从kegg下载了部分的代谢通路,已经知道自己的靶标基因,现在想绘制KEGG通路复合网络图,网络图中只想标出这些靶标基因和网络之间其他重复的有的基因
时间: 2025-01-26 16:07:15 浏览: 92
要从KEGG下载的代谢通路中绘制包含靶标基因和其他重复基因的KEGG通路复合网络图,可以按照以下步骤进行:
1. **获取KEGG通路信息**:
- 使用KEGG API或手动下载所需的KEGG通路文件(通常是KGML格式)。
- 可以使用Python的`requests`库或R的`KEGGREST`包来获取KEGG通路信息。
2. **解析KEGG通路文件**:
- 使用Python的`BeautifulSoup`库或R的`XML`包来解析KGML文件,提取基因和它们之间的关系。
3. **筛选靶标基因和重复基因**:
- 将提取的基因与已知的靶标基因进行匹配,筛选出靶标基因。
- 统计基因在通路中出现的次数,筛选出重复基因。
4. **绘制网络图**:
- 使用Python的`networkx`库或R的`igraph`包来构建网络图。
- 将靶标基因和重复基因作为节点,基因之间的关系作为边。
- 使用`matplotlib`或`ggplot2`等绘图库来可视化网络图。
以下是一个使用Python的示例代码:
```python
import requests
from bs4 import BeautifulSoup
import networkx as nx
import matplotlib.pyplot as plt
# 下载KEGG通路文件
def download_kegg_pathway(pathway_id):
url = f'http://rest.kegg.jp/get/{pathway_id}/kgml'
response = requests.get(url)
return response.text
# 解析KGML文件
def parse_kgml(kgml_content):
soup = BeautifulSoup(kgml_content, 'xml')
entries = soup.find_all('entry')
genes = {}
for entry in entries:
if entry['type'] == 'gene':
name = entry['name']
genes[name] = {'id': entry['id'], 'name': name}
relations = soup.find_all('relation')
edges = []
for relation in relations:
entry1 = relation.find('entry1').text
entry2 = relation.find('entry2').text
edges.append((entry1, entry2))
return genes, edges
# 筛选靶标基因和重复基因
def filter_genes(genes, target_genes):
filtered_genes = {gene_id: gene_info for gene_id, gene_info in genes.items() if gene_info['name'] in target_genes}
gene_counts = {gene_info['name']: 0 for gene_info in genes.values()}
for gene_info in genes.values():
gene_counts[gene_info['name']] += 1
duplicate_genes = {gene_id: gene_info for gene_id, gene_info in genes.items() if gene_counts[gene_info['name']] > 1}
return filtered_genes, duplicate_genes
# 绘制网络图
def draw_network(genes, edges, target_genes, duplicate_genes):
G = nx.Graph()
for gene_id, gene_info in genes.items():
if gene_info['name'] in target_genes or gene_info['name'] in duplicate_genes:
G.add_node(gene_info['name'])
for edge in edges:
node1 = genes[edge[0]]['name']
node2 = genes[edge[1]]['name']
if node1 in target_genes or node1 in duplicate_genes or node2 in target_genes or node2 in duplicate_genes:
G.add_edge(node1, node2)
plt.figure(figsize=(10, 8))
nx.draw(G, with_labels=True, node_color='lightblue', edge_color='gray', node_size=500)
plt.show()
# 示例使用
pathway_id = 'hsa04010' # 示例KEGG通路ID
kgml_content = download_kegg_pathway(pathway_id)
genes, edges = parse_kgml(kgml_content)
target_genes = ['EGFR', 'PIK3CA'] # 示例靶标基因
filtered_genes, duplicate_genes = filter_genes(genes, target_genes)
draw_network(genes, edges, target_genes, duplicate_genes)
```
阅读全文
相关推荐


















