使用Pytorch实现高分遥感图像图像语义分割
时间: 2025-05-09 16:59:03 浏览: 25
### 使用PyTorch实现高分辨率遥感图像语义分割
#### 1. 数据准备
为了进行高分辨率遥感图像的语义分割,首先需要准备好高质量的数据集。这些数据通常由卫星或无人机拍摄而成,具有较高的空间分辨率和丰富的光谱信息。数据集中应包含标注好的像素级标签,用于监督学习。
对于遥感图像而言,常见的公开数据集有ISPRS Potsdam、Massachusetts Buildings Dataset等[^4]。在实际应用中,可能还需要对原始数据进行裁剪、缩放以及标准化预处理操作。
```python
import numpy as np
from PIL import Image
from torchvision.transforms import Compose, ToTensor, Normalize
def preprocess(image_path, label_path=None):
image = Image.open(image_path).convert('RGB')
if label_path is not None:
label = Image.open(label_path)
transform_image = Compose([
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transformed_image = transform_image(image)
if label_path is not None:
return transformed_image, np.array(label)
else:
return transformed_image
```
#### 2. U-Net模型构建
U-Net是一种经典的卷积神经网络架构,在医学影像分析领域取得了显著效果,并被广泛应用于其他类型的图像分割任务上。其结构特点是对称设计——编码器负责提取特征;解码器则通过逐步放大尺寸恢复细节并预测最终掩模。
下面是一个基于PyTorch框架定义的标准U-Net模型:
```python
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=False):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
factor = 2 if bilinear else 1
self.down4 = Down(512, 1024 // factor)
self.up1 = Up(1024, 512 // factor, bilinear)
self.up2 = Up(512, 256 // factor, bilinear)
self.up3 = Up(256, 128 // factor, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
```
#### 3. 训练流程
完成上述准备工作之后就可以进入正式训练阶段了。这里简单列举几个重要环节:设定损失函数(如交叉熵)、选择合适的优化算法(Adam较为常用),并通过多次迭代调整权重直至收敛为止。
```python
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = UNet(n_channels=3, n_classes=num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
loss_fn = nn.CrossEntropyLoss()
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for images, labels in dataloader:
images, labels = images.to(device), labels.long().to(device)
optimizer.zero_grad()
outputs = model(images)
loss = loss_fn(outputs, labels.squeeze(dim=1))
loss.backward()
optimizer.step()
running_loss += loss.item()
avg_loss = running_loss / len(dataloader)
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}")
```
---
####
阅读全文
相关推荐


















