联邦学习聚合算法APPLE
时间: 2023-08-31 14:12:51 浏览: 280
联邦学习聚合算法APPLE(Adaptive Personalized Privacy-preserving LEarning)是一种用于联邦学习的聚合算法。它旨在提高模型的个性化性能,并保护用户数据的隐私。
APPLE算法通过在联邦学习中引入个性化聚合方法,允许每个参与方根据其本地数据的重要性来调整对模型更新的贡献。这样,参与方可以根据其数据的相关性和质量来影响模型的训练过程,从而提高整体模型的性能。
此外,APPLE算法还采用了隐私保护机制,确保用户数据的隐私不会泄露。它使用加密技术和差分隐私方法来保护参与方的数据隐私,并在模型聚合过程中采用了去标识化和聚合噪声注入等技术来进一步增强隐私保护能力。
总而言之,APPLE算法是一种综合考虑个性化性能和隐私保护的联邦学习聚合算法,旨在提高模型的性能同时保护用户数据的隐私。
阅读全文
相关推荐












