代码解读 idx = [[[self.ent2id[t[0]], self.ent2id[t[2]]] for t in batch] for batch in triples]
时间: 2023-11-30 12:28:59 浏览: 76
这段代码是将一个三元组列表转化为对应实体在ent2id字典中的索引,并存储在idx列表中。其中,batch表示一个批次的三元组列表,t表示一个三元组。循环语句的两层嵌套可以将每个实体在ent2id中的索引提取出来,并放在一个新的列表中。最终得到的idx是一个嵌套列表,每个子列表对应一个批次中的索引列表。
相关问题
import os os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" import json import re import hashlib import time import torch import numpy as np import pdfplumber from collections import defaultdict from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import spacy from sentence_transformers import SentenceTransformer from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # 初始化模型和工具 nlp = spacy.load("zh_core_web_sm") embedding_model = SentenceTransformer('all-MiniLM-L6-v2') class PDFProcessor: def __init__(self, pdf_path, output_dir="output"): self.pdf_path = pdf_path self.output_dir = output_dir self.document_id = os.path.splitext(os.path.basename(pdf_path))[0] os.makedirs(output_dir, exist_ok=True) # 初始化生成模型 model_name = "uer/gpt2-distil-chinese-cluecorpussmall" self.tokenizer = AutoTokenizer.from_pretrained(model_name) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token self.model = AutoModelForCausalLM.from_pretrained(model_name) self.summarizer = pipeline( "text-generation", model=self.model, tokenizer=self.tokenizer, device=0 if torch.cuda.is_available() else -1 ) # 文档结构存储 self.full_text = "" self.structure = [] self.heading_tree = self.HeadingTree() self.font_stats = defaultdict(int) class HeadingTree: """管理标题层级关系的树结构""" def __init__(self): self.root = {"level": 0, "children": [], "text": "ROOT"} self.current = self.root self.level_path = "0" def add_heading(self, level, text, page): while self.current["level"] >= level: self.current = self.current["parent"] new_node = { "level": level, "text": text, "page": page, "parent": self.current, "children": [], "local_index": len(self.current["children"]) + 1 } self.current["children"].append(new_node) self.current = new_node if self.current["parent"] == self.root: self.level_path = str(new_node["local_index"]) else: self.level_path = f"{self.current['parent']['path']}.{new_node['local_index']}" new_node["path"] = self.level_path return self.level_path def parse_pdf(self): """解析PDF文档""" with pdfplumber.open(self.pdf_path) as pdf: for page_num, page in enumerate(pdf.pages, 1): # 提取文本元素 words = page.extract_words(extra_attrs=["fontname", "size"]) self._analyze_font_features(words) # 提取结构化文本 text_blocks = page.extract_text_lines() for block in text_blocks: self._process_text_block(block, page_num) # 处理表格 tables = page.extract_tables() for table in tables: self._process_table(table, page_num) # 保存原始文本 self.full_text += page.extract_text() + "\n" # 保存原始文本 with open(os.path.join(self.output_dir, f"{self.document_id}_full.txt"), "w", encoding="utf-8") as f: f.write(self.full_text) def _analyze_font_features(self, words): """分析字体特征建立标题识别模型""" for word in words: font_key = (word["fontname"], round(word["size"], 1)) self.font_stats[font_key] += 1 def _process_text_block(self, block, page_num): """处理文本块并识别标题""" font_key = (block["fontname"], round(block["size"], 1)) font_freq = self.font_stats[font_key] # 标题识别逻辑 is_heading = ( block["size"] > 12 and font_freq < 100 and len(block["text"].strip()) < 50 ) if is_heading: # 自动推断标题层级 heading_level = min(int(block["size"] // 2), 6) self.structure.append({ "type": "heading", "level": heading_level, "text": block["text"].strip(), "page": page_num, "start_pos": len(self.full_text) }) self.heading_tree.add_heading(heading_level, block["text"].strip(), page_num) self.full_text += block["text"].strip() + "\n" else: self.structure.append({ "type": "paragraph", "text": block["text"].strip(), "page": page_num, "start_pos": len(self.full_text) }) self.full_text += block["text"].strip() + "\n" def _process_table(self, table, page_num): """处理表格并转换为Markdown格式""" markdown_table = [] for row in table: markdown_row = "| " + " | ".join(str(cell).strip() for cell in row) + " |" markdown_table.append(markdown_row) if len(markdown_table) == 1: # 添加表头分隔线 markdown_table.append("| " + " | ".join(["---"] * len(row)) + " |") table_text = "\n".join(markdown_table) self.structure.append({ "type": "table", "text": table_text, "page": page_num, "start_pos": len(self.full_text) }) self.full_text += table_text + "\n" def dynamic_chunking(self, max_chunk_length=1500, min_chunk_length=200): """动态语义分块算法""" chunks = [] current_chunk = "" current_start = 0 chunk_id = 0 # 基于结构初步分块 for i, item in enumerate(self.structure): # 标题作为新块的开始 if item["type"] == "heading" and current_chunk: chunks.append({ "start": current_start, "end": len(self.full_text[:current_start]) + len(current_chunk), "text": current_chunk, "page": item["page"], "id": f"{self.document_id}_chunk{chunk_id:03d}" }) chunk_id += 1 current_chunk = "" current_start = item["start_pos"] current_chunk += item["text"] + "\n" # 长度保护:防止块过长 if len(current_chunk) > max_chunk_length: chunks.append({ "start": current_start, "end": current_start + len(current_chunk), "text": current_chunk, "page": item["page"], "id": f"{self.document_id}_chunk{chunk_id:03d}" }) chunk_id += 1 current_chunk = "" current_start = self.structure[i+1]["start_pos"] if i+1 < len(self.structure) else current_start + len(current_chunk) # 添加最后一个块 if current_chunk: chunks.append({ "start": current_start, "end": current_start + len(current_chunk), "text": current_chunk, "page": self.structure[-1]["page"], "id": f"{self.document_id}_chunk{chunk_id:03d}" }) # 语义边界优化 refined_chunks = [] for chunk in chunks: sentences = [sent.text for sent in nlp(chunk["text"]).sents] if len(sentences) < 2: # 无需分割 refined_chunks.append(chunk) continue # 计算句子嵌入 sentence_embeddings = embedding_model.encode(sentences) # 寻找最佳分割点 split_points = [] for i in range(1, len(sentences)): sim = cosine_similarity( [sentence_embeddings[i-1]], [sentence_embeddings[i]] )[0][0] if sim < 0.65: # 语义相似度阈值 split_points.append(i) # 如果没有分割点或只有一个句子,保留原块 if not split_points: refined_chunks.append(chunk) continue # 创建新块 start_idx = 0 for split_idx in split_points: new_chunk_text = " ".join(sentences[start_idx:split_idx]) if len(new_chunk_text) > min_chunk_length: # 最小长度保护 refined_chunks.append({ "start": chunk["start"] + sum(len(s) for s in sentences[:start_idx]), "end": chunk["start"] + sum(len(s) for s in sentences[:split_idx]), "text": new_chunk_text, "page": chunk["page"], "id": f"{self.document_id}_chunk{chunk_id:03d}" }) chunk_id += 1 start_idx = split_idx # 添加最后一段 if start_idx < len(sentences): new_chunk_text = " ".join(sentences[start_idx:]) if len(new_chunk_text) > min_chunk_length: refined_chunks.append({ "start": chunk["start"] + sum(len(s) for s in sentences[:start_idx]), "end": chunk["start"] + len(chunk["text"]), "text": new_chunk_text, "page": chunk["page"], "id": f"{self.document_id}_chunk{chunk_id:03d}" }) chunk_id += 1 return refined_chunks def extract_metadata(self, chunk): """提取块的元数据""" metadata = { "hierarchy": "0.0", "keywords": [], "entities": [], "has_table": False, "has_formula": False } # 1. 提取层级信息 for item in reversed(self.structure): if item["start_pos"] <= chunk["start"] and item["type"] == "heading": metadata["hierarchy"] = self._find_heading_path(item) break # 2. 提取关键词 (TF-IDF) vectorizer = TfidfVectorizer(stop_words="english", max_features=10) try: tfidf_matrix = vectorizer.fit_transform([chunk["text"]]) feature_names = vectorizer.get_feature_names_out() tfidf_scores = tfidf_matrix.toarray()[0] top_indices = np.argsort(tfidf_scores)[-5:] # 取前5个关键词 metadata["keywords"] = [feature_names[i] for i in top_indices if tfidf_scores[i] > 0.1] except: metadata["keywords"] = [] # 3. 实体识别 doc = nlp(chunk["text"]) for ent in doc.ents: if ent.label_ in ["PERSON", "ORG", "GPE", "PRODUCT", "DATE"]: # 过滤实体类型 metadata["entities"].append({ "text": ent.text, "type": ent.label_, "start_pos": ent.start_char, "end_pos": ent.end_char }) # 4. 检测表格和公式 metadata["has_table"] = bool(re.search(r'\+[-]+\+', chunk["text"])) # 简单表格检测 metadata["has_formula"] = bool(re.search(r'\$(.*?)\$|\\[a-zA-Z]+{', chunk["text"])) # LaTeX或数学公式 return metadata def _find_heading_path(self, heading_item): """根据标题项查找完整层级路径""" for node in self.heading_tree.root["children"]: path = self._find_node_path(node, heading_item["text"]) if path: return path return "0.0" def _find_node_path(self, node, text): """递归查找标题节点路径""" if node["text"] == text: return node["path"] for child in node["children"]: path = self._find_node_path(child, text) if path: return path return None def generate_summary(self, text): """生成轻量级摘要""" prompt = f"请为以下文本生成一句简洁的摘要(20-30字),严格基于内容不要添加新信息:\n{text[:2000]}" try: summary = self.summarizer( prompt, max_new_tokens=50, temperature=0.3, do_sample=True, pad_token_id=self.tokenizer.pad_token_id, # 使用已设置的pad_token_id eos_token_id=self.tokenizer.eos_token_id # 显式设置eos_token )[0]['generated_text'] # 提取生成的摘要部分 return summary.replace(prompt, "").strip() except Exception as e: print(f"摘要生成失败: {str(e)}") # 失败时使用简单的前三句作为摘要 sents = [sent.text for sent in nlp(text).sents][:3] return " ".join(sents) def process_to_json(self, chunks): """处理为最终的JSON格式""" results = [] summary_cache = {} for chunk in chunks: # 生成摘要(缓存相同文本) text_hash = hashlib.md5(chunk["text"].encode()).hexdigest() if text_hash in summary_cache: summary = summary_cache[text_hash] else: summary = self.generate_summary(chunk["text"]) summary_cache[text_hash] = summary # 提取元数据 metadata = self.extract_metadata(chunk) # 构建最终JSON对象 result = { "chunk_id": chunk["id"], "text": chunk["text"], "summary": summary, "metadata": metadata } results.append(result) return results def process_document(self): """处理文档的完整流程""" print(f"开始处理文档: {self.docx_path}") total_start = time.time() try: # 记录各阶段耗时 parse_start = time.time() self.parse_docx() parse_time = time.time() - parse_start chunk_start = time.time() chunks = self.dynamic_chunking() chunk_time = time.time() - chunk_start json_start = time.time() json_data = self.process_to_json(chunks) json_time = time.time() - json_start # 保存结果 output_path = os.path.join(self.output_dir, f"{self.document_id}_chunks.json") with open(output_path, "w", encoding="utf-8") as f: json.dump(json_data, f, ensure_ascii=False, indent=2) total_time = time.time() - total_start print(f"\n处理完成! 结果已保存至: {output_path}") print("="*40) print(f"总耗时: {total_time:.2f}秒") print(f"文档解析: {parse_time:.2f}秒") print(f"语义分块: {chunk_time:.2f}秒") print(f"元数据处理: {json_time:.2f}秒") print("="*40) return json_data except Exception as e: print(f"处理过程中发生错误: {str(e)}") return None if __name__ == "__main__": processor = PDFProcessor( pdf_path="test1.pdf", output_dir="processed_pdfs" ) processor.process_document()以上代码报错如下,应该怎么解决? (venv) C:\Users\Semi-YuLJ\Desktop\learning>python C:\Users\Semi-YuLJ\Desktop\learning\chunk_pdf.py Traceback (most recent call last): File "C:\Users\Semi-YuLJ\Desktop\learning\chunk_pdf.py", line 419, in <module> processor.process_document() File "C:\Users\Semi-YuLJ\Desktop\learning\chunk_pdf.py", line 376, in process_document print(f"开始处理文档: {self.docx_path}") AttributeError: 'PDFProcessor' object has no attribute 'docx_path'
<think>我们正在处理一个AttributeError:'PDFProcessor' object has no attribute 'docx_path'
根据错误信息,问题出现在PDFProcessor类的process_document方法中,尝试访问一个名为docx_path的属性,但该属性不存在。
分析可能的原因:
1. 在PDFProcessor类中,可能没有定义docx_path属性。
2. 可能在初始化方法(如__init__)中忘记设置该属性。
3. 或者,在调用process_document方法之前,需要先设置docx_path属性。
从引用[1]中,我们看到有一个函数Document,它接受一个docx参数,如果docx为None,则使用_default_docx_path()返回的默认路径。
引用[2]中提到了PyMuPDF版本兼容性问题,但这里的问题似乎与属性缺失有关。
因此,修复思路:
1. 确保在PDFProcessor类中定义docx_path属性,并在初始化时设置。
2. 或者,在调用process_document方法时,确保已经设置了该属性。
假设PDFProcessor类的设计初衷是处理PDF文档,并且需要知道一个默认的docx模板路径。我们可以参考引用[1]中的_default_docx_path函数来获取默认路径。
修复步骤:
方案一:在初始化方法中设置默认的docx_path
- 在__init__方法中,我们可以设置一个默认的docx_path,使用类似引用[1]中的方法获取默认路径。
方案二:在需要时动态获取(但要注意避免多次重复计算)
- 在process_document方法中,如果发现docx_path不存在,则调用一个内部方法获取默认路径。
考虑到代码的健壮性,我们可以在初始化时设置默认路径,同时允许用户通过参数覆盖。
我们假设PDFProcessor类可能如下所示:
原始类可能缺少初始化步骤:
```python
class PDFProcessor:
def process_document(self):
# 使用self.docx_path
...
```
修复后的代码:
```python
import os
class PDFProcessor:
def __init__(self, docx_path=None):
if docx_path is None:
self.docx_path = self._default_docx_path()
else:
self.docx_path = docx_path
def _default_docx_path(self):
# 类似于引用[1]中的_default_docx_path函数
# 假设我们的模板在相同目录下的templates/default.docx
_thisdir = os.path.dirname(os.path.abspath(__file__))
return os.path.join(_thisdir, 'templates', 'default.docx')
def process_document(self):
# 现在可以使用self.docx_path
print(f"Processing document with template: {self.docx_path}")
# ... 其他处理逻辑
```
这样,当创建PDFProcessor实例时,如果没有提供docx_path,就会使用默认路径。
如果用户希望使用不同的模板,可以传入docx_path参数:
```python
processor = PDFProcessor(docx_path="/path/to/custom_template.docx")
```
注意:如果默认路径的模板文件不存在,后续操作可能会出错。因此,我们还需要确保模板文件存在,或者在代码中处理文件不存在的异常。
另外,引用[2]中提到PyMuPDF版本问题,如果我们的PDFProcessor内部使用了PyMuPDF,需要注意版本兼容性。但当前问题与版本无关,是属性缺失问题。
因此,修复的核心就是在初始化方法中设置docx_path属性。
如果问题仍然存在,请检查:
1. 是否在代码的其他地方修改了docx_path属性(例如删除了它)?
2. 是否在调用process_document之前,没有初始化PDFProcessor实例(比如直接调用了类方法,而没有实例化)?
根据上述分析,修复代码即可。
相关问题:
1. 如何确保默认模板文件存在?
2. 如何处理模板文件不存在的情况?
3. 除了默认路径,还有哪些设置模板路径的方式?
4. 在PDF处理中,如何使用这个模板路径?
5. 如何测试PDFProcessor类的不同模板路径设置?</think>### 修复PDFProcessor类中的AttributeError问题
问题分析:
`AttributeError: 'PDFProcessor' object has no attribute 'docx_path'` 错误表明在`process_document`方法中尝试访问未定义的`docx_path`属性。根据引用[1]中`Document()`函数的实现逻辑,需要正确处理默认文档模板路径。
#### 修复方案:
```python
import os
from docx import Document
class PDFProcessor:
def __init__(self, docx_template=None):
# 初始化时设置默认模板路径
self._thisdir = os.path.dirname(os.path.abspath(__file__))
self.docx_path = docx_template or self._get_default_docx_path()
def _get_default_docx_path(self):
"""返回默认模板路径(参考引用[1]实现)"""
return os.path.join(self._thisdir, 'templates', 'default.docx')
def process_document(self, pdf_path):
try:
# 使用初始化时设置的路径
doc = Document(self.docx_path) # 正确访问已定义的属性
# 添加PDF处理逻辑(参考引用[2])
# ... [您的处理代码] ...
except AttributeError as e:
print(f"处理错误: {e}")
# 处理兼容性问题(参考引用[2])
if "pageCount" in str(e):
return self._handle_pymupdf_compatibility(pdf_path)
def _handle_pymupdf_compatibility(self, pdf_path):
"""处理PyMuPDF版本兼容问题(参考引用[2])"""
import fitz # PyMuPDF
doc = fitz.open(pdf_path)
for pg in range(doc.page_count): # 使用page_count替代pageCount
# ... [处理每页] ...
return doc
```
#### 关键修复点:
1. **初始化方法添加路径设置**
在`__init__`中显式定义`docx_path`属性,使用三元表达式处理默认值:
```python
self.docx_path = docx_template or self._get_default_docx_path()
```
2. **封装默认路径获取逻辑**
独立`_get_default_docx_path()`方法实现引用[1]中的路径解析逻辑:
```python
return os.path.join(self._thisdir, 'templates', 'default.docx')
```
3. **兼容PyMuPDF版本差异**
针对引用[2]的版本兼容问题:
- 使用`page_count`替代已废弃的`pageCount`属性
- 封装异常处理逻辑到独立方法
4. **防御性编程**
- 使用`try-except`捕获属性访问异常
- 通过`hasattr()`预先检查属性存在性(可选增强):
```python
if not hasattr(self, 'docx_path'):
self.docx_path = self._get_default_docx_path()
```
#### 使用示例:
```python
# 使用默认模板
processor = PDFProcessor()
processor.process_document("file.pdf")
# 使用自定义模板
processor = PDFProcessor("/custom/template.docx")
processor.process_document("file.pdf")
```
#### 相关问题:
1. 如何在文档处理中动态切换不同模板?
2. 如何确保默认模板文件始终存在?
3. 除了PyMuPDF,还有哪些库可以处理PDF版本兼容问题?
4. 如何扩展此类以支持其他文档格式(如Word/Excel)?
5. 在多线程环境下如何保证路径访问的线程安全?
> 引用说明:
> 默认模板路径实现参考了`_default_docx_path()`的设计[^1],版本兼容处理参考了PyMuPDF的API变更记录[^2]。
我的需求人体位置有关,以下是目前使用的代码 import socket, struct, threading, time, logging, csv import numpy as np from collections import deque, defaultdict from scipy.signal import savgol_filter # --- 参数设置 --- HOST = '192.168.43.222' DATA_PORTS = [12345, 12346, 12347] ACK_PORTS = [12348, 12349, 12350] REF_INTERVAL = 1 / 10 # 重采样频率 WINDOW = 15 # Savitzky-Golay 需要奇数窗口 # --- 初始化缓冲和记录 --- buffers = { p: defaultdict(lambda: { 'queue': deque(maxlen=WINDOW), 'vels': deque(maxlen=WINDOW) }) for p in DATA_PORTS } buffer_locks = {p: threading.Lock() for p in DATA_PORTS} records = {k: [] for k in ('pos_raw', 'v1', 'v_12', 'v_123', 'v_sg', 'str', 'str2', 'str3', 'str_sg')} stop_event = threading.Event() logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # --- 时间戳交互线程 --- def handle_timestamp(port, ack_port): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.bind((HOST, ack_port)); sock.settimeout(1.0) while not stop_event.is_set(): try: data, addr = sock.recvfrom(1024) t1 = struct.unpack('d', data)[0] t2 = time.perf_counter(); t3 = t2 sock.sendto(struct.pack('ddd', t1, t2, t3), addr) except socket.timeout: continue except Exception as e: logging.error(f"TS({port}) error: {e}") sock.close() # --- 数据接收线程 --- def receive_data(port): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.bind((HOST, port)); sock.settimeout(1.0) while not stop_event.is_set(): try: data, _ = sock.recvfrom(8192) t_stamp, n_ent = struct.unpack('dB', data[:9]); offset = 9 with buffer_locks[port]: for _ in range(n_ent): eid = data[offset]; offset += 1 buf = buffers[port][eid]['queue'] raw = np.frombuffer(data[offset:offset+131*2], dtype=np.float16).astype(np.float32) offset += 131*2 buf.append((t_stamp, raw.copy())) except socket.timeout: continue except Exception as e: logging.error(f"Recv({port}) error: {e}") sock.close() # --- 主循环 --- def run_loop(): t0 = time.perf_counter(); frame = 0; last_t1 = None while not stop_event.is_set(): next_t = t0 + frame * REF_INTERVAL if next_t > time.perf_counter(): time.sleep(next_t - time.perf_counter()) t_res = time.perf_counter() snaps = { p: {eid: list(buff['queue']) for eid, buff in buffers[p].items() if len(buff['queue']) >= WINDOW} for p in DATA_PORTS } for p, eid_buf in snaps.items(): for eid, buf in eid_buf.items(): (t4, r4), (t3, r3), (t2, r2), (t1, r1) = buf[-4], buf[-3], buf[-2], buf[-1] if last_t1 == t1: continue last_t1 = t1 # 计算基本速度 dt_ex = t_res - t1 dt1 = t1 - t2; dt2 = t2 - t3; dt3 = t3 - t4 v1 = (r1[0:3] - r2[0:3]) / dt1 v_12 = (v1 + (r2[0:3] - r3[0:3]) / dt2) / 2 v_123 = (v1 + (r2[0:3] - r3[0:3]) / dt2 + (r3[0:3] - r4[0:3]) / dt3) / 3 # Savitzky-Golay 速度估计 v_sg = v_123.copy() if len(buf) >= WINDOW: # 取最近 SG_WINDOW 帧位置序列 positions = np.array([p_i[1][0:3] for p_i in buf[-WINDOW:]]) # 对每个轴求一阶导数 sg_vx = savgol_filter(positions[:,0], WINDOW, 2, deriv=1, delta=REF_INTERVAL) sg_vy = savgol_filter(positions[:,1], WINDOW, 2, deriv=1, delta=REF_INTERVAL) sg_vz = savgol_filter(positions[:,2], WINDOW, 2, deriv=1, delta=REF_INTERVAL) v_sg = np.array([sg_vx[-1], sg_vy[-1], sg_vz[-1]]) # 记录 records['pos_raw'].append((t1, *r1[0:3])) records['v1'].append((t1, *v1)) records['v_12'].append((t1, *v_12)) records['v_123'].append((t1, *v_123)) records['v_sg'].append((t1, *v_sg)) records['str'].append((t_res, *(r1[0:3] + v1 * dt_ex))) records['str2'].append((t_res, *(r1[0:3] + v_12 * dt_ex))) records['str3'].append((t_res, *(r1[0:3] + v_123 * dt_ex))) records['str_sg'].append((t_res, *(r1[0:3] + v_sg * dt_ex))) frame += 1 if __name__ == '__main__': # 启动线程 for p, ap in zip(DATA_PORTS, ACK_PORTS): threading.Thread(target=handle_timestamp, args=(p, ap), daemon=True).start() threading.Thread(target=receive_data, args=(p,), daemon=True).start() try: run_loop() except KeyboardInterrupt: stop_event.set() finally: # 保存为 CSV for nm, rows in records.items(): with open(f"{nm}.csv", "w", newline='') as f: w = csv.writer(f) for row in rows: w.writerow([f"{v:.6f}" for v in row])
<think>我们正在处理基于UDP传输的人体骨架位置数据,并需要计算位置和速度。根据用户之前的上下文,数据可能包含关节的三维坐标(位置)和四元数(旋转)。我们将使用Python实现以下步骤:1.通过UDP接收数据(假设数据已经过解析,得到各关节的位置信息)2.计算关节的速度(通过位置变化除以时间间隔)3.进行必要的数据平滑(如卡尔曼滤波)以处理噪声4.分析运动(例如计算速度大小、方向等)注意:由于UDP传输可能存在丢包,我们需要设计数据包处理机制(如序列号检查、插值等),但用户问题中未提及丢包处理,因此我们主要关注位置和速度计算。步骤:1.设置UDP服务器接收数据2.解析数据包,提取各关节的位置(假设数据包包含时间戳和每个关节的3D坐标)3.存储当前帧和上一帧的数据,用于计算速度4.计算速度:速度 =(当前位置-上一位置) /时间差5.可选:应用卡尔曼滤波平滑位置和速度数据假设数据格式:我们假设每个数据包包含一个时间戳和多个关节的位置(例如,一个包含17个关节点的人体骨架,每个关节点有x, y, z坐标)。代码结构:
-创建一个UDP套接字-循环接收数据-解析数据(假设数据为JSON格式,或二进制格式,这里我们以JSON为例)
-计算速度-输出或存储结果注意:速度是矢量,我们可能同时关心速度的大小(标量)和方向。此外,根据引用[2]中提到的顶点处理,我们可能还需要考虑3D图形的渲染,但用户问题主要关注位置和速度估计,因此我们先实现数据处理部分。下面是一个示例代码框架:</think>### 基于UDP的人体骨架位置数据处理与运动分析(Python实现)
#### 一、系统架构设计
```mermaid
graph TD
A[UDP数据接收] --> B[数据解析]
B --> C[位置计算]
B --> D[速度估计]
C --> E[运动分析]
D --> E
E --> F[可视化/输出]
```
#### 二、核心实现代码
##### 1. UDP数据接收与解析
```python
import socket
import json
import numpy as np
class SkeletonReceiver:
def __init__(self, port=12345):
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind(('0.0.0.0', port))
self.prev_data = None
self.prev_time = None
def receive_frame(self):
"""接收并解析UDP数据帧"""
data, addr = self.sock.recvfrom(65535)
frame = json.loads(data.decode())
# 提取关键数据
timestamp = frame['timestamp']
joints = {joint['name']: np.array(joint['position'])
for joint in frame['joints']}
return timestamp, joints
```
##### 2. 位置计算与速度估计
```python
def calculate_motion(self, current_time, current_joints):
"""计算关节位置变化和速度"""
if self.prev_data is None:
self.prev_time = current_time
self.prev_data = current_joints
return None, None
# 计算时间差(秒)
dt = current_time - self.prev_time
# 计算各关节位移和速度
displacements = {}
velocities = {}
for joint_name, curr_pos in current_joints.items():
prev_pos = self.prev_data[joint_name]
displacement = curr_pos - prev_pos
velocity = displacement / dt if dt > 0 else np.zeros(3)
displacements[joint_name] = displacement
velocities[joint_name] = velocity
# 更新历史数据
self.prev_time = current_time
self.prev_data = current_joints
return displacements, velocities
```
##### 3. 运动分析扩展
```python
def analyze_motion(self, displacements, velocities):
"""执行运动特征分析"""
analysis = {}
for joint, vel in velocities.items():
# 计算速度大小(标量)
speed = np.linalg.norm(vel)
# 运动方向分析
direction = "静止"
if speed > 0.1: # 速度阈值
max_idx = np.argmax(np.abs(vel))
direction = ['X+', 'X-', 'Y+', 'Y-', 'Z+', 'Z-'][2*max_idx + (0 if vel[max_idx]>0 else 1)]
analysis[joint] = {
'speed': speed,
'direction': direction,
'acceleration': np.linalg.norm(vel - self.prev_velocities.get(joint, vel)) / dt
}
self.prev_velocities = velocities
return analysis
```
#### 三、关键技术实现
1. **位置计算原理**
关节位置$P$在三维空间中的位移计算:
$$ \Delta P = P_{\text{current}} - P_{\text{previous}} $$
基于顶点处理原理进行坐标转换[^2]
2. **速度估计算法**
采用中心差分法计算瞬时速度:
$$ \vec{v} = \frac{\Delta \vec{p}}{\Delta t} $$
其中$\Delta t$为连续帧时间差
3. **数据平滑处理**
```python
from scipy.signal import savgol_filter
def smooth_trajectory(positions, window=5, polyorder=2):
"""应用Savitzky-Golay滤波器平滑轨迹"""
x_smooth = savgol_filter(positions[:,0], window, polyorder)
y_smooth = savgol_filter(positions[:,1], window, polyorder)
z_smooth = savgol_filter(positions[:,2], window, polyorder)
return np.vstack((x_smooth, y_smooth, z_smooth)).T
```
#### 四、性能优化策略
1. **实时性保障**:
- 使用多线程分离数据接收和处理
- 采用NumPy向量化运算加速计算
```python
# 向量化速度计算示例
current_matrix = np.array(list(current_joints.values()))
prev_matrix = np.array(list(self.prev_data.values()))
velocities = (current_matrix - prev_matrix) / dt
```
2. **数据处理管道优化**:
```mermaid
graph LR
A[UDP接收] --> B[原始数据队列]
B --> C{工作线程}
C --> D[位置计算]
C --> E[速度估计]
D --> F[结果队列]
E --> F
```
#### 五、应用场景扩展
1. **运动特征识别**:
```python
def detect_gesture(velocity_pattern):
"""基于速度模式识别手势"""
# 示例:挥手检测
hand_vel = velocity_pattern['right_hand']
if np.max(hand_vel[1]) > 1.0 and 0.5 < np.ptp(hand_vel[0]) < 2.0:
return "Waving"
```
2. **运动学分析**:
- 关节角度计算:$\theta = \cos^{-1}\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}\right)$
- 运动范围分析
#### 六、部署建议
1. **开发环境**:
- Python 3.8+ 配合NumPy/SciPy
- 网络调试工具:Wireshark
- 可视化:Matplotlib或PyGame
2. **生产环境优化**:
- 使用Cython加速核心计算
- 部署消息队列(RabbitMQ/Kafka)处理高吞吐量
- GPU加速(CUDA)处理大规模数据[^2]
---
阅读全文