁的安装程序。在软件开发和维护过程中,补丁或更新通常会以可执行文件或安装包的形式提供给用户,以便能够自动化安装过程,并确保补丁正确地应用到软件中。当用户下载此PATCH.EXE文件并运行时,程序会执行必要的更新步骤,这通常包括替换旧文件、添加新文件以及更新配置信息等。 为了使用PATCH.EXE更新PCLint,用户可能需要按照如下步骤操作: 1. 访问Gimpel Software的官方网站或获取更新通知。 2. 确认当前安装的PCLint版本,以确保补丁的兼容性。 3. 下载相应版本的补丁文件PATCH.EXE。 4. 关闭所有正在运行的IDE或其他相关程序。 5. 运行PATCH.EXE,通常会有一个向导引导用户完成安装过程。 6. 重启相关开发环境,以确保补丁生效。 7. 运行PCLint,进行检查以确保更新正确应用。 通过这样的更新过程,开发者可以确保他们的静态代码分析工具始终处于最新状态,从而帮助他们保持代码质量,并符合行业标准或公司政策。