初始化IO引脚输出PWM波形并且可以调节输出频率三个档位可以停止

时间: 2025-07-09 16:55:05 浏览: 12
<think>嗯,用户想通过初始化IO引脚输出可调频率的三档PWM波形,并且能够停止。首先,我需要回忆一下PWM的基本原理和配置方法。根据引用中的内容,PWM的实现依赖于定时器,尤其是微控制器中的TIM模块。比如,在STM32中,定时器有专门的PWM模式,可以通过设置ARR和CCR来调节频率和占空比。 首先,用户需要确定使用的硬件平台,比如是STM32还是其他微控制器。不同的芯片可能有不同的配置方式,但大致的思路应该是相似的。根据引用[2],配置PWM需要查看设备树和原理图,确定风扇或负载的连接方式,这里可能对应到具体的IO引脚和定时器通道。 接下来,用户需要三个频率档位。这意味着需要动态调整ARR和Prescaler的值来改变频率。每个档位对应一组ARR和Prescaler的数值,可能还需要考虑定时器的时钟源频率。例如,假设基准时钟是72MHz,通过分频和ARR值,可以计算出不同的PWM频率。 然后,关于启动和停止功能,可以通过使能或禁用定时器来实现。比如,在STM32中,启动定时器会使能PWM输出,停止则关闭定时器或者将对应的GPIO设置为非PWM模式。 另外,用户提到IO引脚可能需要模拟PWM,但根据引用[1],如果芯片没有专用的PWM引脚,可以通过定时器和GPIO模拟,但可能精度不高。不过如果芯片支持硬件PWM,最好使用硬件模块,这样更高效和精确。 还需要考虑如何切换频率档位。用户可能需要通过外部输入(如按钮或命令)来切换三个不同的预设值,这需要在代码中设置变量来存储不同档位的ARR和Prescaler,并在需要时重新配置定时器。 可能遇到的问题包括频率切换时的平滑过渡,避免产生毛刺,以及确保占空比在频率变化时保持正确比例。此外,不同档位之间的频率差异是否过大,是否需要调整Prescaler和ARR的组合来覆盖所需的频率范围。 总结步骤应该是:1. 确定硬件连接和可用定时器通道;2. 配置GPIO为PWM输出模式;3. 初始化定时器,设置默认频率档位;4. 实现切换档位的函数,调整ARR和Prescaler;5. 实现启动和停止的函数,控制定时器的使能状态。 需要检查每个步骤是否符合引用中的信息,比如引用[2]提到的TIM配置,以及引用[4]中关于PWM频率和占空比的解释。确保在配置时正确设置ARR和CCR,以达到所需的频率和占空比。此外,停止功能可能需要将CCR设置为0或者禁用定时器,具体实现取决于硬件支持。</think>### 分步实现方法 #### 1. **硬件配置与设备树** - **确定PWM引脚与定时器**:根据芯片手册或原理图,选择支持硬件PWM的引脚及对应的定时器(如STM32的TIM1、TIM2等)[^2]。 - **配置引脚模式**:将选定的IO引脚设置为复用功能(Alternate Function),并映射到对应的定时器通道。例如,STM32的PA8引脚可映射到TIM1_CH1。 #### 2. **定时器初始化** - **预分频器(Prescaler)与自动重装载寄存器(ARR)**: - 频率公式:$$f_{PWM} = \frac{f_{clk}}{(Prescaler + 1) \times (ARR + 1)}$$ - 根据目标频率的3个档位(例如1kHz、5kHz、10kHz),计算对应的Prescaler和ARR值[^2][^4]。 - **占空比设置**:通过比较寄存器(CCR)控制占空比,初始可设为50%。 #### 3. **代码实现** ```c // 示例代码(以STM32 HAL库为例) // 定义3个频率档位的参数 typedef enum {FREQ_1K, FREQ_5K, FREQ_10K} PWM_FreqMode; void PWM_Init(TIM_HandleTypeDef *htim, uint32_t channel) { HAL_TIM_PWM_Start(htim, channel); // 启动PWM } void PWM_SetFrequency(TIM_HandleTypeDef *htim, PWM_FreqMode mode) { switch(mode) { case FREQ_1K: htim->Instance->PSC = 71; // 假设主频72MHz,Prescaler=71 htim->Instance->ARR = 999; // ARR=999 → 1kHz break; case FREQ_5K: htim->Instance->PSC = 71; htim->Instance->ARR = 199; // 5kHz break; case FREQ_10K: htim->Instance->PSC = 71; htim->Instance->ARR = 99; // 10kHz break; } __HAL_TIM_SET_COMPARE(htim, TIM_CHANNEL_1, 500); // 设置占空比50% } void PWM_Stop(TIM_HandleTypeDef *htim, uint32_t channel) { HAL_TIM_PWM_Stop(htim, channel); // 停止PWM输出 } ``` #### 4. **功能控制** - **启动/停止**:调用`HAL_TIM_PWM_Start/Stop`控制PWM输出。 - **动态切换频率**:通过外部触发(如按键中断)调用`PWM_SetFrequency`切换档位。 ### 关键点 - **频率精度**:需根据主频合理分配Prescaler和ARR,避免数值溢出或分辨率不足。 - **占空比同步**:切换频率时需重新计算占空比,保持比例一致。 - **硬件支持**:优先使用硬件PWM模块,若需模拟PWM,需通过定时器中断手动翻转引脚电平(精度较低)[^1]。
阅读全文

相关推荐

根据以下程序,分别概括成几个模块的软件设计:#include "stm32f10x.h" #include "1602.h" #include "math.h" typedef unsigned char u8_t; typedef signed char s8_t; typedef unsigned short u16_t; typedef signed short s16_t; typedef unsigned long u32_t; typedef signed long s32_t; //位带操作,实现51类似的GPIO控制功能 //具体实现思想,参考<<CM3权威指南>>第五章(87页~92页). //IO口操作宏定义 #define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) #define MEM_ADDR(addr) *((volatile unsigned long *)(addr)) #define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum)) //IO口地址映射 #define GPIOA_ODR_Addr (GPIOA_BASE+12) //0x4001080C #define GPIOB_ODR_Addr (GPIOB_BASE+12) //0x40010C0C #define GPIOC_ODR_Addr (GPIOC_BASE+12) //0x4001100C #define GPIOD_ODR_Addr (GPIOD_BASE+12) //0x4001140C #define GPIOE_ODR_Addr (GPIOE_BASE+12) //0x4001180C #define GPIOF_ODR_Addr (GPIOF_BASE+12) //0x40011A0C #define GPIOG_ODR_Addr (GPIOG_BASE+12) //0x40011E0C #define GPIOA_IDR_Addr (GPIOA_BASE+8) //0x40010808 #define GPIOB_IDR_Addr (GPIOB_BASE+8) //0x40010C08 #define GPIOC_IDR_Addr (GPIOC_BASE+8) //0x40011008 #define GPIOD_IDR_Addr (GPIOD_BASE+8) //0x40011408 #define GPIOE_IDR_Addr (GPIOE_BASE+8) //0x40011808 #define GPIOF_IDR_Addr (GPIOF_BASE+8) //0x40011A08 #define GPIOG_IDR_Addr (GPIOG_BASE+8) //0x40011E08 //IO口操作,只对单一的IO口! //确保n的值小于16! #define PAout(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出 #define PAin(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入 #define PBout(n) BIT_ADDR(GPIOB_ODR_Addr,n) //输出 #define PBin(n) BIT_ADDR(GPIOB_IDR_Addr,n) //输入 #define PCout(n) BIT_ADDR(GPIOC_ODR_Addr,n) //输出 #define PCin(n) BIT_ADDR(GPIOC_IDR_Addr,n) //输入 #define PDout(n) BIT_ADDR(GPIOD_ODR_Addr,n) //输出 #define PDin(n) BIT_ADDR(GPIOD_IDR_Addr,n) //输入 #define PEout(n) BIT_ADDR(GPIOE_ODR_Addr,n) //输出 #define PEin(n) BIT_ADDR(GPIOE_IDR_Addr,n) //输入 #define PFout(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出 #define PFin(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入 #define PGout(n) BIT_ADDR(GPIOG_ODR_Addr,n) //输出 #define PGin(n) BIT_ADDR(GPIOG_IDR_Addr,n) //输入 //以下为汇编函数 void WFI_SET(void); //执行WFI指令 void INTX_DISABLE(void);//关闭所有中断 void INTX_ENABLE(void); //开启所有中断 void MSR_MSP(u32 addr); //设置堆栈地址 #define EnableINT() INTX_ENABLE() #define DisableINT() INTX_DISABLE() static u8 fac_us=0; //us延时倍乘数 static u16 fac_ms=0; //ms延时倍乘数,在ucos下,代表每个节拍的ms数 void delay_init() { #if SYSTEM_SUPPORT_OS //如果需要支持OS. u32 reload; #endif SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //选择外部时钟 HCLK/8 fac_us=SystemCoreClock/8000000; //为系统时钟的1/8 #if SYSTEM_SUPPORT_OS //如果需要支持OS. reload=SystemCoreClock/8000000; //每秒钟的计数次数 单位为M reload*=1000000/delay_ostickspersec; //根据delay_ostickspersec设定溢出时间 //reload为24位寄存器,最大值:16777216,在72M下,约合1.86s左右 fac_ms=1000/delay_ostickspersec; //代表OS可以延时的最少单位 SysTick->CTRL|=SysTick_CTRL_TICKINT_Msk; //开启SYSTICK中断 SysTick->LOAD=reload; //每1/delay_ostickspersec秒中断一次 SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk; //开启SYSTICK #else fac_ms=(u16)fac_us*1000; //非OS下,代表每个ms需要的systick时钟数 #endif } //延时nus //nus为要延时的us数. void delay_us(u32 nus) { u32 temp; SysTick->LOAD=nus*fac_us; //时间加载 SysTick->VAL=0x00; //清空计数器 SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数 do { temp=SysTick->CTRL; }while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达 SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL =0X00; //清空计数器 } //延时nms //注意nms的范围 //SysTick->LOAD为24位寄存器,所以,最大延时为: //nms<=0xffffff*8*1000/SYSCLK //SYSCLK单位为Hz,nms单位为ms //对72M条件下,nms<=1864 void delay_ms(u16 nms) { u32 temp; SysTick->LOAD=(u32)nms*fac_ms; //时间加载(SysTick->LOAD为24bit) SysTick->VAL =0x00; //清空计数器 SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数 do { temp=SysTick->CTRL; }while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达 SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL =0X00; //清空计数器 } void USART1_init(void) { USART_InitTypeDef USART_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_AFIO , ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); USART_InitStructure.USART_BaudRate = 9600; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; //USART1 USART_Init(USART1, &USART_InitStructure); USART_Cmd(USART1, ENABLE); USART_ClearITPendingBit(USART1, USART_IT_RXNE); USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); USART_ITConfig(USART1, USART_IT_PE, ENABLE); USART_ITConfig(USART1, USART_IT_ERR, ENABLE); USART1->DR = (0X55 & (uint16_t)0x01FF); while((USART1->SR&0X40)==0); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void UsartSendData1(unsigned char *send_buff,unsigned long int length) { unsigned long int i = 0; delay_ms(1); for(i = 0;i < length;i ++) { USART1->DR = (send_buff[i] & (uint16_t)0x01FF); while((USART1->SR&0X40)==0); } delay_ms(1); } int GQ=0;//保存光强 int LX=0;//光类型 0白光 1黄光 2混合光 int DW=0;//档位 0~5档 int LPWM=0;//亮度 0~100 int moshi=0;//0手动 1自动 2声控 #define LED_B PBout(8) #define LED_H PBout(7) #define C_YR PBin(6) void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOC,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_AFIO, ENABLE); //ENABLEPBCLK GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable , ENABLE); //Disable jtag RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1,ENABLE); //LCD1602 管脚 D0~D7 双向I/O GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15| GPIO_Pin_3| GPIO_Pin_4| GPIO_Pin_5; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8| GPIO_Pin_11| GPIO_Pin_12| GPIO_Pin_15; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_Init(GPIOA, &GPIO_InitStructure); //ADC GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7|GPIO_Pin_0; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOA, &GPIO_InitStructure); //LCD1602 管脚 控制 推挽模式 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 |GPIO_Pin_13|GPIO_Pin_14; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); //按键 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9|GPIO_Pin_10|GPIO_Pin_11; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOB, &GPIO_InitStructure); //LED灯 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7|GPIO_Pin_8; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); } /* ADC配置 */ void ADC_Set(unsigned char ch) { ADC_InitTypeDef ADC_InitStructure;//ADC结构体变量//注意在一个语句快内变量的声明要放在可执行语句的前面,否则出错,因此要放在ADC1_GPIO_Config();前面 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;//ADC1和ADC2工作在独立模式 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //使能扫描 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;//ADC转换工作在连续模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;//由软件控制转换,不使用外部触发 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;//转换数据右对齐 ADC_InitStructure.ADC_NbrOfChannel = 1;//转换通道为1 ADC_Init(ADC1, &ADC_InitStructure); //初始化ADC if(ch == ADC_Channel_7) { ADC_RegularChannelConfig(ADC1, ADC_Channel_7, 1, ADC_SampleTime_239Cycles5); } if(ch == ADC_Channel_6) { ADC_RegularChannelConfig(ADC1, ADC_Channel_6, 1, ADC_SampleTime_239Cycles5); } ADC_Cmd(ADC1, ENABLE);//使能ADC1 ADC_ITConfig(ADC1, ADC_IT_EOC, ENABLE); ADC_SoftwareStartConvCmd(ADC1, ENABLE); } #define ADC_TIMES 10 #define ADCLOST 2 unsigned int GetADC(unsigned char ch) { unsigned int i, j; unsigned int buf[ADC_TIMES]; unsigned long int sum; long int temp; static long int XQ = 0; ADC_Set(ch); for(i=0; i < ADC_TIMES; i++) { buf[i] = ADC_GetConversionValue(ADC1);; delay_ms(10); } for(i = 0; i < ADC_TIMES - 1; i++) { for(j = i + 1; j < ADC_TIMES; j++) { if(buf[i] > buf[j]) { temp = buf[i]; } } } sum = 0; for(i = ADCLOST; i < ADC_TIMES - ADCLOST; i++) { sum += buf[i]; } temp = sum / (ADC_TIMES - 2 * ADCLOST); if( (XQ>=temp && (XQ-temp)<=1 ) || (XQ<temp && (temp-XQ)<=1)) { temp = XQ; } else { XQ = temp; } return (unsigned int)(temp>>4); } void Display_1(int T1,int T2,int T3,int T4,int T5) { char xx=0,yy=0; //光强 WrByte1602(yy,xx++,'G'); //. WrByte1602(yy,xx++,'Q'); WrByte1602(yy,xx++,'='); WrByte1602(yy,xx++,T1%1000/100+'0'); WrByte1602(yy,xx++,T1%100/10+'0'); WrByte1602(yy,xx++,T1%10+'0'); WrByte1602(yy,xx++,' '); //光类型 WrByte1602(yy,xx++,'T'); //. WrByte1602(yy,xx++,'Y'); WrByte1602(yy,xx++,'P'); WrByte1602(yy,xx++,'E'); WrByte1602(yy,xx++,'-'); if(T2==0)//0混合 1白光 2黄光 { WrByte1602(yy,xx++,'B'); WrByte1602(yy,xx++,'H'); } else if(T2==1)//0混合 1白光 2黄光 { WrByte1602(yy,xx++,'B'); WrByte1602(yy,xx++,' '); } else if(T2==2)//0混合 1白光 2黄光 { WrByte1602(yy,xx++,'H'); WrByte1602(yy,xx++,' '); } WrByte1602(yy,xx++,' '); xx=0,yy=1; //档位 WrByte1602(yy,xx++,'D'); //. WrByte1602(yy,xx++,'W'); WrByte1602(yy,xx++,'='); WrByte1602(yy,xx++,T3%10+'0'); WrByte1602(yy,xx++,' '); //亮度 WrByte1602(yy,xx++,'L'); //. WrByte1602(yy,xx++,'D'); WrByte1602(yy,xx++,'='); WrByte1602(yy,xx++,T4%1000/100+'0'); WrByte1602 if(T5==0)//0手动 1自动 2声控 { WrByte1602(yy,xx++,'S'); WrByte1602(yy,xx++,'D'); } else if(T5==1)//0手动 1自动 2声控 { WrByte1602(yy,xx++,'Z'); WrByte1602(yy,xx++,'D'); } else if(T5==2)//0手动 1自动 2声控 { WrByte1602(yy,xx++,'S'); WrByte1602(yy,xx++,'K'); } WrByte1602(yy,xx++,' '); } //int GQ=0;//保存光强 //int LX=0;//光类型 0白光 1黄光 2混合光 //int DW=0;//档位 0~5档 //int LPWM=0;//亮度 0~100 //int moshi=0;//0手动 1自动 2声控 void anjiansaom(void) { static uchar K1,K2,K3; static uchar K1Flag=0,K2Flag=0,K3Flag=0; K1 = GPIO_ReadInputDataBit(GPIOB , GPIO_Pin_9); K2 = GPIO_ReadInputDataBit(GPIOB , GPIO_Pin_11); K3 = GPIO_ReadInputDataBit(GPIOB , GPIO_Pin_10); //手动/自动 if(K1==0) { K1Flag = 1; } else { if(K1Flag) { K1Flag = 0; if(moshi==1||moshi==2)//0手动 1自动 2声控 { moshi=0; } else { moshi=1; } } } //亮度 if(K2==0) { K2Flag = 1; } else { if(K2Flag) { K2Flag = 0; if(moshi==0)//0手动 1自动 2声控 { DW++; if(DW>5) { DW=0; } LPWM=DW*20; } } } { if(K3Flag) { K3Flag = 0; //光类型 0白光 1黄光 2混合光 LX++; if(LX>2) { LX=0; } } } } void TimerConfig(TIM_TypeDef* TIMx,unsigned long int time) { NVIC_InitTypeDef NVIC_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB1PeriphClockCmd( RCC_APB1Periph_TIM2,ENABLE); RCC_APB1PeriphClockCmd( RCC_APB1Periph_TIM3,ENABLE); TIM_DeInit(TIMx); TIM_TimeBaseStructure.TIM_Period = time * 2; /* 自动重装载寄存器周期的值(计数值) */ /* 累计 TIM_Period个频率后产生一个更新或者中断 */ TIM_TimeBaseStructure.TIM_Prescaler= (1000- 1); /* 时钟预分频数 例如:时钟频率=72MHZ/(时钟预分频+1) */ TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; /* 采样分频 */ TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; /* 向上计数模式 */ TIM_TimeBaseInit(TIMx, &TIM_TimeBaseStructure); TIM_ClearFlag(TIMx, TIM_FLAG_Update); /* 清除溢出中断标志 */ TIM_ITConfig(TIMx,TIM_IT_Update,ENABLE); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); NVIC_InitStr NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } /** * @brief 关闭或者开启指定定时器 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral * @param NewState: new state of the TIMx peripheral. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TimerSW( TIM_TypeDef* TIMx, FunctionalState NewState ) { TIM_SetCounter(TIMx,0); TIM_Cmd(TIMx,NewState); } int main(void) { float temp; SystemInit(); SystemCoreClockUpdate(); delay_init(); //引脚配置 GPIO_Configuration(); //关闭LED灯 LED_B=0; LED_H=0; delay_ms(1000); //初始化LCD1602 Init1602(); TimerConfig(TIM2,1); TimerSW(TIM2, ENABLE); //串口初始化 USART1_init(); while (1) { delay_ms(20); //读取ADC的值,然后计算光强 ADC_Set(0); //光强 //先读取ADC值 GQ =(255-GetADC(0))/2-60; if(GQ<0) { GQ=0; } GQ = GQ*2; if(GQ>100) { GQ = 100; } //按键扫描 anjiansaom(); //光强 光类型 档位 亮度 模式 Display_1(GQ,LX,DW,LPWM,moshi); //自动模式光强控制 //首先得有人才会亮 if(moshi==1) { if(C_YR==1 )//传感器输出高电平代表有人 { //根据亮度计算光亮 //越暗 越亮 LPWM=100-GQ; } else { LPWM=0;//关灯 } } } } /** * @brief 定时器2中断服务函数 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral * @param NewState: new state of the TIMx peripheral. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM2_IRQHandler(void) { static int i=0; if ( TIM_GetITStatus(TIM2 , TIM_IT_Update) != RESET ) { TIM_ClearITPendingBit(TIM2 , TIM_FLAG_Update); // PCout(13)=~PCout(13); //这里实现PWM 波形的产生 i++; if(i<=LPWM) { //开灯 //暖光 还是白光 还是混合 if(LX==0)//0混合 1白光 2黄光 { } } else { //关灯 LED_B=0;LED_H=0; } //不能超过100 if(i>100) { i=0; } } } //串口1接收中断 void USART1_IRQHandler(void) { char shuju=0; if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { USART_ClearITPendingBit(USART1, USART_IT_RXNE); //保存收到的数据 shuju=USART_ReceiveData(USART1); //读取接收到的数据 //收到数据1 //你好小灯 唤醒 if(shuju==1)//进入声控模式 { moshi=2; } if(moshi==2) { //收到数据2 //开灯 if(shuju==2)//开灯 { if(LPWM==0) { DW=3; LPWM=DW*20; } } else if(shuju==3)//关灯 { DW=0; LPWM=DW*20; } else if(shuju==4)//亮一点 { DW++; if(DW>5) } } } if(USART_GetITStatus(USART1, USART_IT_PE) != RESET) { USART_ClearITPendingBit(USART1, USART_IT_PE); } if (USART_GetFlagStatus(USART1, USART_IT_LBD) != RESET) { USART_ClearITPendingBit(USART1, USART_IT_LBD); } if(USART_GetFlagStatus(USART1, USART_FLAG_ORE) != RESET) { USART_ReceiveData(USART1); USART_ClearFlag(USART1, USART_FLAG_ORE); } if(USART_GetFlagStatus(USART1, USART_FLAG_NE) != RESET) { USART_ClearFlag(USART1, USART_FLAG_NE); } if(USART_GetFlagStatus(USART1, USART_FLAG_FE) != RESET) { USART_ClearFlag(USART1, USART_FLAG_FE); } if(USART_GetFlagStatus(USART1, USART_FLAG_PE) != RESET) { USART_ClearFlag(USART1, USART_FLAG_PE); } if (USART_GetITStatus(USART1, USART_IT_TC) != RESET) { USART_ClearITPendingBit(USART1, USART_IT_TC); } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) {} } #endif /******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/ #include "stm32f10x.h" #include "1602.h" #define uchar unsigned char #define uint unsigned int uchar ASCII[]={0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39};//2 /* PA8~PA15为数据口 */ #define LCD1602_RS_0 GPIO_ResetBits(GPIOB , GPIO_Pin_12) #define LCD1602_RS_1 GPIO_SetBits(GPIOB , GPIO_Pin_12) #define LCD1602_RW_0 GPIO_ResetBits(GPIOB , GPIO_Pin_13) #define LCD1602_RW_1 GPIO_SetBits(GPIOB , GPIO_Pin_13) #define LCD1602_EN_0 GPIO_ResetBits(GPIOB , GPIO_Pin_14) #define LCD1602_EN_1 GPIO_SetBits(GPIOB , GPIO_Pin_14) #define LCD1602_D0_0 GPIO_ResetBits(GPIOB , GPIO_Pin_15) #define LCD1602_D0_1 GPIO_SetBits(GPIOB , GPIO_Pin_15) #define LCD1602_D1_0 GPIO_ResetBits(GPIOA , GPIO_Pin_8) #define LCD1602_D1_1 GPIO_SetBits(GPIOA , GPIO_Pin_8) #define LCD1602_D2_0 GPIO_ResetBits(GPIOA , GPIO_Pin_11) #define LCD1602_D2_1 GPIO_SetBits(GPIOA , GPIO_Pin_11) #define LCD1602_D3_0 GPIO_ResetBits(GPIOA , GPIO_Pin_12) #define LCD1602_D3_1 GPIO_SetBits(GPIOA , GPIO_Pin_12) #define LCD1602_D4_0 GPIO_ResetBits(GPIOA , GPIO_Pin_15) #define LCD1602_D4_1 GPIO_SetBits(G #define LCD1602_D6_0 GPIO_ResetBits(GPIOB , GPIO_Pin_4) #define LCD1602_D6_1 GPIO_SetBits(GPIOB , GPIO_Pin_4) #define LCD1602_D7_0 GPIO_ResetBits(GPIOB , GPIO_Pin_5) #define LCD1602_D7_1 GPIO_SetBits(GPIOB , GPIO_Pin_5) #define GET_LCD1602_D0 GPIO_ReadInputDataBit(GPIOB , GPIO_Pin_15) #define GET_LCD1602_D1 GPIO_ReadInputDataBit(GPIOA , GPIO_Pin_8) #define GET_LCD1602_D2 GPIO_ReadInputDataBit(GPIOA , GPIO_Pin_11) #define GET_LCD1602_D3 GPIO_ReadInputDataBit(GPIOA , GPIO_Pin_12) #define GET_LCD1602_D4 GPIO_ReadInputDataBit(GPIOA , GPIO_Pin_15) #define GET_LCD1602_ void SetLCD1602DValue(unsigned char value) { if(value&0x01) { LCD1602_D0_1; } else { LCD1602_D0_0; } if(value&0x02) { LCD1602_D1_1; } { LCD1602_D2_1; } else { LCD1602_D2_0; } if(value&0x08) { LCD1602_D3_1; } else { LCD1602_D3_0; } if(value&0x10) { LCD1602_D4_1; } else { LCD1602_D4_0; } if(value&0x20) { LCD1602_D5_1; } else { LCD1602_D5_0; } if(value&0x40) if(value&0x80) { LCD1602_D7_1; } else { LCD1602_D7_0; } } unsigned char GetLCD1602DValue(void) { unsigned char dat; dat = 0x00; if(GET_LCD1602_D0) { dat = dat |0x01; } if(GET_LCD1602_D1) { dat = dat |0x02; } if(GET_LCD1602_D2) { dat = dat |0x04; } if(GET_LCD1602_D3) { dat = dat |0x08; } if(GET_LCD1602_D4) { dat = dat |0x10; } if(GET_LCD1602_D5) { dat = dat |0x20; } if(GET_LCD1602_D6) { dat = dat |0x40; } if(GET_LCD1602_D7) { dat = dat |0x80; } return(dat); } /*******************通用延时子程序**************************/ void mDelay(uint i) { for (;i>0;i--) {uchar j=10;while(--j);} } void LCD1602DTest(void) { LCD1602_RS_1; LCD1602_RW_1; LCD1602_EN_1; SetLCD1602DValue(0x00); mDelay(100); mDelay(100); LCD1602_EN_0; SetLCD1602DValue(0xFF); mDelay(100); mDelay(100); LCD1602_RS_0; LCD1602_RW_0; LCD1602_EN_0; SetLCD1602DValue(0x00); } /************************************************************* 函数名称:读忙状态子函数 全局变量:无 参数说明:无 返回说明:无 版 本:1.0 说 明:读取LCD1602忙状态 **************************************************************/ void Read1602() //读忙状态 { long int i=90000; //建一个循环变量避免器件发生故障停在这里 SetLCD1602DValue(0xff); LCD1602_RS_0; LCD1602_RW_1; //设置LCD为读取数据状态 LCD1602_EN_1; //使能LCD,高电平 while ((i--)&&(GetLCD1602DValue()&0x80)); //检测数据口最高位状态,为0则空闲 LCD1602_EN_0; //关闭使能 } /************************************************************** 函数名称:写操作子函数 全局变量:无 参数说明:Dat为数据,command为指令(1为写数据,0为写指令) 返回说明:无 版 本:1.0 说 明:往LCD1602写入数据、指令 ***************************************************************/ void Write1602(uchar Dat,unsigned char command) { Read1602(); SetLCD1602DValue(Dat); if(command) { LCD1602_RS_1; //RS为1写数据、为0写指令 } else { LCD1602_RS_0; } LCD1602_RW_0; //RW为低,进行写操作 LCD1602_EN_1; LCD1602_EN_0; //E端控制一个高脉冲 } /*************************************************************** 函数名称:LCD1602初始化子函数 全局变量:无 参数说明:无 返回说明:无 版 本:1.0 说 明:设置工作模式、清屏、开显示 ***************************************************************/ void Init1602(void) { LCD1602DTest(); mDelay(10); mDelay(10); Write1602(0x38,0); //8位点阵方式 mDelay(10); Write1602(0x38,0); mDelay(10); Write1602(0x38,0); mDelay(10); Write1602(0x38,0); mDelay(10); Write1602(0x01,0); //清屏 mDelay(10); Write1602(0x0c,0); //开显示,光标不显示 } void WrByte1602_EX(uchar x,uchar y,uchar dat) { Write1602(0x80+(x<<6)+y,0); //合并生成地址 Write1602(dat,1); //写入数据 } void WrByte1602(uchar x,uchar y,uchar dat) { Write1602(0x80+(x<<6)+y,0); //合并生成地址 Write1602(dat,1); //写入数据 } /*************************************************************** 函数名称:LCD1602整行字符串写入子函数 全局变量:无 参数说明:x为写入的行(0或1),*p为写入的字符串数组 返回说明:无 版 本:1.0 说 明:在LCD1602任意行写入字符串 ****************************************************************/ void LCD_Write_String(uchar x1,uchar x,uchar *p) { x1 = 1; Write1602(0x80+(x<<6),0); //合并生成行首地址 while(*p) {Write1602(*p,1);p++;} //逐个字符写入 } #include "stm32f10x.h" #include "1602.h" #define uchar unsigned char #define uint unsigned int uchar ASCII[]={0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39};//2 /* PA8~PA15为数据口 */ #define LCD1602_RS_0 GPIO_ResetBits(GPIOB , GPIO_Pin_12) #define LCD1602_RS_1 GPIO_SetBits(GPIOB , GPIO_Pin_12) #define LCD1602_RW_0 GPIO_ResetBits(GPIOB , GPIO_Pin_13) #define LCD1602_RW_1 GPIO_SetBits(GPIOB , GPIO_Pin_13) #define LCD1602_EN_0 GPIO_ResetBits(GPIOB , GPIO_Pin_14) #define LCD1602_EN_1 GPIO_SetBits(GPIOB , GPIO_Pin_14) #define LCD1602_D0_0 GPIO_ResetBits(GPIOB , GPIO_Pin_15) #define LCD1602_D0_1 GPIO_SetBits(GPIOB , GPIO_Pin_15) #define LCD1602_D1_0 GPIO_ResetBits(GPIOA , GPIO_Pin_8) #define LCD1602_D1_1 GPIO_SetBits(GPIOA , GPIO_Pin_8) #define LCD1602_D2_0 GPIO_ResetBits(GPIOA , GPIO_Pin_11) #define LCD1602_D2_1 GPIO_SetBits(GPIOA , GPIO_Pin_11) #define LCD1602_D3_0 GPIO_ResetBits(GPIOA , GPIO_Pin_12) #define LCD1602_D3_1 GPIO_SetBits(GPIOA , GPIO_Pin_12) #define LCD1602_D4_0 GPIO_ResetBits(GPIOA , GPIO_Pin_15) #define LCD1602_D4_1 GPIO_SetBits(GPIOA , GPIO_Pin_15) #define LCD1602_D5_0 GPIO_ResetBits(GPIOB , GPIO_Pin_3) #define LCD1602_D5_1 GPIO_SetBits(GPIOB , GPIO_Pin_3) #define LCD1602_D6_0 GPIO_ResetBits(GPIOB , GPIO_Pin_4) #define LCD1602_D6_1 GPIO_SetBits(GPIOB , GPIO_Pin_4) #define LCD1602_D7_0 GPIO_ResetBits(GPIOB , GPIO_Pin_5) #define LCD1602_D7_1 GPIO_SetBits(GPIOB , GPIO_Pin_5) #define GET_LCD1602_D0 GPIO_ReadInputDataBit(GPIOB , GPIO_Pin_15) #define GET_LCD1602_D1 GPIO_ReadInputDataBit(GPIOA , GPIO_Pin_8) #define GET_LCD1602_D2 GPIO_ReadInputDataBit(GPIOA , GPIO_Pin_11) #define GET_LCD1602_D3 GPIO_ReadInputDataBit(GPIOA , GPIO_Pin_12) #define GET_LCD1602_D4 GPIO_ReadInputDataBit(GPIOA , GPIO_Pin_15) #define GET_LCD1602_D5 GPIO_ReadInputDataBit(GPIOB , GPIO_Pin_3) #define GET_LCD1602_D6 GPIO_ReadInputDataBit(GPIOB , GPIO_Pin_4) #define GET_LCD1602_D7 GPIO_ReadInputDataBit(GPIOB , GPIO_Pin_5) void SetLCD1602DValue(unsigned char value) { if(value&0x01) { LCD1602_D0_1; } else { LCD1602_D0_0; } if(value&0x02) { LCD1602_D1_1; } else { LCD1602_D1_0; } if(value&0x04) { LCD1602_D2_1; } else { LCD1602_D2_0; } if(value&0x08) { LCD1602_D3_1; } else { LCD1602_D3_0; } if(value&0x10) { LCD1602_D4_1; } else { LCD1602_D4_0; } if(value&0x20) { LCD1602_D5_1; } else { LCD1602_D5_0; } if(value&0x40) { LCD1602_D6_1; } else { LCD1602_D6_0; } if(value&0x80) { LCD1602_D7_1; } else { LCD1602_D7_0; } } unsigned char GetLCD1602DValue(void) { unsigned char dat; dat = 0x00; if(GET_LCD1602_D0) { dat = dat |0x01; } if(GET_LCD1602_D1) { dat = dat |0x02; } if(GET_LCD1602_D2) { dat = dat |0x04; } if(GET_LCD1602_D3) { dat = dat |0x08; } if(GET_LCD1602_D4) { dat = dat |0x10; } if(GET_LCD1602_D5) { dat = dat |0x20; } if(GET_LCD1602_D6) { dat = dat |0x40; } if(GET_LCD1602_D7) { dat = dat |0x80; } return(dat); } /*******************通用延时子程序**************************/ void mDelay(uint i) { for (;i>0;i--) {uchar j=10;while(--j);} } void LCD1602DTest(void) { LCD1602_RS_1; LCD1602_RW_1; LCD1602_EN_1; SetLCD1602DValue(0x00); mDelay(100); mDelay(100); LCD1602_RS_0; LCD1602_RW_0; LCD1602_EN_0; SetLCD1602DValue(0xFF); mDelay(100); mDelay(100); LCD1602_RS_0; LCD1602_RW_0; LCD1602_EN_0; SetLCD1602DValue(0x00); } /************************************************************* 函数名称:读忙状态子函数 全局变量:无 参数说明:无 返回说明:无 版 本:1.0 说 明:读取LCD1602忙状态 **************************************************************/ void Read1602() //读忙状态 { long int i=90000; //建一个循环变量避免器件发生故障停在这里 SetLCD1602DValue(0xff); LCD1602_RS_0; LCD1602_RW_1; //设置LCD为读取数据状态 LCD1602_EN_1; //使能LCD,高电平 while ((i--)&&(GetLCD1602DValue()&0x80)); //检测数据口最高位状态,为0则空闲 LCD1602_EN_0; //关闭使能 } /************************************************************** 函数名称:写操作子函数 全局变量:无 参数说明:Dat为数据,command为指令(1为写数据,0为写指令) 返回说明:无 版 本:1.0 说 明:往LCD1602写入数据、指令 ***************************************************************/ void Write1602(uchar Dat,unsigned char command) { Read1602(); SetLCD1602DValue(Dat); if(command) { LCD1602_RS_1; //RS为1写数据、为0写指令 } else { LCD1602_RS_0; } LCD1602_RW_0; //RW为低,进行写操作 LCD1602_EN_1; LCD1602_EN_0; //E端控制一个高脉冲 } /*************************************************************** 函数名称:LCD1602初始化子函数 全局变量:无 参数说明:无 返回说明:无 版 本:1.0 说 明:设置工作模式、清屏、开显示 ***************************************************************/ void Init1602(void) { LCD1602DTest(); mDelay(10); mDelay(10); Write1602(0x38,0); //8位点阵方式 mDelay(10); Write1602(0x38,0); mDelay(10); mDelay(10); Write1602(0x01,0); //清屏 mDelay(10); Write1602(0x0c,0); //开显示,光标不显示 } void WrByte1602_EX(uchar x,uchar y,uchar dat) { Write1602(0x80+(x<<6)+y,0); //合并生成地址 Write1602(dat,1); //写入数据 } void WrByte1602(uchar x,uchar y,uchar dat) { Write1602(0x80+(x<<6)+y,0); //合并生成地址 Write1602(dat,1); //写入数据 } /*************************************************************** 函数名称:LCD1602整行字符串写入子函数 全局变量:无 参数说明:x为写入的行(0或1),*p为写入的字符串数组 返回说明:无 版 本:1.0 说 明:在LCD1602任意行写入字符串 ****************************************************************/ void LCD_Write_String(uchar x1,uchar x,uchar *p) { x1 = 1; Write1602(0x80+(x<<6),0); //合并生成行首地址 while(*p) {Write1602(*p,1);p++;} //逐个字符写入 }

大家在看

recommend-type

公开公开公开公开-openprotocol_specification 2.7

LY-WCS-2012-01-06-01 V 1.0 公开公开公开公开 产品名称:产品名称:产品名称:产品名称: WCS 系统简介系统简介系统简介系统简介-公开版公开版公开版公开版 共共共共 13 页页页页 WCSWCSWCSWCS 系统简介系统简介系统简介系统简介 ((((客户交流用客户交流用客户交流用客户交流用)))) 文文文文 档档档档 作作作作 者:者:者:者: 王 超 日期:日期:日期:日期:2012/01/06 开发开发开发开发/测试经理:测试经理:测试经理:测试经理: 程 达 日期:日期:日期:日期:2012/01/06 项项项项 目目目目 经经经经 理:理:理:理: 程 达 日期:日期:日期:日期:2012/01/06 文文文文 档档档档 编编编编 号:号:号:号: ___________ ___ LY-WCS-2012-01-06-01______________ 上海朗因智能科技有限公司上海朗因智能科技有限公司上海朗因智能科技有限公司上海朗因智能科技有限公司 版权所有版权所有版权所有版权所有 不得复制不得复制不得复制不得复制
recommend-type

中国联通OSS系统总体框架

中国联通OSS系统总体框架。中国联通OSS系统总体框架。
recommend-type

基于 ADS9110的隔离式数据采集 (DAQ) 系统方案(待编辑)-电路方案

描述 该“可实现最大 SNR 和采样率的 18 位 2Msps 隔离式数据采集参考设计”演示了如何应对隔离式数据采集系统设计中的典型性能限制挑战: 通过将数字隔离器引入的传播延迟降至最低,使采样率达到最大 通过有效地减轻数字隔离器引入的 ADC 采样时钟抖动,使高频交流信号链性能 (SNR) 达到最大 特性 18 位、2Msps、1 通道、差分输入、隔离式数据采集 (DAQ) 系统 利用 ADS9110 的 multiSPI:trade_mark: 数字接口实现 2MSPS 采样率,同时保持低 SPI 数据速率 源同步 SPI 数据传输模式,可将隔离器传播延迟降至最低并提高采样率 可降低隔离器引入的抖动的技术,能够将 SNR 提高 12dB(100kHz Fin,2MSPS) 经测试的设计包含理论和计算、组件选择、PCB 设计和测量结果 原理图 附件文档: 方案相关器件: ISO1541:低功耗、双向 I2C 隔离器 ISO7840:高性能 5.7kVRMS 增强型四通道数字隔离器 ISO7842:高性能 5.7kVRMS 增强型四通道数字隔离器
recommend-type

自动化图书管理系统 v7.0

自动化图书馆管理系统包含了目前图书馆管理业务的每个环节,能同时管理图书和期刊,能打印条码、书标,并制作借书证,最大藏书量在300万册以上。系统采用CNMARC标准及中图法第四版分类,具有Web检索与发布功能,条码扫描,支持一卡通,支持触摸屏。系统包括系统管理、读者管理、编目、流通、统计、查询等功能。能够在一个界面下实现图书、音像、期刊的管理,设置假期、设置暂离锁(提高安全性)、暂停某些读者的借阅权、导入导出读者、交换MARC数据、升级辅助编目库等。安装本系统前请先安装SQL 2000SQL 下载地址 http://pan.baidu.com/s/145vkr安装过程如有问题可咨询: TEL 13851381727  QQ 306404635
recommend-type

MOXA UPort1110drvUSB转串口驱动

MOXA UPort1110drvUSB转串口驱动,解决没有com口的烦恼

最新推荐

recommend-type

{团队建设}网络渠道部团队规划手册.pdf

{团队建设}网络渠道部团队规划手册.pdf
recommend-type

快速付里叶变换FFTFastFourietTransformer(1).pptx

快速付里叶变换FFTFastFourietTransformer(1).pptx
recommend-type

spring-ai-model-chat-memory-cassandra-1.0.0-M8.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

STM32-Led灯依次闪烁(100ms间隔)(1).doc

STM32-Led灯依次闪烁(100ms间隔)(1).doc
recommend-type

[精选]网络中心机房建设计培训教材.pptx

[精选]网络中心机房建设计培训教材.pptx
recommend-type

Wamp5: 一键配置ASP/PHP/HTML服务器工具

根据提供的文件信息,以下是关于标题、描述和文件列表中所涉及知识点的详细阐述。 ### 标题知识点 标题中提到的是"PHP集成版工具wamp5.rar",这里面包含了以下几个重要知识点: 1. **PHP**: PHP是一种广泛使用的开源服务器端脚本语言,主要用于网站开发。它可以嵌入到HTML中,从而让网页具有动态内容。PHP因其开源、跨平台、面向对象、安全性高等特点,成为最流行的网站开发语言之一。 2. **集成版工具**: 集成版工具通常指的是将多个功能组合在一起的软件包,目的是为了简化安装和配置流程。在PHP开发环境中,这样的集成工具通常包括了PHP解释器、Web服务器以及数据库管理系统等关键组件。 3. **Wamp5**: Wamp5是这类集成版工具的一种,它基于Windows操作系统。Wamp5的名称来源于它包含的主要组件的首字母缩写,即Windows、Apache、MySQL和PHP。这种工具允许开发者快速搭建本地Web开发环境,无需分别安装和配置各个组件。 4. **RAR压缩文件**: RAR是一种常见的文件压缩格式,它以较小的体积存储数据,便于传输和存储。RAR文件通常需要特定的解压缩软件进行解压缩操作。 ### 描述知识点 描述中提到了工具的一个重要功能:“可以自动配置asp/php/html等的服务器, 不用辛辛苦苦的为怎么配置服务器而烦恼”。这里面涵盖了以下知识点: 1. **自动配置**: 自动配置功能意味着该工具能够简化服务器的搭建过程,用户不需要手动进行繁琐的配置步骤,如修改配置文件、启动服务等。这是集成版工具的一项重要功能,极大地降低了初学者的技术门槛。 2. **ASP/PHP/HTML**: 这三种技术是Web开发中常用的组件。ASP (Active Server Pages) 是微软开发的服务器端脚本环境;HTML (HyperText Markup Language) 是用于创建网页的标准标记语言;PHP是服务器端脚本语言。在Wamp5这类集成环境中,可以很容易地对这些技术进行测试和开发,因为它们已经预配置在一起。 3. **服务器**: 在Web开发中,服务器是一个运行Web应用程序并响应客户端请求的软件或硬件系统。常见的服务器软件包括Apache、Nginx等。集成版工具提供了一个本地服务器环境,使得开发者可以在本地测试他们的应用程序。 ### 标签知识点 标签中仅出现了“PHP”一个关键词,这意味着该工具专注于与PHP相关的开发环境配置。 ### 压缩包子文件的文件名称列表知识点 1. **wamp.exe**: 这是Wamp5集成版工具的可执行文件,用户通过运行这个文件,即可启动Wamp5环境,开始进行PHP等相关开发。 2. **使用说明文档.txt**: 通常这样的文本文件包含了软件的安装指南、功能介绍、常见问题解答以及操作教程等内容。它是用户了解和使用软件的重要辅助资料,可以帮助用户快速上手。 ### 总结 Wamp5作为一个PHP集成版工具,为PHP开发者提供了一个便捷的本地开发环境。它通过自动化配置减少了开发者在搭建环境时的麻烦,整合了Web开发的关键组件,从而使得开发者能够专注于代码的编写,而不是环境配置。此外,它还提供了详尽的使用文档,帮助用户理解和运用这一工具,有效地提高了开发效率。对于希望快速入门PHP或需要一个简单易用的本地开发环境的开发者来说,Wamp5是一个非常好的选择。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

sht20温湿度传感器使用什么将上拉电阻和滤波电容引出

<think>好的,我需要解决用户关于SHT20温湿度传感器的上拉电阻和滤波电容的引出方法问题。首先,我得回忆一下SHT20的基本特性和常见电路设计。SHT20是数字传感器,通常使用I2C接口,所以上拉电阻是必须的,用于确保数据线和时钟线的稳定。根据引用[2],SHT10是通过SCK和DATA线与单片机通信,而SHT30在引用[3]中使用I2C协议,需要上拉电阻。虽然用户问的是SHT20,但SHT系列通常设计类似,所以可以推断SHT20也需要类似的上拉电阻配置。通常I2C总线的上拉电阻值在4.7kΩ到10kΩ之间,但具体值可能取决于总线速度和电源电压。需要确认数据手册中的推荐值,但用户可能没有
recommend-type

Delphi仿速达财务软件导航条组件开发教程

Delphi作为一款历史悠久的集成开发环境(IDE),由Embarcadero Technologies公司开发,它使用Object Pascal语言,被广泛应用于Windows平台下的桌面应用程序开发。在Delphi中开发组件是一项核心技术,它允许开发者创建可复用的代码单元,提高开发效率和软件模块化水平。本文将详细介绍如何在Delphi环境下仿制速达财务软件中的导航条组件,这不仅涉及到组件的创建和使用,还会涉及界面设计和事件处理等技术点。 首先,需要了解Delphi组件的基本概念。在Delphi中,组件是一种特殊的对象,它们被放置在窗体(Form)上,可以响应用户操作并进行交互。组件可以是可视的,也可以是不可视的,可视组件在设计时就能在窗体上看到,如按钮、编辑框等;不可视组件则主要用于后台服务,如定时器、数据库连接等。组件的源码可以分为接口部分和实现部分,接口部分描述组件的属性和方法,实现部分包含方法的具体代码。 在开发仿速达财务软件的导航条组件时,我们需要关注以下几个方面的知识点: 1. 组件的继承体系 仿制组件首先需要确定继承体系。在Delphi中,大多数可视组件都继承自TControl或其子类,如TPanel、TButton等。导航条组件通常会继承自TPanel或者TWinControl,这取决于导航条是否需要支持子组件的放置。如果导航条只是单纯的一个显示区域,TPanel即可满足需求;如果导航条上有多个按钮或其他控件,可能需要继承自TWinControl以提供对子组件的支持。 2. 界面设计与绘制 组件的外观和交互是用户的第一印象。在Delphi中,可视组件的界面主要通过重写OnPaint事件来完成。Delphi提供了丰富的绘图工具,如Canvas对象,使用它可以绘制各种图形,如直线、矩形、椭圆等,并且可以对字体、颜色进行设置。对于导航条,可能需要绘制背景图案、分隔线条、选中状态的高亮等。 3. 事件处理 导航条组件需要响应用户的交互操作,例如鼠标点击事件。在Delphi中,可以通过重写组件的OnClick事件来响应用户的点击操作,进而实现导航条的导航功能。如果导航条上的项目较多,还可能需要考虑使用滚动条,让更多的导航项能够显示在窗体上。 4. 用户自定义属性和方法 为了使组件更加灵活和强大,开发者通常会为组件添加自定义的属性和方法。在导航条组件中,开发者可能会添加属性来定义按钮个数、按钮文本、按钮位置等;同时可能会添加方法来处理特定的事件,如自动调整按钮位置以适应不同的显示尺寸等。 5. 数据绑定和状态同步 在财务软件中,导航条往往需要与软件其他部分的状态进行同步。例如,用户当前所处的功能模块会影响导航条上相应项目的选中状态。这通常涉及到数据绑定技术,Delphi支持组件间的属性绑定,通过数据绑定可以轻松实现组件状态的同步。 6. 导航条组件的封装和发布 开发完毕后,组件需要被封装成独立的单元供其他项目使用。封装通常涉及将组件源码保存为pas文件,并在设计时能够在组件面板中找到。发布组件可能还需要编写相应的安装包和使用文档,方便其他开发者安装和使用。 7. Delphi IDE的支持 Delphi IDE提供了组件面板编辑器(Component Palette),允许开发者将开发好的组件添加到组件面板中。在组件面板编辑器中,可以自定义组件的图标和分类,使得组件在Delphi中的使用更为便捷。 通过以上的知识点梳理,可以看出Delphi仿速达导航条组件的开发涉及到的不仅仅是简单的代码编写,还涉及到用户界面设计、事件驱动编程、组件封装等多个方面。掌握这些知识点,对于一名Delphi开发者而言,是十分重要的。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为