vit block
时间: 2025-05-22 21:07:05 浏览: 24
### 关于Vision Transformer (ViT) Block 实现及其相关问题
#### ViT Block 的基本结构
Vision Transformer 中的核心组件是 Transformer Block,它主要由多头自注意力机制(Multi-head Self-Attention, MSA)和前馈网络(Feed Forward Network, FFN)组成。每个 Transformer Block 都会通过残差连接来增强模型的学习能力[^1]。
```python
class TransformerBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop_rate=0., attn_drop_rate=0.):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn = MultiHeadSelfAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop_rate, proj_drop=drop_rate)
self.drop_path = DropPath(drop_rate) if drop_rate > 0. else nn.Identity()
self.norm2 = nn.LayerNorm(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, drop=drop_rate)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
```
上述代码展示了如何实现一个标准的 Transformer Block,其中包含了 Layer Normalization 和 Dropout 层以提高模型稳定性。
#### 可能存在的问题及解决方案
##### 1. **有限的感受野**
基于窗口的自注意力机制可能会导致感受野受限的问题,尤其是在高分辨率输入的情况下。Swin Transformer 提出了移位窗口技术来缓解这一问题,通过引入空间混洗操作扩展局部特征的信息交互范围[^3]。
##### 2. **计算复杂度**
全图尺度上的自注意力计算量较大,因此 Swin Transformer 将图像划分为不重叠的小窗口,在每个窗口内部执行自注意力运算,从而显著降低计算开销。
##### 3. **跨阶段信息融合**
为了更好地捕捉全局上下文信息,Swin Transformer 设计了逐级下采样的策略,使得每一阶段都能获得不同层次的空间表示[^2]。
#### 示例:Swin Transformer中的Transformer Block调整
以下是针对 Swin Transformer 特定需求修改后的 Transformer Block:
```python
class SwinTransformerBlock(TransformerBlock):
def __init__(self, dim, input_resolution, num_heads, window_size, shift_size=0,
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm):
super(SwinTransformerBlock, self).__init__(dim, num_heads, mlp_ratio, qkv_bias, drop, attn_drop)
self.input_resolution = input_resolution
self.window_size = window_size
self.shift_size = shift_size
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
# Window partition and merge functions
self.attn_mask = None
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, f"Input feature has wrong size {L}, expected {H*W}"
shortcut = x
x = self.norm1(x)
# Partition windows
x_windows = window_partition(x.view(B, H, W, C), self.window_size).view(-1, self.window_size*self.window_size, C)
# Apply shifted attention mask during training phase only when necessary.
if self.shift_size > 0:
attn_mask = generate_attn_mask(self.input_resolution, self.window_size, self.shift_size, device=x.device)
else:
attn_mask = None
# Perform multi-head self-attention with optional masking
attn_windows = self.attn(x_windows, mask=attn_mask)[0].view(-1, self.window_size, self.window_size, C)
# Merge windows back into original shape
shifted_x = window_reverse(attn_windows, self.window_size, H, W).view(B, H * W, C)
# Reverse cyclic shift before residual connection
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
# Residual connection followed by normalization & feedforward network layers as usual
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
```
此版本增加了对窗口划分、移位以及反向移位的支持,适用于更复杂的视觉任务场景。
---
阅读全文
相关推荐


















