../Core/Src/freertos.c(184): error: #167: argument of type "int" is incompatible with parameter of type "uint8_t *"

时间: 2025-01-26 19:08:47 浏览: 99
这个错误信息表明在FreeRTOS的源代码文件`freertos.c`的第184行,有一个函数调用时传递的参数类型不匹配。具体来说,函数期望接收一个`uint8_t *`类型的参数,但你传递的是一个`int`类型的参数。 要解决这个问题,你需要检查第184行的代码,确认传递的参数类型是否正确。以下是一些可能的解决方法: 1. **检查函数定义**:确保你了解函数期望的参数类型。如果函数期望的是`uint8_t *`,那么你需要传递一个指向`uint8_t`类型的指针。 2. **类型转换**:如果你的变量类型是`int`,你可以尝试进行类型转换。例如: ```c int myInt = 42; uint8_t *myUint8Ptr = (uint8_t *)&myInt; someFunction(myUint8Ptr); ``` 3. **修改变量类型**:如果你的变量类型不需要是`int`,你可以将其修改为`uint8_t *`。例如: ```c uint8_t myUint8 = 42; uint8_t *myUint8Ptr = &myUint8; someFunction(myUint8Ptr); ``` 4. **检查函数参数**:确保你传递给函数的参数在逻辑上是正确的。如果函数期望一个指向`uint8_t`的指针,那么传递一个`int`类型的数据可能是不合适的。 通过这些方法,你应该能够找到并修复这个类型不匹配的问题。
相关问题

..\Application\WIFI\wifi.c(97): error: #167: argument of type "BaseType_t" is incompatible with parameter of type "BaseType_t *const"

这个错误信息表明你在 C 语言编译过程中遇到了类型不匹配的问题。在 `..\Application\WIFI\wifi.c(97)` 的某个函数调用中,函数的参数期望一个指向 `BaseType_t` 类型指针常量 (`BaseType_t *const`),但实际上你传递的是一个 `BaseType_t` 类型的基本变量(不是指针)。 `BaseType_t` 可能是 FreeRTOS 中的一种基本数据类型,通常代表一个无符号整数。在 C 语言中,当你试图将非指针类型的变量作为指针类型传递时,编译器会报错。 修复这个问题的方法有: 1. 将 `BaseType_t` 值封装到一个指向它的指针中,例如 `&myVariable`。 2. 如果 `BaseType_t` 变量就是你想作为常量传递的值,并且不需要修改,可以将其声明为 `const BaseType_t`,表示一个只读的常量。 纠正错误后的代码应类似这样: ```c void someFunction(BaseType_t *const arg) { // ... } // 调用部分 someFunction(&yourVariable); ``` 或者 ```c void someFunction(const BaseType_t arg) { // ... } // 调用部分 someFunction(yourVariable); ```

../Core/Src/app_freertos.c(229): error: #513: a value of type "char *" cannot be assigned to an entity of type "char"

<think>好的,我现在遇到了一个编译器错误,类型不匹配的问题。错误信息是#513,char*赋值给char。我需要解决这个问题。首先,我得理解这个错误的具体原因。根据引用[1]中的例子,类型为“const char*”的值不能用于初始化“char*”类型的实体。这说明在赋值时,左边的变量类型和右边的值类型不兼容,特别是涉及到const修饰符时。 现在的问题是,用户可能在代码中将一个char*类型的指针赋值给了一个char类型的变量。比如,可能有类似这样的代码:char c = some_char_pointer;。这种情况下,试图将指针的值(内存地址)直接赋给一个字符变量,显然类型不匹配,因为指针是地址,而char只能存储单个字符。 接下来,我需要检查用户提到的app_freertos.c文件中相关代码。假设代码中有类似char *ptr = ...;然后char c = ptr;这样的语句,这里就会出现错误,因为ptr是char指针,而c是char类型变量。正确的做法应该是解引用指针,例如char c = *ptr;,这样就能获取指针指向的字符值。 另外,还要考虑是否存在函数参数类型不匹配的情况。比如,某个函数期望接收char类型的参数,但实际传入了char*类型的变量。这种情况下,需要修改函数参数类型,或者在调用时解引用指针。 还有一种可能是结构体或联合体中的字段类型定义错误。比如,某个结构体的成员应该是char类型,但错误地声明为char*,或者在赋值时没有正确访问成员。需要检查相关结构体的定义,确保类型一致。 此外,根据引用[4]中的代码示例,任务函数的定义和调用是否正确。如果任务函数中涉及到字符处理,可能在这里出现类型错误。例如,osThreadDef宏的参数是否正确传递了函数名和参数类型,或者在任务函数内部是否有错误的指针操作。 解决方案步骤可能包括: 1. 找到报错的具体行号,查看赋值语句的左右两边类型。 2. 检查是否误将指针赋值给字符变量,改为解引用指针。 3. 检查函数参数和返回类型是否匹配,必要时进行强制类型转换或修改类型声明。 4. 确保所有涉及到char和char*的地方类型一致,尤其是结构体或联合体中的字段。 5. 如果涉及到const修饰符,确认是否需要去除const或添加相应的类型转换。 例如,如果代码中有: char *str = "hello"; char c = str; // 错误:char*赋值给char 应改为: char c = *str; // 正确,取第一个字符'h' 或者,如果函数参数需要char类型但传入了char*,则需要修改调用方式。例如,函数void func(char c)被调用时用了func(str),应该改为func(*str)。 总结来说,解决类型不匹配的关键在于仔细检查赋值语句两边的类型,确保左边变量的类型与右边的表达式结果类型一致,必要时通过解引用或类型转换来修正。</think>### 解决编译器报错#513:char* 赋值给 char 的步骤 #### 1. **定位错误代码行** - 在 `app_freertos.c` 中找到编译报错的具体行号,例如: ```c char c = some_char_pointer; // 错误:char* 赋值给 char ``` #### 2. **检查赋值语句类型** - **错误示例**:将指针直接赋值给字符变量。 ```c char* str = "example"; char c = str; // 错误!str 是 char*,c 是 char ``` - **修正方法**:解引用指针以获取字符值。 ```c char c = *str; // 正确:取 str 指向的第一个字符 'e' ``` #### 3. **检查函数参数类型** - 如果函数参数应为 `char` 但传入了 `char*`: ```c void print_char(char c) { ... } char* str = "test"; print_char(str); // 错误!参数类型不匹配 ``` - **修正方法**: ```c print_char(*str); // 正确:传参时解引用 ``` #### 4. **检查结构体/联合体定义** - 若结构体字段类型错误(例如 `char` 写成了 `char*`): ```c typedef struct { char* data; // 假设应为 char 类型 } MyStruct; MyStruct s; s.data = 'a'; // 错误!char* 无法赋值为 char ``` - **修正方法**: ```c typedef struct { char data; // 修正为 char 类型 } MyStruct; MyStruct s; s.data = 'a'; // 正确 ``` #### 5. **处理 `const` 修饰符问题** - 若涉及 `const char*` 赋值给 `char*`: ```c const char* src = "read-only"; char* dest = src; // 错误!const char* 不能赋给 char* ``` - **修正方法**(需谨慎操作,避免修改只读内存): ```c char buffer[20]; strcpy(buffer, src); // 正确:通过复制数据避免直接赋值 ``` #### 6. **验证 FreeRTOS 任务函数中的类型** - 检查任务函数中是否有字符处理错误: ```c void AppTask(void const * argument) { char* msg = "Hello"; osMessagePut(queue, (uint32_t)msg, 0); // 假设 queue 需要 char 类型 } ``` - **修正方法**(根据实际需求调整类型): ```c char msg = 'H'; osMessagePut(queue, (uint32_t)msg, 0); // 传递字符而非指针 ``` ### 最终代码示例 假设错误行是 `char c = some_char_pointer;`,修正后: ```c char* str = "example"; char c = *str; // 正确:获取指针指向的第一个字符 ``` ### 引用说明 若问题涉及 `const` 类型不匹配,需参考引用[1]中的类型转换原则;若涉及结构体定义,需结合引用[2]中的字段类型定义;若与 FreeRTOS 任务函数相关,需检查引用[4]中的任务实现逻辑[^1][^2][^4]。
阅读全文

相关推荐

/* USER CODE BEGIN Header */ /** ****************************************************************************** * File Name : freertos.c * Description : Code for freertos applications ****************************************************************************** * @attention * *
© Copyright (c) 2025 STMicroelectronics. * All rights reserved.
* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include <stdio.h> /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN Variables */ /* USER CODE END Variables */ osThreadId Task_HighFuncHandle; osThreadId Task_MidFuncHandle; osThreadId Task_LowFuncHandle; osThreadId Task_LedFuncHandle; osThreadId DefaultTaskHandle; osMessageQId myQueue01Handle; osMutexId myMutex01Handle; osSemaphoreId BinarySem_UartHandle; osSemaphoreId BinarySem_KeyHandle; /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN FunctionPrototypes */ /* USER CODE END FunctionPrototypes */ void StartTask_HighFunc(void const * argument); void StartTask_MidFunc(void const * argument); void StartTask_LowFunc(void const * argument); void StartTask_LedFunc(void const * argument); void StartDefaultTask(void const * argument); void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */ /* GetIdleTaskMemory prototype (linked to static allocation support) */ void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */ static StaticTask_t xIdleTaskTCBBuffer; static StackType_t xIdleStack[configMINIMAL_STACK_SIZE]; void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer; *ppxIdleTaskStackBuffer = &xIdleStack[0]; *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; /* place for user code */ } /* USER CODE END GET_IDLE_TASK_MEMORY */ /** * @brief FreeRTOS initialization * @param None * @retval None */ void MX_FREERTOS_Init(void) { /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Create the mutex(es) */ /* definition and creation of myMutex01 */ osMutexDef(myMutex01); myMutex01Handle = osMutexCreate(osMutex(myMutex01)); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* Create the semaphores(s) */ /* definition and creation of BinarySem_Uart */ osSemaphoreDef(BinarySem_Uart); BinarySem_UartHandle = osSemaphoreCreate(osSemaphore(BinarySem_Uart), 1); /* definition and creation of BinarySem_Key */ osSemaphoreDef(BinarySem_Key); BinarySem_KeyHandle = osSemaphoreCreate(osSemaphore(BinarySem_Key), 1); /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* Create the queue(s) */ /* definition and creation of myQueue01 */ osMessageQDef(myQueue01, 16, uint16_t); myQueue01Handle = osMessageCreate(osMessageQ(myQueue01), NULL); /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* definition and creation of Task_HighFunc */ osThreadDef(Task_HighFunc, StartTask_HighFunc, osPriorityHigh, 0, 128); Task_HighFuncHandle = osThreadCreate(osThread(Task_HighFunc), NULL); /* definition and creation of Task_MidFunc */ osThreadDef(Task_MidFunc, StartTask_MidFunc, osPriorityNormal, 0, 128); Task_MidFuncHandle = osThreadCreate(osThread(Task_MidFunc), NULL); /* definition and creation of Task_LowFunc */ osThreadDef(Task_LowFunc, StartTask_LowFunc, osPriorityLow, 0, 128); Task_LowFuncHandle = osThreadCreate(osThread(Task_LowFunc), NULL); /* definition and creation of Task_LedFunc */ osThreadDef(Task_LedFunc, StartTask_LedFunc, osPriorityNormal, 0, 128); Task_LedFuncHandle = osThreadCreate(osThread(Task_LedFunc), NULL); /* definition and creation of DefaultTask */ osThreadDef(DefaultTask, StartDefaultTask, osPriorityIdle, 0, 128); DefaultTaskHandle = osThreadCreate(osThread(DefaultTask), NULL); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ } /* USER CODE BEGIN Header_StartTask_HighFunc */ /** * @brief Function implementing the Task_HighFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_HighFunc */ void StartTask_HighFunc(void const * argument) { /* USER CODE BEGIN StartTask_HighFunc */ /* Infinite loop */ for(;;) { printf("Task_HighFunc gets binarySem!\r\n"); if(osSemaphorewait(myMutex0lHandle, osWaitForever)== osOK) { printf("Task_HighPunc Running\r\n"); } printf("Task_HighFunc Releasingsesaphore!\r\n"); osSemaphoreRelease (myMutex0lHandle); osDelay(500); } /* USER CODE END StartTask_HighFunc */ } /* USER CODE BEGIN Header_StartTask_MidFunc */ /** * @brief Function implementing the Task_MidFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_MidFunc */ void StartTask_MidFunc(void const * argument) { /* USER CODE BEGIN StartTask_MidFunc */ /* Infinite loop */ for(;;) { printf("Task_MidFunc Running\r\n"); osDelay (500); } /* USER CODE END StartTask_MidFunc */ } /* USER CODE BEGIN Header_StartTask_LowFunc */ /** * @brief Function implementing the Task_LowFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_LowFunc */ void StartTask_LowFunc(void const * argument) { /* USER CODE BEGIN StartTask_LowFunc */ static uint32_t i; /* Infinite loop */ for(;;) { printf("Task_LowFunc gets binarySem!\r\n"); if(osSemaphoreWait(myMutex0lHandle, osWaitForever)== osOK) { printf("Task_LowFunc Running\r\n"); } for(i=0;i<2000000;i++) { if(HAL_GPIO_ReadPin(KEY1_GPIO_Port, KEY1_Pin)== 0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin) == 0); printf("Task_HighFunc Suspend!\r\n"); vTaskSuspend(Task_HighHandle); printf("Task_MidFunc Suspend!\r\n"); vTaskSuspend(Task_MidHandle); printf("Task_LedFunc Resume!\r\n"); vTaskResume(Task_LedHandle); printf("Task_LowFunc Suspend!\r\n"); vTaskSuspend(Task_LowHandle); } osThreadYield(); } printf("Task_LowFunc Releasing semaphore!\r\n"); osSemaphoreRelease(myMutex0lHandle); osDelay(500); } /* USER CODE END StartTask_LowFunc */ } /* USER CODE BEGIN Header_StartTask_LedFunc */ /** * @brief Function implementing the Task_LedFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_LedFunc */ void StartTask_LedFunc(void const * argument) { /* USER CODE BEGIN StartTask_LedFunc */ uint32_t temp=0; /* Infinite loop */ for(;;) { if(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY1_GPIO_Port, KEY1_Pin)==0); printf("myQueueOlHandle Send!\r\n"); xQueueSend(myQueueOlHandle, &temp, portMAX_DELAY); temp++; } if(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0); printf("BinarySem_KeyHandle Send!\r\n"); xSemaphoreGive(BinarySem_KeyHandle); } } /* USER CODE END StartTask_LedFunc */ } /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the DefaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void const * argument) { /* USER CODE BEGIN StartDefaultTask */ QueueSetMemberHandle_t add = NULL; uint32_t queue_recv = 0; /* Infinite loop */ for(;;) { add = xQueueSelectFromSet(myQueueSet, portMAX_DELAY ); if(add==myQueue0lHandle) { xQueueReceive(add, &queue_recv, portMAX_DELAY); printf("myQueue0lHandle Rev:%d!\r\n",queue_recv); } else if (add==BinarySem_KeyHandle) { xSemaphoreTake (add, portMAX_DELAY); printf("BinarySem_KeyHandle Revok!\r\n"); } osDelay(1); } /* USER CODE END StartDefaultTask */ } /* Private application code --------------------------------------------------*/ /* USER CODE BEGIN Application */ /* USER CODE END Application */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ 报错/* USER CODE BEGIN Header */ /** ****************************************************************************** * File Name : freertos.c * Description : Code for freertos applications ****************************************************************************** * @attention * *
© Copyright (c) 2025 STMicroelectronics. * All rights reserved.
* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include <stdio.h> /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN Variables */ /* USER CODE END Variables */ osThreadId Task_HighFuncHandle; osThreadId Task_MidFuncHandle; osThreadId Task_LowFuncHandle; osThreadId Task_LedFuncHandle; osThreadId DefaultTaskHandle; osMessageQId myQueue01Handle; osMutexId myMutex01Handle; osSemaphoreId BinarySem_UartHandle; osSemaphoreId BinarySem_KeyHandle; /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN FunctionPrototypes */ /* USER CODE END FunctionPrototypes */ void StartTask_HighFunc(void const * argument); void StartTask_MidFunc(void const * argument); void StartTask_LowFunc(void const * argument); void StartTask_LedFunc(void const * argument); void StartDefaultTask(void const * argument); void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */ /* GetIdleTaskMemory prototype (linked to static allocation support) */ void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */ static StaticTask_t xIdleTaskTCBBuffer; static StackType_t xIdleStack[configMINIMAL_STACK_SIZE]; void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer; *ppxIdleTaskStackBuffer = &xIdleStack[0]; *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; /* place for user code */ } /* USER CODE END GET_IDLE_TASK_MEMORY */ /** * @brief FreeRTOS initialization * @param None * @retval None */ void MX_FREERTOS_Init(void) { /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Create the mutex(es) */ /* definition and creation of myMutex01 */ osMutexDef(myMutex01); myMutex01Handle = osMutexCreate(osMutex(myMutex01)); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* Create the semaphores(s) */ /* definition and creation of BinarySem_Uart */ osSemaphoreDef(BinarySem_Uart); BinarySem_UartHandle = osSemaphoreCreate(osSemaphore(BinarySem_Uart), 1); /* definition and creation of BinarySem_Key */ osSemaphoreDef(BinarySem_Key); BinarySem_KeyHandle = osSemaphoreCreate(osSemaphore(BinarySem_Key), 1); /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* Create the queue(s) */ /* definition and creation of myQueue01 */ osMessageQDef(myQueue01, 16, uint16_t); myQueue01Handle = osMessageCreate(osMessageQ(myQueue01), NULL); /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* definition and creation of Task_HighFunc */ osThreadDef(Task_HighFunc, StartTask_HighFunc, osPriorityHigh, 0, 128); Task_HighFuncHandle = osThreadCreate(osThread(Task_HighFunc), NULL); /* definition and creation of Task_MidFunc */ osThreadDef(Task_MidFunc, StartTask_MidFunc, osPriorityNormal, 0, 128); Task_MidFuncHandle = osThreadCreate(osThread(Task_MidFunc), NULL); /* definition and creation of Task_LowFunc */ osThreadDef(Task_LowFunc, StartTask_LowFunc, osPriorityLow, 0, 128); Task_LowFuncHandle = osThreadCreate(osThread(Task_LowFunc), NULL); /* definition and creation of Task_LedFunc */ osThreadDef(Task_LedFunc, StartTask_LedFunc, osPriorityNormal, 0, 128); Task_LedFuncHandle = osThreadCreate(osThread(Task_LedFunc), NULL); /* definition and creation of DefaultTask */ osThreadDef(DefaultTask, StartDefaultTask, osPriorityIdle, 0, 128); DefaultTaskHandle = osThreadCreate(osThread(DefaultTask), NULL); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ } /* USER CODE BEGIN Header_StartTask_HighFunc */ /** * @brief Function implementing the Task_HighFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_HighFunc */ void StartTask_HighFunc(void const * argument) { /* USER CODE BEGIN StartTask_HighFunc */ /* Infinite loop */ for(;;) { printf("Task_HighFunc gets binarySem!\r\n"); if(osSemaphorewait(myMutex0lHandle, osWaitForever)== osOK) { printf("Task_HighPunc Running\r\n"); } printf("Task_HighFunc Releasingsesaphore!\r\n"); osSemaphoreRelease (myMutex0lHandle); osDelay(500); } /* USER CODE END StartTask_HighFunc */ } /* USER CODE BEGIN Header_StartTask_MidFunc */ /** * @brief Function implementing the Task_MidFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_MidFunc */ void StartTask_MidFunc(void const * argument) { /* USER CODE BEGIN StartTask_MidFunc */ /* Infinite loop */ for(;;) { printf("Task_MidFunc Running\r\n"); osDelay (500); } /* USER CODE END StartTask_MidFunc */ } /* USER CODE BEGIN Header_StartTask_LowFunc */ /** * @brief Function implementing the Task_LowFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_LowFunc */ void StartTask_LowFunc(void const * argument) { /* USER CODE BEGIN StartTask_LowFunc */ static uint32_t i; /* Infinite loop */ for(;;) { printf("Task_LowFunc gets binarySem!\r\n"); if(osSemaphoreWait(myMutex0lHandle, osWaitForever)== osOK) { printf("Task_LowFunc Running\r\n"); } for(i=0;i<2000000;i++) { if(HAL_GPIO_ReadPin(KEY1_GPIO_Port, KEY1_Pin)== 0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin) == 0); printf("Task_HighFunc Suspend!\r\n"); vTaskSuspend(Task_HighHandle); printf("Task_MidFunc Suspend!\r\n"); vTaskSuspend(Task_MidHandle); printf("Task_LedFunc Resume!\r\n"); vTaskResume(Task_LedHandle); printf("Task_LowFunc Suspend!\r\n"); vTaskSuspend(Task_LowHandle); } osThreadYield(); } printf("Task_LowFunc Releasing semaphore!\r\n"); osSemaphoreRelease(myMutex0lHandle); osDelay(500); } /* USER CODE END StartTask_LowFunc */ } /* USER CODE BEGIN Header_StartTask_LedFunc */ /** * @brief Function implementing the Task_LedFunc thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask_LedFunc */ void StartTask_LedFunc(void const * argument) { /* USER CODE BEGIN StartTask_LedFunc */ uint32_t temp=0; /* Infinite loop */ for(;;) { if(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY1_GPIO_Port, KEY1_Pin)==0); printf("myQueueOlHandle Send!\r\n"); xQueueSend(myQueueOlHandle, &temp, portMAX_DELAY); temp++; } if(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0) { osDelay(10); while(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==0); printf("BinarySem_KeyHandle Send!\r\n"); xSemaphoreGive(BinarySem_KeyHandle); } } /* USER CODE END StartTask_LedFunc */ } /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the DefaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void const * argument) { /* USER CODE BEGIN StartDefaultTask */ QueueSetMemberHandle_t add = NULL; uint32_t queue_recv = 0; /* Infinite loop */ for(;;) { add = xQueueSelectFromSet(myQueueSet, portMAX_DELAY ); if(add==myQueue0lHandle) { xQueueReceive(add, &queue_recv, portMAX_DELAY); printf("myQueue0lHandle Rev:%d!\r\n",queue_recv); } else if (add==BinarySem_KeyHandle) { xSemaphoreTake (add, portMAX_DELAY); printf("BinarySem_KeyHandle Revok!\r\n"); } osDelay(1); } /* USER CODE END StartDefaultTask */ } /* Private application code --------------------------------------------------*/ /* USER CODE BEGIN Application */ /* USER CODE END Application */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ 报错../Core/Src/freertos.c(176): warning: #223-D: function "osSemaphorewait" declared implicitly if(osSemaphorewait(myMutex0lHandle, osWaitForever)== osOK) ../Core/Src/freertos.c(176): error: #20: identifier "myMutex0lHandle" is undefined if(osSemaphorewait(myMutex0lHandle, osWaitForever)== osOK) ../Core/Src/freertos.c(181): error: #20: identifier "myMutex0lHandle" is undefined osSemaphoreRelease (myMutex0lHandle); ../Core/Src/freertos.c(221): error: #20: identifier "myMutex0lHandle" is undefined if(osSemaphoreWait(myMutex0lHandle, osWaitForever)== osOK) ../Core/Src/freertos.c(232): error: #20: identifier "Task_HighHandle" is undefined vTaskSuspend(Task_HighHandle); ../Core/Src/freertos.c(234): error: #20: identifier "Task_MidHandle" is undefined vTaskSuspend(Task_MidHandle); ../Core/Src/freertos.c(236): error: #20: identifier "Task_LedHandle" is undefined vTaskResume(Task_LedHandle); ../Core/Src/freertos.c(238): error: #20: identifier "Task_LowHandle" is undefined vTaskSuspend(Task_LowHandle); ../Core/Src/freertos.c(243): error: #20: identifier "myMutex0lHandle" is undefined osSemaphoreRelease(myMutex0lHandle); ../Core/Src/freertos.c(268): error: #20: identifier "myQueueOlHandle" is undefined xQueueSend(myQueueOlHandle, &temp, portMAX_DELAY); ../Core/Src/freertos.c(297): error: #20: identifier "myQueueSet" is undefined add = xQueueSelectFromSet(myQueueSet, portMAX_DELAY ); ../Core/Src/freertos.c(298): error: #20: identifier "myQueue0lHandle" is undefined if(add==myQueue0lHandle) ../Core/Src/freertos.c: 1 warning, 11 errors

最新推荐

recommend-type

### 【分布式系统】Hystrix实战指南:从入门到精通,保障系统稳定性的关键技术解析

内容概要:本文详细介绍了Hystrix这款由Netflix开源的分布式系统延迟和容错处理工具。文章首先解释了Hystrix的作用,即通过断路器、线程隔离、服务降级等功能避免雪崩效应,提高系统的弹性和稳定性。接着深入剖析了Hystrix的核心概念,包括断路器模式、隔离策略(线程池隔离和信号量隔离)、回退机制、请求缓存与合并及监控与指标等。随后,文章探讨了Hystrix的工作原理,特别是命令模式、线程隔离实现、断路器的实现细节以及请求缓存与合并的具体实现。此外,文中还列举了Hystrix在电商、金融等领域的适用场景,并通过一个在线音乐平台的案例展示了Hystrix的实际应用效果。最后,文章介绍了如何从零开始搭建Hystrix项目,包括环境准备、项目搭建步骤、代码实现、测试与验证,以及高级配置与优化技巧,并展望了Hystrix未来的发展方向。 适合人群:具备一定Java编程基础,尤其是对微服务架构有一定了解的研发人员和技术管理人员。 使用场景及目标:①帮助开发者理解和掌握Hystrix的核心功能和工作原理;②指导开发者在实际项目中正确配置和使用Hystrix,以提高系统的稳定性和容错能力;③为系统架构师提供参考,以便在设计分布式系统时考虑引入Hystrix来增强系统的健壮性。 其他说明:本文不仅详细讲解了Hystrix的各项功能和技术细节,还提供了丰富的实战经验和优化建议,使读者能够在理论和实践两方面都获得全面提升。此外,文章还提及了Hystrix与Spring Cloud、Dubbo等框架的集成方法,进一步拓宽了Hystrix的应用范围。
recommend-type

Redhat7.3配置静态IP地址.doc

Redhat7.3配置静态IP地址.doc
recommend-type

2西南大学网络与绩效教育学院《设施园艺学》作业及答案.doc

2西南大学网络与绩效教育学院《设施园艺学》作业及答案.doc
recommend-type

基于javaEE的Web的聊天室设计及实现.docx

基于javaEE的Web的聊天室设计及实现.docx
recommend-type

C语言日历显示程设计基础报告含源代码.docx

C语言日历显示程设计基础报告含源代码.docx
recommend-type

吉林大学Windows程序设计课件自学指南

### Windows程序设计基础 Windows程序设计是计算机科学中的一个重要领域,它涉及到在Windows操作系统上创建应用程序的知识和技能。它不仅包括编写代码的技巧,还包括了理解操作系统运行程序的方式、事件驱动编程概念以及图形用户界面(GUI)的设计。 ### 吉林大学计算机专业课件概述 吉林大学提供的计算机专业课件,标题为“Windows程序设计”,是一个专为初学者设计的自学材料。通过这份课件,初学者将能够掌握Windows环境下编程的基本概念和实践技能,这对于未来深入学习更高级的编程知识及从事软件开发工作都是非常有帮助的。 ### 关键知识点解析 #### 第一讲:WINDOWS程序设计 本讲主要是对Windows程序设计做一个基本的介绍,涵盖了Windows应用程序的运行环境和特性。课程会介绍Windows操作系统对程序设计的支持,包括API(应用程序编程接口)的使用,以及如何创建一个基本的Windows应用程序。此外,还会涉及程序设计的基本原则,如消息驱动和事件驱动编程。 #### 第二讲:输出文本与绘图 在本讲中,将介绍Windows程序中如何进行文本输出和基本图形绘制。这部分知识会涉及GDI(图形设备接口)的使用,包括字体管理、颜色设置和各种绘图函数。对于初学者来说,理解这些基本的图形绘制方法对于创建美观的应用程序界面至关重要。 #### 第三讲:键盘 键盘输入是用户与应用程序交互的重要方式之一。本讲将解释Windows程序如何接收和处理键盘事件,包括键盘按键的响应机制、快捷键的设置和文本输入处理等。掌握这部分知识对于实现用户友好界面和交互逻辑至关重要。 #### 第四讲:鼠标 鼠标操作同样是Windows应用程序中不可或缺的一部分。此讲将讲解如何处理鼠标事件,例如鼠标点击、双击、移动和滚轮事件等。还会包括如何在程序中实现拖放功能、鼠标光标的自定义显示以及鼠标的高级使用技巧。 #### 第五讲:定时器消息 定时器是Windows程序中非常重要的组件,用于实现时间控制相关的功能。本讲将介绍如何在Windows程序中使用定时器消息,包括创建、管理定时器,以及定时器消息的处理和应用场景。通过这部分内容,学习者可以掌握如何在程序中实现定时执行任务等。 #### 第六讲:子窗口控制 子窗口是构成复杂Windows应用程序界面的基本元素。在本讲中,将介绍如何创建和控制子窗口,包括子窗口的创建、移动、大小调整和窗口消息处理。这将帮助初学者理解主窗口与子窗口之间的关系,以及如何通过子窗口来构建丰富的用户界面。 #### 第七讲:资源 资源是应用程序中使用的非代码数据,如图标、菜单、对话框模板等。在本讲中,将介绍如何在Windows程序中使用和管理这些资源。通过学习资源文件的创建和编辑,学习者可以为程序添加视觉元素,使得应用程序更加丰富多彩。 #### 第八讲:对话框 对话框是Windows应用程序中常见的用户交互方式。本讲将介绍对话框的概念、类型和使用方法,包括标准对话框和自定义对话框的创建和事件处理。掌握对话框的设计和使用可以让程序具有更好的用户体验。 ### 总结 以上就是根据吉林大学计算机专业课件“Windows程序设计”中提供的各讲内容提炼出的关键知识点。该课件内容详实,覆盖了从基础到高级的各项内容,非常适合初学者按部就班地学习Windows程序设计。学习者通过逐步掌握这些知识点,将能够独立设计和开发出具有完整功能的Windows应用程序。
recommend-type

STM32F10x ADC_DAC转换实战:精确数据采集与输出处理

# 摘要 STM32F10x系列微控制器广泛应用于嵌入式系统中,其中的ADC和DAC转换功能对于精确模拟信号的处理至关重要。本文首先介绍了STM32F10x的ADCDAC转换基础知识,详细解释了ADC转换的理论、硬件配置、提升精度的策略,以及DAC转换技术的基础和硬件架构。随后,文章深入探讨了ADCDAC在实际应用中的规划、数据采集、输出处理以及优化
recommend-type

麒麟系统编译动态库

<think>首先,用户的问题是:“我想在麒麟系统上编译动态库的方法或教程请问如何在麒麟操作系统上编译动态链接库”。所以,我需要提供在麒麟操作系统上编译动态链接库的步骤。参考系统指令:-所有行内数学表达式使用$...$格式。-独立公式使用$$...$$并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-在回答中引用的段落末尾添加引用标识。用户可见层:-回答结构清晰,帮助用户逐步解决问题。-保证回答真实可靠。从引用中提取相关信息:-引用[1]:麒麟系统版本是kylin4.0.2,gcc版本是5.4.0,jdk版本是1.8.0_265。-引用[2]:在Linux下编译动态链接库,使
recommend-type

Struts框架中ActionForm与实体对象的结合使用

在深入讨论知识点之前,首先要明确一点,struts框架是Java的一个开源Web应用程序框架,用于简化基于MVC(Model-View-Controller)设计模式的Web应用程序的开发。而ActionForm则是Struts框架中的一个组件,它充当MVC设计模式中的Model(模型)和View(视图)之间的桥梁,主要用于封装用户输入的数据,并将这些数据传递给业务逻辑层进行处理。 知识点一:Struts框架基础 Struts框架使用一个中央控制器(ActionServlet)来接收所有的用户请求,并根据配置的映射规则(struts-config.xml)将请求转发给相应的Action类进行处理。Action类作为控制器(Controller),负责处理请求并调用业务逻辑。Action类处理完业务逻辑后,会根据处理结果将控制权转交给不同的JSP页面。 知识点二:ActionForm的使用 ActionForm通常用于封装来自用户界面的数据,这些数据被存储在表单中,并通过HTTP请求提交。在Struts中,每个表单对应一个ActionForm子类的实例。当ActionServlet接收到一个请求时,它会负责创建或查找相应的ActionForm对象,然后使用请求中的数据填充ActionForm对象。 知识点三:在ActionForm中使用实体对象 在实际应用中,表单数据通常映射到后端业务对象的属性。因此,为了更有效地处理复杂的数据,我们可以在ActionForm中嵌入Java实体对象。实体对象可以是一个普通的Java Bean,它封装了业务数据的属性和操作这些属性的getter和setter方法。将实体对象引入ActionForm中,可以使得业务逻辑更加清晰,数据处理更加方便。 知识点四:Struts表单验证 Struts提供了一种机制来验证ActionForm中的数据。开发者可以在ActionForm中实现validate()方法,用于对数据进行校验。校验失败时,Struts框架可以将错误信息存储在ActionMessages或ActionErrors对象中,并重新显示表单页面,同时提供错误提示。 知识点五:整合ActionForm与业务逻辑 ActionForm通常被设计为轻量级的,主要负责数据的接收与传递。真正的业务逻辑处理应该在Action类中完成。当ActionForm对象被创建并填充数据之后,Action对象可以调用ActionForm对象来获取所需的数据,然后进行业务逻辑处理。处理完成后的结果将用于选择下一个视图。 知识点六:Struts配置文件 Struts的配置文件struts-config.xml定义了ActionForm、Action、JSP页面和全局转发等组件之间的映射关系。开发者需要在struts-config.xml中配置相应的ActionForm类、Action类以及它们之间的映射关系。配置文件还包含了数据源、消息资源和插件的配置。 知识点七:Struts与MVC设计模式 Struts遵循MVC设计模式,其中ActionServlet充当控制器的角色,负责接收和分派请求。ActionForm承担部分Model和View的职责,存储视图数据并传递给Action。Action类作为控制器,负责处理业务逻辑并返回处理结果,最终Action类会指定要返回的视图(JSP页面)。 知识点八:Struts框架的更新与维护 Struts框架自推出以来,经历了多次更新。Struts 2是该框架的一个重大更新,它引入了拦截器(Interceptor)的概念,提供了更为灵活的处理机制。开发者在使用Struts时,应该关注框架的版本更新,了解新版本中提供的新特性与改进,并根据项目需求决定是否迁移到新版本。 知识点九:Java Web开发社区和资源 开发者在学习和使用Struts框架时,可以利用社区资源获得帮助。通过社区论坛、问答网站(例如Stack Overflow)、在线教程、博客以及官方文档等多种途径,开发者可以获取最新的信息、学习案例、解决遇到的问题,以及了解最佳实践。 知识点十:邮件和QQ交流方式 在本次提供的描述中,作者提供了自己的QQ号码和电子邮件地址,表明作者愿意通过这两种方式进行交流和获取反馈。QQ和电子邮件是中文开发者常用的交流方式,有助于获得及时的技术支持和代码评审,也方便了社区中的中文用户进行交流。 结合上述知识点,我们可以了解到Struts框架在使用ActionForm中集成实体对象时的一些关键操作和设计原则。开发者通过合理地设计ActionForm和Action类,以及妥善地利用Struts提供的配置和验证机制,可以开发出结构清晰、易于维护的Web应用程序。同时,通过社区资源和交流工具,可以有效地提高开发效率,不断完善自己的技术栈。
recommend-type

STM32F10x定时器应用精讲:掌握基本使用与高级特性

# 摘要 本文针对STM32F10x系列微控制器的定时器模块进行全面的探讨和分析。首先,概述了STM32F10x定时器的基础知识,接着详细阐述了其工作原理、硬件配置和软件配置。随后,文章深入讲解了定时器的高级特性,包括输入捕获、PWM输出和输出比较功能,以及这些功能的具体应用和配置方法。在应用实践章节中,讨论了定时器在时间测量、频率测量和信号生成中的实际应用及解决方案。最后,探索了定时器在综合应用