package traffic.step1.mapreduce; import java.sql.Connection; import java.sql.DriverManager; import java.sql.SQLException; /**连接MySQL工具类*/ public class DBHelper { /********** Begin **********/ /********** End **********/ } 在右侧代码 DBHelper.java 文件中编写代码,实现通过 jdbc 连接 MySQL; 在右侧代码 TrafficMap.java 文件中编写代码,继承 Mapper 类,实现剔除不合规数据的 map 方法; 在右侧代码 TrafficReduce.java 文件中编写代码,继承 Reducer 类,实现剔除不合规数据的 reduce 方法; 在右侧代码 TrafficJob.java 文件中编写代码,实现 Hadoop 程序的主入口以及程序的相关配置; 测试说明

时间: 2025-05-21 16:42:08 浏览: 23
### 使用 JDBC 连接 MySQL 并编写 Hadoop MapReduce 程序 #### 1. 实现 JDBC 工具类 为了简化与 MySQL 数据库的交互操作,可以创建一个通用的 JDBC 工具类来管理数据库连接、查询和关闭资源等功能。 ```java import java.sql.Connection; import java.sql.DriverManager; import java.sql.PreparedStatement; import java.sql.ResultSet; public class DBUtil { private static final String URL = "jdbc:mysql://localhost:3306/your_database"; private static final String USER = "root"; private static final String PASSWORD = "password"; public static Connection getConnection() throws Exception { Class.forName("com.mysql.cj.jdbc.Driver"); return DriverManager.getConnection(URL, USER, PASSWORD); } public static void close(Connection conn, PreparedStatement ps, ResultSet rs) { try { if (rs != null) rs.close(); if (ps != null) ps.close(); if (conn != null) conn.close(); } catch (Exception e) { e.printStackTrace(); } } } ``` 此工具类提供了获取数据库连接的方法 `getConnection` 和用于释放资源的静态方法 `close`[^1]。 --- #### 2. 编写 Mapper 类(剔除不合规数据) Mapper 阶段的主要任务是从输入源中提取有效记录,并过滤掉不符合条件的数据。假设我们希望筛选出年龄大于等于 18 岁的有效用户数据: ```java import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class UserFilterMapper extends Mapper<LongWritable, Text, LongWritable, Text> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] fields = value.toString().split(","); if (fields.length >= 3 && isAdult(fields)) { context.write(new LongWritable(Integer.parseInt(fields[1])), new Text(fields[0])); // 输出<年龄, 用户ID> } } private boolean isAdult(String[] fields) { int age = Integer.parseInt(fields[1]); return age >= 18; // 只保留成年人数据 } } ``` 在此代码片段中,`isAdult` 方法被用来判断用户的年龄是否满足条件[^4]。 --- #### 3. 编写 Reducer 类(进一步剔除异常数据) Reducer 的职责是对来自 Mapper 的中间键值对进行聚合或二次过滤。这里我们将再次验证数据合法性并输出最终结果: ```java import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class UserFilterReducer extends Reducer<LongWritable, Text, LongWritable, Text> { @Override protected void reduce(LongWritable key, Iterable<Text> values, Context context) throws IOException, InterruptedException { for (Text userId : values) { if (!userId.toString().isEmpty()) { // 排除非法空字符串 context.write(key, userId); // 输出合法的<年龄, 用户ID> } } } } ``` 该部分逻辑确保了即使在 Reduce 步骤中也能够排除潜在的错误条目[^4]。 --- #### 4. 主入口配置类 最后一步是定义驱动程序以设置作业参数并将整个流程串联起来: ```java import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class UserFilterDriver { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "User Filter"); job.setJarByClass(UserFilterDriver.class); job.setMapperClass(UserFilterMapper.class); job.setCombinerClass(UserFilterReducer.class); job.setReducerClass(UserFilterReducer.class); job.setOutputKeyClass(LongWritable.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } ``` 这段代码设置了必要的 I/O 路径和其他属性以便于运行完整的 MapReduce 流程[^3]。 --- ### 总结 以上展示了如何构建一个基于 JDBC 的 MySQL 访问工具类以及配套的 Hadoop MapReduce 组件设计思路。这些模块共同作用可完成从原始数据采集到清洗再到存储的一系列复杂计算需求。
阅读全文

相关推荐

最新推荐

recommend-type

优秀的java应届生个人简历模板.pdf

【Java 应届生求职简历】是应届毕业生展示自己编程技能和项目经验的重要文档,它应当包含个人基本信息、教育背景、专业技能、项目经验和自我评价等关键内容。以下是对这份简历中涉及的Java相关知识点的详细说明: 1...
recommend-type

《大数据导论》MapReduce的应用.docx

【MapReduce概述】 MapReduce是一种分布式计算模型,由Google提出,用于处理和生成大量数据集。它将大型数据集分解为小块,然后在多台机器上并行处理,极大地提高了处理效率。Map阶段将输入数据拆分成键值对,然后...
recommend-type

Hadoop源代码分析(包org.apache.hadoop.mapreduce)

包org.apache.hadoop.mapreduce的Hadoop源代码分析
recommend-type

HIVE-SQL开发规范.docx

【秘密】Hive SQL 开发规范 Hive作为Hadoop生态系统中的重要组件,为企业提供了对大规模数据集的高效处理和分析能力。它允许用户通过类似于SQL的查询语言(HiveQL)来操作分布式存储的数据,简化了MapReduce编程...
recommend-type

使用Eclipse编译运行MapReduce程序.doc

【使用Eclipse编译运行MapReduce程序】 MapReduce是Google提出的一种编程模型,用于大规模数据集的并行计算。在Hadoop生态系统中,MapReduce被广泛应用于处理和生成大数据。Eclipse作为流行的Java集成开发环境,...
recommend-type

实现Struts2+IBatis+Spring集成的快速教程

### 知识点概览 #### 标题解析 - **Struts2**: Apache Struts2 是一个用于创建企业级Java Web应用的开源框架。它基于MVC(Model-View-Controller)设计模式,允许开发者将应用的业务逻辑、数据模型和用户界面视图进行分离。 - **iBatis**: iBatis 是一个基于 Java 的持久层框架,它提供了对象关系映射(ORM)的功能,简化了 Java 应用程序与数据库之间的交互。 - **Spring**: Spring 是一个开源的轻量级Java应用框架,提供了全面的编程和配置模型,用于现代基于Java的企业的开发。它提供了控制反转(IoC)和面向切面编程(AOP)的特性,用于简化企业应用开发。 #### 描述解析 描述中提到的“struts2+ibatis+spring集成的简单例子”,指的是将这三个流行的Java框架整合起来,形成一个统一的开发环境。开发者可以利用Struts2处理Web层的MVC设计模式,使用iBatis来简化数据库的CRUD(创建、读取、更新、删除)操作,同时通过Spring框架提供的依赖注入和事务管理等功能,将整个系统整合在一起。 #### 标签解析 - **Struts2**: 作为标签,意味着文档中会重点讲解关于Struts2框架的内容。 - **iBatis**: 作为标签,说明文档同样会包含关于iBatis框架的内容。 #### 文件名称列表解析 - **SSI**: 这个缩写可能代表“Server Side Include”,一种在Web服务器上运行的服务器端脚本语言。但鉴于描述中提到导入包太大,且没有具体文件列表,无法确切地解析SSI在此的具体含义。如果此处SSI代表实际的文件或者压缩包名称,则可能是一个缩写或别名,需要具体的上下文来确定。 ### 知识点详细说明 #### Struts2框架 Struts2的核心是一个Filter过滤器,称为`StrutsPrepareAndExecuteFilter`,它负责拦截用户请求并根据配置将请求分发到相应的Action类。Struts2框架的主要组件有: - **Action**: 在Struts2中,Action类是MVC模式中的C(控制器),负责接收用户的输入,执行业务逻辑,并将结果返回给用户界面。 - **Interceptor(拦截器)**: Struts2中的拦截器可以在Action执行前后添加额外的功能,比如表单验证、日志记录等。 - **ValueStack(值栈)**: Struts2使用值栈来存储Action和页面间传递的数据。 - **Result**: 结果是Action执行完成后返回的响应,可以是JSP页面、HTML片段、JSON数据等。 #### iBatis框架 iBatis允许开发者将SQL语句和Java类的映射关系存储在XML配置文件中,从而避免了复杂的SQL代码直接嵌入到Java代码中,使得代码的可读性和可维护性提高。iBatis的主要组件有: - **SQLMap配置文件**: 定义了数据库表与Java类之间的映射关系,以及具体的SQL语句。 - **SqlSessionFactory**: 负责创建和管理SqlSession对象。 - **SqlSession**: 在执行数据库操作时,SqlSession是一个与数据库交互的会话。它提供了操作数据库的方法,例如执行SQL语句、处理事务等。 #### Spring框架 Spring的核心理念是IoC(控制反转)和AOP(面向切面编程),它通过依赖注入(DI)来管理对象的生命周期和对象间的依赖关系。Spring框架的主要组件有: - **IoC容器**: 也称为依赖注入(DI),管理对象的创建和它们之间的依赖关系。 - **AOP**: 允许将横切关注点(如日志、安全等)与业务逻辑分离。 - **事务管理**: 提供了一致的事务管理接口,可以在多个事务管理器之间切换,支持声明式事务和编程式事务。 - **Spring MVC**: 是Spring提供的基于MVC设计模式的Web框架,与Struts2类似,但更灵活,且与Spring的其他组件集成得更紧密。 #### 集成Struts2, iBatis和Spring 集成这三种框架的目的是利用它们各自的优势,在同一个项目中形成互补,提高开发效率和系统的可维护性。这种集成通常涉及以下步骤: 1. **配置整合**:在`web.xml`中配置Struts2的`StrutsPrepareAndExecuteFilter`,以及Spring的`DispatcherServlet`。 2. **依赖注入配置**:在Spring的配置文件中声明Struts2和iBatis的组件,以及需要的其他bean,并通过依赖注入将它们整合。 3. **Action和SQL映射**:在Struts2中创建Action类,并在iBatis的SQLMap配置文件中定义对应的SQL语句,将Struts2的Action与iBatis的映射关联起来。 4. **事务管理**:利用Spring的事务管理功能来管理数据库操作的事务。 5. **安全和服务层**:通过Spring的AOP和IoC功能来实现业务逻辑的解耦合和事务的管理。 ### 结语 通过上述的整合,开发者可以有效地利用Struts2处理Web层的展示和用户交互,使用iBatis简化数据库操作,同时借助Spring强大的依赖注入和事务管理功能,创建一个结构良好、可维护性强的应用。这种集成方式在许多企业级Java Web应用中非常常见,是Java开发人员必须掌握的知识点。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%

<think>好的,用户让我介绍一下Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%的具体情况。我需要先回忆之前提供的回答中提到的相关案例,然后深入展开。 首先,用户可能已经知道稀疏图卷积的基本概念,但需要更详细的应用案例。他们可能对Waymo如何具体应用该技术感兴趣,比如技术细节、实现方式、提升的具体指标等。需要确保回答结构清晰,分点说明,同时保持技术准确性。 要考虑到用户可能的背景,可能是研究或工程领域的,需要技术细节,但避免过于复杂的数学公式,除非必要。之前回答中提到了应用案例,现在需要扩展这个部分。需要解释为什么稀疏图卷积在这里有效,比如处理LiDAR点云的稀疏性
recommend-type

Dwr实现无刷新分页功能的代码与数据库实例

### DWR简介 DWR(Direct Web Remoting)是一个用于允许Web页面中的JavaScript直接调用服务器端Java方法的开源库。它简化了Ajax应用的开发,并使得异步通信成为可能。DWR在幕后处理了所有的细节,包括将JavaScript函数调用转换为HTTP请求,以及将HTTP响应转换回JavaScript函数调用的参数。 ### 无刷新分页 无刷新分页是网页设计中的一种技术,它允许用户在不重新加载整个页面的情况下,通过Ajax与服务器进行交互,从而获取新的数据并显示。这通常用来优化用户体验,因为它加快了响应时间并减少了服务器负载。 ### 使用DWR实现无刷新分页的关键知识点 1. **Ajax通信机制:**Ajax(Asynchronous JavaScript and XML)是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。通过XMLHttpRequest对象,可以与服务器交换数据,并使用JavaScript来更新页面的局部内容。DWR利用Ajax技术来实现页面的无刷新分页。 2. **JSON数据格式:**DWR在进行Ajax调用时,通常会使用JSON(JavaScript Object Notation)作为数据交换格式。JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。 3. **Java后端实现:**Java代码需要编写相应的后端逻辑来处理分页请求。这通常包括查询数据库、计算分页结果以及返回分页数据。DWR允许Java方法被暴露给前端JavaScript,从而实现前后端的交互。 4. **数据库操作:**在Java后端逻辑中,处理分页的关键之一是数据库查询。这通常涉及到编写SQL查询语句,并利用数据库管理系统(如MySQL、Oracle等)提供的分页功能。例如,使用LIMIT和OFFSET语句可以实现数据库查询的分页。 5. **前端页面设计:**前端页面需要设计成能够响应用户分页操作的界面。例如,提供“下一页”、“上一页”按钮,或是分页条。这些元素在用户点击时会触发JavaScript函数,从而通过DWR调用Java后端方法,获取新的分页数据,并动态更新页面内容。 ### 数据库操作的关键知识点 1. **SQL查询语句:**在数据库操作中,需要编写能够支持分页的SQL查询语句。这通常涉及到对特定字段进行排序,并通过LIMIT和OFFSET来控制返回数据的范围。 2. **分页算法:**分页算法需要考虑当前页码、每页显示的记录数以及数据库中记录的总数。SQL语句中的OFFSET计算方式通常为(当前页码 - 1)* 每页记录数。 3. **数据库优化:**在分页查询时,尤其是当数据量较大时,需要考虑到查询效率问题。可以通过建立索引、优化SQL语句或使用存储过程等方式来提高数据库操作的性能。 ### DWR无刷新分页实现的代码要点 1. **DWR配置:**在实现DWR无刷新分页时,首先需要配置DWR,以暴露Java方法给前端JavaScript调用。 2. **JavaScript调用:**编写JavaScript代码,使用DWR提供的API发起Ajax调用。这些调用将触发后端Java方法,并接收返回的分页数据。 3. **数据展示:**在获取到新的分页数据后,需要将这些数据显示在前端页面的相应位置。这通常需要操作DOM元素,将新数据插入到页面中。 ### 结论 通过结合上述知识点,可以使用DWR技术实现一个无刷新分页的动态Web应用。DWR简化了Ajax通信过程,让开发者可以专注于业务逻辑的实现。通过熟练掌握Java后端处理、数据库查询和前端页面设计的相关技术,便能高效地完成无刷新分页的开发任务。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为