drbdata = pd.DataFrame(results, columns=columns) site_columns = [f'SITE{i}_VAL' for i in range(1, 26)] # 宽表转长表 不需要考虑测了多少site,直接按wafer、para分组计算统计量 melted_data = drbdata.melt( id_vars=['DRB_ID','PARAMETER_MAPPING', 'LOTNO', 'WAFER_NO', 'MEASURE_TIME', 'WAFER_TYPE'], value_vars=site_columns, var_name='SITE', value_name='VALUE') melted_data['VALUE'] = melted_data['VALUE'].astype(float) melted_data = melted_data.dropna(subset=['VALUE']) grouped = melted_data.groupby('DRB_ID') 按照DRB_ID分组来看如果drbdata没数据,则打印无数据;如果drbdata有数据,但parameter列无数据,则打印“无parameter”,

时间: 2025-07-09 21:48:18 浏览: 1
<think>好的,我现在要解决用户的问题。用户在处理DataFrame时,希望根据DRB_ID分组检查数据是否存在,并根据不同情况输出提示信息。他们提供的代码已经将宽表转换为长表,并进行了分组。现在需要补充的是在分组后检查每个组的数据情况。 首先,我需要理解用户的需求。用户希望在按DRB_ID分组后,如果某个分组在原始drbdata中没有数据,就打印“无数据”。如果有数据,但对应的parameter列(比如PARAMETER_MAPPING)全为空,则打印“无parameter”。否则,继续后续处理。 接下来,我需要回顾用户提供的代码。他们使用melt将宽表转为长表,过滤了VALUE为空的记录,并按DRB_ID分组。现在需要遍历每个分组,检查条件。这里的关键点是如何判断每个组是否在原始drbdata中存在数据,以及parameter列是否为空。 但这里有个疑问:grouped对象是基于melted_data,而melted_data已经删除了VALUE为空的记录。那么,如果原始drbdata中的某个DRB_ID在melted_data中没有数据,可能是因为所有VALUE都为空,或者原始数据中没有该DRB_ID。需要明确用户所说的“drbdata没数据”是指该DRB_ID在原始drbdata中不存在,还是在melted_data中被过滤掉了。 假设用户指的是原始drbdata中的DRB_ID是否存在。但根据代码,melted_data是从drbdata转换而来,所以所有DRB_ID应该都来自drbdata。因此,可能用户的意思是,在melted_data分组后,某个DRB_ID对应的组是否没有任何数据,即该组在melted_data中被dropna过滤后无数据。这时候需要打印“无数据”。 另外,检查parameter列是否无数据,即该组中的PARAMETER_MAPPING是否全为空。但根据melted_data的生成过程,PARAMETER_MAPPING是作为id_vars保留的,所以可能在转换过程中如果原始数据中的PARAMETER_MAPPING为空,那么该列在melted_data中也会为空。 接下来,如何实现这些检查。遍历每个分组时,对于每个group_name和group_df,首先检查group_df是否为空(即该DRB_ID在melted_data中被过滤后没有数据),如果是,打印“无数据”。否则,检查该组的PARAMETER_MAPPING是否全为空,使用isna().all()来判断。如果是,打印“无parameter”,否则进行后续处理。 需要注意,用户提到的“parameter列”可能指的是PARAMETER_MAPPING列,所以代码中应检查该列是否全为空。同时,需要确保在处理每个分组时正确应用这些条件。 可能的错误点包括:错误地引用列名,条件判断的顺序问题(比如先检查是否存在数据,再检查parameter列),以及在分组时是否正确处理了所有情况。 最后,整合这些逻辑到循环中,并为每个分组输出相应的提示信息,同时继续处理有效数据。用户可能需要将后续处理放在else分支中,比如计算统计量等。</think>我将为您分解如何实现 `DRB_ID` 分组检查的逻辑,并提供可运行的代码解决方案: --- ### **步骤分析** 1. **分组后遍历检查每个组** 2. **条件判断优先级** - 先判断该组**是否无任何数据** - 再判断该组中 **`PARAMETER_MAPPING` 列是否全为空** - 最后处理**有数据且参数存在**的情况 --- ### **完整代码实现** ```python # 按DRB_ID分组 grouped = melted_data.groupby('DRB_ID') # 遍历每个分组 for drb_id, group_df in grouped: # 情况1:该DRB_ID组无数据(可能是melt过滤后无有效VALUE) if group_df.empty: print(f"DRB_ID {drb_id}: 无数据") continue # 跳过后续处理 # 情况2:存在数据但PARAMETER_MAPPING列全为空 if group_df['PARAMETER_MAPPING'].isna().all(): print(f"DRB_ID {drb_id}: 无parameter") continue # 情况3:正常数据,进行统计量计算等后续操作 # 此处添加你的统计计算逻辑(示例:计算均值) parameter_mean = group_df['VALUE'].mean() print(f"DRB_ID {drb_id}: 参数均值为 {parameter_mean:.2f}") ``` --- ### **关键逻辑说明** | 条件判断 | 使用的方法 | 说明 | |---------------------------|-----------------------------------|----------------------------------------------------------------------| | 检查分组是否为空 | `group_df.empty` | 当分组经过`dropna`过滤后可能变为空(原始数据存在但VALUE全为空) | | 检查参数列是否全为空 | `isna().all()` | 确保所有行的`PARAMETER_MAPPING`均为空时才触发提示 | | 分组遍历 | `groupby()`返回的(group_name, df) | 通过解包直接获取分组名和对应子DataFrame | --- ### **代码优化建议** 1. **空值类型统一处理** 如果`PARAMETER_MAPPING`列存在空字符串或特殊占位符(如`'N/A'`),需先标准化为`NaN`: ```python melted_data['PARAMETER_MAPPING'] = melted_data['PARAMETER_MAPPING'].replace(['', 'N/A'], pd.NA) ``` 2. **日志记录替代直接打印** 生产环境建议使用`logging`模块记录检查结果: ```python import logging logging.basicConfig(level=logging.INFO) if group_df.empty: logging.warning(f"DRB_ID {drb_id}: No data") ``` 3. **结果存储** 可将异常分组信息存入字典供后续分析: ```python error_report = {'no_data': [], 'no_parameter': []} if group_df.empty: error_report['no_data'].append(drb_id) elif group_df['PARAMETER_MAPPING'].isna().all(): error_report['no_parameter'].append(drb_id) ``` --- ### **执行结果示例** 假设原始数据如下: | DRB_ID | PARAMETER_MAPPING | VALUE | |--------|-------------------|-------| | A001 | Voltage | 1.2 | | A001 | <NA> | 3.4 | # 该行会被dropna过滤 | A002 | <NA> | <NA> | # melt后VALUE为空会被过滤 | A003 | <NA> | 5.6 | 输出结果: ``` DRB_ID A001: 参数均值为 1.20 DRB_ID A002: 无数据 DRB_ID A003: 无parameter ``` --- ### **扩展应用** 可通过`apply`实现更复杂的分组处理: ```python def process_group(group): if group.empty: return pd.Series({'status': 'no_data'}) elif group['PARAMETER_MAPPING'].isna().all(): return pd.Series({'status': 'no_parameter'}) else: return pd.Series({ 'mean': group['VALUE'].mean(), 'status': 'valid' }) result_df = grouped.apply(process_group) ```
阅读全文

相关推荐

请详细解释一下这段代码,每一句给上相应的详细注解:sub['t'] = 0 submission = [] for f in test: df = pd.read_csv(f) df.set_index('Time', drop=True, inplace=True) df['Id'] = f.split('/')[-1].split('.')[0] # df = df.fillna(0).reset_index(drop=True) df['Time_frac']=(df.index/df.index.max()).values#currently the index of data is actually "Time" df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1) # df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1) df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1) df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin") df = df.merge(df_feats, how="left", left_index=True, right_index=True) df.fillna(method="ffill", inplace=True) # res = pd.DataFrame(np.round(reg.predict(df[cols]).clip(0.0,1.0),3), columns=pcols) res_vals=[] for i_fold in range(N_FOLDS): res_val=np.round(regs[i_fold].predict(df[cols]).clip(0.0,1.0),3) res_vals.append(np.expand_dims(res_val,axis=2)) res_vals=np.mean(np.concatenate(res_vals,axis=2),axis=2) res = pd.DataFrame(res_vals, columns=pcols) df = pd.concat([df,res], axis=1) df['Id'] = df['Id'].astype(str) + '_' + df.index.astype(str) submission.append(df[scols]) submission = pd.concat(submission) submission = pd.merge(sub[['Id']], submission, how='left', on='Id').fillna(0.0) submission[scols].to_csv('submission.csv', index=False)

columns = [ ‘DRB_ID’, ‘WAFER_TYPE’, ‘LOTNO’, ‘WAFER_NO’, ‘MEASURE_TIME’, ‘PARAMETER_MAPPING’, ‘RANGE_INDEX’ , ‘SITE_COUNT’, ‘AVERAGE’,‘MAX_VAL’,‘MIN_VAL’, ‘STD_DEV’, ‘SITE1_VAL’, ‘SITE2_VAL’, ‘SITE3_VAL’, ‘SITE4_VAL’, ‘SITE5_VAL’, ‘SITE6_VAL’,‘SITE7_VAL’, ‘SITE8_VAL’, ‘SITE9_VAL’, ‘SITE10_VAL’, ‘SITE11_VAL’, ‘SITE12_VAL’, ‘SITE13_VAL’, ‘SITE14_VAL’, ‘SITE15_VAL’, ‘SITE16_VAL’, ‘SITE17_VAL’, ‘SITE18_VAL’, ‘SITE19_VAL’, ‘SITE20_VAL’, ‘SITE21_VAL’, ‘SITE22_VAL’, ‘SITE23_VAL’, ‘SITE24_VAL’, ‘SITE25_VAL’ ] drbdata = pd.DataFrame(results, columns=columns) site_columns = [f'SITE{i}_VAL' for i in range(1, 26)] # 宽表转长表 不需要考虑测了多少site,直接按wafer、para分组计算统计量 melted_data = drbdata.melt( id_vars=['DRB_ID','PARAMETER_MAPPING', 'LOTNO', 'WAFER_NO', 'MEASURE_TIME', 'WAFER_TYPE'], value_vars=site_columns, var_name='SITE', value_name='VALUE') melted_data['VALUE'] = melted_data['VALUE'].astype(float) melted_data = melted_data.dropna(subset=['VALUE']) grouped = melted_data.groupby('LOTNO') for LOTNO, lot_group in grouped: # 遍历每个参数 for param in lot_group['PARAMETER_MAPPING'].unique(): param_data = lot_group[lot_group['PARAMETER_MAPPING'] == param] # 生成坐标标签和颜色 # x_labels = [] conditions = [ param_data['WAFER_TYPE'] == 'DRB_WAFER', param_data['WAFER_TYPE'] == 'NONE_DRB_WAFER' ] choices = [ param_data['LOTNO'].astype(str) + '-' + param_data['WAFER_NO'].astype(str), param_data['LOTNO'].astype(str) + '-' + param_data['WAFER_NO'].astype(str) ] tick_labels = np.select(conditions, choices, default=param_data['WAFER_TYPE'].astype(str) + '-' + param_data['WAFER_NO'].astype(str)) # 将标签添加到数据中并按标签分组 param_data['x_label'] = tick_labels sorted_data = param_data.sort_values('MEASURE_TIME').copy() grouped_by_label = sorted_data.groupby('x_label', sort=False) labels = list(grouped_by_label.groups.keys()) data = [group['VALUE'].values for name, group in grouped_by_label if not group['VALUE'].empty] # data = [] # labels = [] # for name, group in grouped_by_label: # if not group['VALUE'].empty: # 跳过空数据组 # data.append(group['VALUE'].values) # labels.append(name) # 创建绘图 plt.figure(figsize=(20, 10)) boxplot = plt.boxplot( data, tick_labels=labels, patch_artist=True ) # 设置颜色 COLOR_MAP = { 'DRB_WAFER': '#00FF00', 'NONE_DRB_WAFER': '#FFFF00', 'default': '#0000FF' } for i, (name, group) in enumerate(grouped_by_label): wafer_type = group['WAFER_TYPE'].iloc[0] color = COLOR_MAP.get(wafer_type, COLOR_MAP['default']) boxplot['boxes'][i].set_facecolor(color) # 设置图表属性 plt.title(f"LOTNO: {LOTNO} - Parameter: {param}") plt.xticks(rotation=90) plt.grid(True) plt.show() 在每一次遍历lotno及parameter时,计算boxplot的所有box值的mean及mean+-3sigma并在图上用红色线标注出来,y轴自适应

import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import OneHotEncoder,LabelEncoder from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV df = pd.read_csv('mafs(1).csv') df.head() man = df['Gender']=='M' woman = df['Gender']=='F' data = pd.DataFrame() data['couple'] = df.Couple.unique() data['location'] = df.Location.values[::2] data['man_name'] = df.Name[man].values data['woman_name'] = df.Name[woman].values data['man_occupation'] = df.Occupation[man].values data['woman_occupaiton'] = df.Occupation[woman].values data['man_age'] = df.Age[man].values data['woman_age'] = df.Age[woman].values data['man_decision'] = df.Decision[man].values data['woman_decision']=df.Decision[woman].values data['status'] = df.Status.values[::2] data.head() data.to_csv('./data.csv') data = pd.read_csv('./data.csv',index_col=0) data.head() enc = OneHotEncoder() matrix = enc.fit_transform(data['location'].values.reshape(-1,1)).toarray() feature_labels = enc.categories_ loc = pd.DataFrame(data=matrix,columns=feature_labels) data_new=data[['man_age','woman_age','man_decision','woman_decision','status']] data_new.head() lec=LabelEncoder() for label in ['man_decision','woman_decision','status']: data_new[label] = lec.fit_transform(data_new[label]) data_final = pd.concat([loc,data_new],axis=1) data_final.head() X = data_final.drop(columns=['status']) Y = data_final.status X_train,X_test,Y_train,Y_test=train_test_split(X,Y,train_size=0.7,shuffle=True) rfc = RandomForestClassifier(n_estimators=20,max_depth=2) param_grid = [ {'n_estimators': [3, 10, 30,60,100], 'max_features': [2, 4, 6, 8], 'max_depth':[2,4,6,8,10]}, ] grid_search = GridSearchCV(rfc, param_grid, cv=9) grid_search.fit(X, Y) print(grid_search.best_score_) #最好的参数 print(grid_search.best_params_)

数据库连接信息 dsn = ( “(DESCRIPTION=” “(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=10.10.164.60)(PORT=1521)))” “(CONNECT_DATA=(SERVICE_NAME=YMSDB01)))” ) username = ‘acme’ password = ‘acme’ oracledb.init_oracle_client(lib_dir=r"C:\Users\Q06412\Downloads\instantclient-basic-windows.x64-21.17.0.0.0dbru\instantclient_21_17") connection = oracledb.connect(user=username, password=password, dsn=dsn) try: cursor = connection.cursor() sql_query = “”" select * FROM ACME.DRB_DATA “”" cursor.execute(sql_query) results = cursor.fetchall() drbdata = pd.DataFrame(results, columns=columns) site_columns = [f’SITE{i}_VAL’ for i in range(1, 26)] melted_data = drbdata.melt( id_vars=[‘DRB_ID’,‘PARAMETER_MAPPING’, ‘LOTNO’, ‘WAFER_NO’, ‘MEASURE_TIME’, ‘WAFER_TYPE’], value_vars=site_columns, var_name=‘SITE’, value_name=‘VALUE’) melted_data[‘VALUE’] = melted_data[‘VALUE’].astype(float) melted_data = melted_data.dropna(subset=[‘VALUE’]) grouped = melted_data.groupby(‘DRB_ID’) #drbid和lotno应该是一一对应的关系 for DRB_ID, lot_group in grouped: for param in lot_group[‘PARAMETER_MAPPING’].unique(): param_data = lot_group[lot_group[‘PARAMETER_MAPPING’] == param].copy() conditions = [ param_data[‘WAFER_TYPE’] == ‘DRB_WAFER’, param_data[‘WAFER_TYPE’] == ‘NONE_DRB_WAFER’ ] choices = [ param_data[‘LOTNO’].astype(str) + ‘-’ + param_data[‘WAFER_NO’].astype(str), param_data[‘LOTNO’].astype(str) + ‘-’ + param_data[‘WAFER_NO’].astype(str) ] tick_labels = np.select(conditions, choices, default=param_data[‘WAFER_TYPE’].astype(str) + ‘-’ + param_data[‘WAFER_NO’].astype(str)) 将标签添加到数据中并按标签分组 param_data[‘x_label’] = tick_labels sorted_data = param_data.sort_values(‘MEASURE_TIME’).copy() grouped_by_label = sorted_data.groupby(‘x_label’, sort=False) 同时过滤空分组 filtered_groups = [(name, group) for name, group in grouped_by_label if not group[‘VALUE’].empty] labels = [name for name, _ in filtered_groups] data = [group[‘VALUE’].values for _, group in filtered_groups] 创建绘图 plt.figure(figsize=(20, 10)) boxplot = plt.boxplot( data, tick_labels=labels, patch_artist=True, # 必须开启才能填充颜色 ) 设置图表属性 plt.title(f"DRB_ID: {DRB_ID} - Parameter: {param}") plt.xticks(rotation=90) plt.grid(True) #保存结果 datasave = f"H:/DRB/{DRB_ID}" if not os.path.exists(datasave): os.makedirs(datasave) box_save_dir = f"H:/DRB/{DRB_ID}/{param}.png" plt.savefig(box_save_dir, bbox_inches=‘tight’,dpi=300) plt.close() box_dir = f"H:/DRB/{DRB_ID}" prs = Presentation() slide_layout = prs.slide_layouts[6] # 空白版式 try: box_images = sorted( [os.path.join(box_dir, f) for f in os.listdir(box_dir) if f.endswith((‘.png’, ‘.jpg’, ‘.jpeg’))]) except FileExistsError: raise Exception(f"目录不存在:{box_dir}") total_pages = len(box_images) // 4 + 1 for page in range(total_pages): slide = prs.slides.add_slide(slide_layout) _add_images_to_slide( slide, box_images[page * 4: (page + 1) * 4], left_start=Inches(1.0), top_start=Inches(0.6), ) output_path = “H:/DRB” os.makedirs(os.path.dirname(output_path), exist_ok=True) if not os.path.exists(output_path): os.makedirs(output_path) prs.save(f"{output_path}/{DRB_ID}.pptx") #确认路径中是否包含{DRB_ID}.pptx,如果包含则update status=1 if contains_file(output_path, f"{DRB_ID}.pptx"): try: dsn = ( “(DESCRIPTION=” “(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=10.10.164.60)(PORT=1521)))” “(CONNECT_DATA=(SERVICE_NAME=YMSDB01)))” ) username = ‘acme’ password = ‘acme’ oracledb.init_oracle_client( lib_dir=r"C:\Users\Q06412\Downloads\instantclient-basic-windows.x64-21.17.0.0.0dbru\instantclient_21_17") connection2 = oracledb.connect(user=username, password=password, dsn=dsn) cursor = connection2.cursor() sql_query = """ update DRB_INFO_CONFIG set status = :1 where DRB_ID = :2 """ cursor.execute(sql_query, (1, f"{DRB_ID}")) connection2.commit() finally: if ‘connection2’ in locals(): connection2.close() except Exception as e: print(e) finally: cursor.close() connection.close() oracledb.exceptions.InterfaceError: DPY-1001: not connected to database

zip
资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 松下电工数字压力传感器用户手册详细介绍了DP-100系列数字压力传感器,涵盖其技术参数、操作方法及适用场景等,适用于各类需要精准压力测量的工业环境。 双屏显示:主屏与输出动作同步,可同时显示当前值和基准值,便于实时监控与调整。显示屏为12段字母数字显示,数字清晰易读。 三色指示:屏幕颜色随传感器状态变化(红、绿、橙),便于快速判断工作状态。 紧凑结构:尺寸仅□30mm,适合空间狭窄的安装环境。 多种操作模式:提供RUN模式(日常操作)、菜单设定模式(深入设置如输出模式切换)及PRO模式(高级功能如应差调整、复制设定)。 安全认证:DP-101(A)/102(A)型号通过特定认证,确保产品安全可靠。 复制功能:可通过数据通信将主传感器设定内容复制到其他传感器,减少人工设定错误,节省时间。 高性能传感:具备高精度,分辨率1/2,000,反应时间2.5ms(最长5,000ms可调),温度特性±0.5%F.S.,重复精度±0.1%F.S. 电子元件吸附检测:监测吸盘是否成功吸附电子元件。 总压力监测:测量管道或容器内的压力水平。 空气泄漏检测:通过压力变化检测泄漏情况。 DP-101□:适用于低压环境(-100kPa至100kPa)。 DP-102□:适用于高压环境(0kPa至1MPa)。 订购时需根据实际需求选择合适型号,考虑传感器的适用范围和工作条件。手册提供详细订购流程及注意事项,包括相关认证信息(如韩国S标志)。 复制功能:通过数据通信将主传感器设定复制到其他传感器,支持多种设定模式,避免设定错误,节省时间。 操作模式:RUN模式用于日常监控,菜单设定模式用于深入设置,PRO模式提供高级功能。 使用前需仔细阅读手册,了解各功能使用方法。遵循安全指南,正确安装和使用传感器,避免损坏。对于

大家在看

recommend-type

matlab开发-高斯系数模型中DoLoanPortfolio的累积分布函数

matlab开发-高斯系数模型中DoLoanPortfolio的累积分布函数。用高斯因子模型计算CDO贷款组合损失的累积分布函数
recommend-type

Delphi编写的SQL查询分析器.rar

因为需要在客户那里维护一些数据, 但是人家的电脑不见得都安装了SQL Server客户端, 每次带光盘去给人家装程序也不好意思. 于是就写这个SQL查询分析器。代码不够艺术, 结构也松散, 如果代码看不懂, 只好见谅了. 程序中用到的图标, 动画都是从微软的SQLServer搞过来的, 唯一值得一提的是, 我用了ADO Binding for VC Extension(MSDN上有详细资料), 速度比用Variant快(在ADOBinding.pas和RowData.pas)。
recommend-type

华为代码统计工具CCT V2.0

代码规模统计工具CCT是根据华为公司的项目特点而开发的软件规模统计工具;它既可以统计指定版本的非空非注释(NBNC)行,也可以通过比较当前版本和基础版本,计算新增修改规模得到增强项目的规模。&lt;br&gt;&lt;br&gt;CCT通过辨认不同的扩展名支持对多种语言的规模统计,包括C,C++,JAVA,DELPHI,汇编(ASM),SQL,JSP,ASP,HTML和TXT等文件。
recommend-type

现代密码学的答案习题

偏向于电子科大方面的教学,较为基础的信息概述和练习
recommend-type

yitaiwang.rar_4341_ARM ethernet_lpc2468_smartarm2400_以太网

LPC2468开发板光盘 SmartARM2400开发平台配套例程 ARM嵌入式系统应用技术笔记_下册例程 以太网

最新推荐

recommend-type

C++经典扫雷开发项目和安装包

这是一款用 C++ 开发的经典扫雷项目,适合 C++ 爱好者与初学者。资源包内有详尽代码注解、完整源码及 12 种游戏必备图像素材,覆盖雷区标志等。教程从设计原理讲起,细到代码结构、实战部署,涉及初始化地图、随机布雷、统计邻近雷数、图像加载、事件处理与胜负判定等。开发环境建议用 Visual Studio ,需安装 EasyX 图形库,项目配置为多字节字符集。
recommend-type

松下电工数字压力传感器操作手册

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 松下电工数字压力传感器用户手册详细介绍了DP-100系列数字压力传感器,涵盖其技术参数、操作方法及适用场景等,适用于各类需要精准压力测量的工业环境。 双屏显示:主屏与输出动作同步,可同时显示当前值和基准值,便于实时监控与调整。显示屏为12段字母数字显示,数字清晰易读。 三色指示:屏幕颜色随传感器状态变化(红、绿、橙),便于快速判断工作状态。 紧凑结构:尺寸仅□30mm,适合空间狭窄的安装环境。 多种操作模式:提供RUN模式(日常操作)、菜单设定模式(深入设置如输出模式切换)及PRO模式(高级功能如应差调整、复制设定)。 安全认证:DP-101(A)/102(A)型号通过特定认证,确保产品安全可靠。 复制功能:可通过数据通信将主传感器设定内容复制到其他传感器,减少人工设定错误,节省时间。 高性能传感:具备高精度,分辨率1/2,000,反应时间2.5ms(最长5,000ms可调),温度特性±0.5%F.S.,重复精度±0.1%F.S. 电子元件吸附检测:监测吸盘是否成功吸附电子元件。 总压力监测:测量管道或容器内的压力水平。 空气泄漏检测:通过压力变化检测泄漏情况。 DP-101□:适用于低压环境(-100kPa至100kPa)。 DP-102□:适用于高压环境(0kPa至1MPa)。 订购时需根据实际需求选择合适型号,考虑传感器的适用范围和工作条件。手册提供详细订购流程及注意事项,包括相关认证信息(如韩国S标志)。 复制功能:通过数据通信将主传感器设定复制到其他传感器,支持多种设定模式,避免设定错误,节省时间。 操作模式:RUN模式用于日常监控,菜单设定模式用于深入设置,PRO模式提供高级功能。 使用前需仔细阅读手册,了解各功能使用方法。遵循安全指南,正确安装和使用传感器,避免损坏。对于
recommend-type

冰激励振动理论图(FV)

冰激励振动理论图(FV)
recommend-type

对于PGA雷人使用,哈哈哈

7175的FPGA模块
recommend-type

【漂亮大气-PC端英文网站-整站模板】蓝色精美铁路钢铁企业网站(运行html文件可看效果).zip

资源说明: 1:本资料仅用作交流学习参考,请切勿用于商业用途。运行本网站模板下的html文件就可看到页面效果,有利于html、css、js的学习以及页面设计参考。 2:掌握这套 HTML 网站模板,即学即用!深度掌握页面布局、组件复用、模块化开发技巧,学习交互逻辑与动画实现。适用于个人作品集、企业官网、电商平台等场景,助您快速搭建专业网站,提升前端开发效率与项目经验!
recommend-type

C#实现多功能画图板功能详解

根据给定的文件信息,我们可以从中提取出与C#编程语言相关的知识点,以及利用GDI+进行绘图的基本概念。由于文件信息较为简短,以下内容会结合这些信息点和相关的IT知识进行扩展,以满足字数要求。 标题中提到的“C#编的画图版”意味着这是一款用C#语言编写的画图软件。C#(发音为 "C Sharp")是一种由微软开发的面向对象的高级编程语言,它是.NET框架的一部分。C#语言因为其简洁的语法和强大的功能被广泛应用于各种软件开发领域,包括桌面应用程序、网络应用程序以及游戏开发等。 描述中提到了“用GDI+绘图来实现画图功能”,这表明该软件利用了GDI+(Graphics Device Interface Plus)技术进行图形绘制。GDI+是Windows平台下的一个图形设备接口,用于处理图形、图像以及文本。它提供了一系列用于2D矢量图形、位图图像、文本和输出设备的API,允许开发者在Windows应用程序中实现复杂的图形界面和视觉效果。 接下来,我们可以进一步展开GDI+中一些关键的编程概念和组件: 1. GDI+对象模型:GDI+使用了一套面向对象的模型来管理图形元素。其中包括Device Context(设备上下文), Pen(画笔), Brush(画刷), Font(字体)等对象。程序员可以通过这些对象来定义图形的外观和行为。 2. Graphics类:这是GDI+中最核心的类之一,它提供了大量的方法来进行绘制操作,比如绘制直线、矩形、椭圆、曲线、图像等。Graphics类通常会与设备上下文相关联,为开发人员提供了一个在窗口、图片或其他表面进行绘图的画布。 3. Pen类:用于定义线条的颜色、宽度和样式。通过Pens类,GDI+提供了预定义的笔刷对象,如黑色笔、红色笔等。程序员也可以创建自定义的Pen对象来满足特定的绘图需求。 4. Brush类:提供了用于填充图形对象的颜色或图案的对象,包括SolidBrush(实心画刷)、HatchBrush(图案画刷)、TextureBrush(纹理画刷)等。程序员可以通过这些画刷在图形对象内部或边缘上进行填充。 5. Fonts类:表示字体样式,GDI+中可以使用Fonts类定义文本的显示样式,包括字体的家族、大小、样式和颜色。 6. 事件驱动的绘图:在C#中,通常会结合事件处理机制来响应用户操作(如鼠标点击或移动),以实现交互式的绘图功能。程序员可以通过重写控件的事件处理函数(例如MouseClick, MouseMove等)来捕获用户的输入并作出相应的绘图响应。 7. 画布变换:在GDI+中,可以通过变换Graphics对象来实现平移、旋转和缩放等效果,这对于实现更复杂的绘图功能是非常有用的。 由于没有具体的文件名称列表,我们无法从这方面提取更多的知识点。但根据标题和描述,我们可以推断该文件名称列表中的“画图板”指的是这款软件的名称,这可能是一个与GDI+绘图功能相结合的用户界面程序,它允许用户在界面上进行绘画和书写操作。 总结以上内容,我们可以了解到C#编程语言与GDI+结合可以创建出功能丰富的画图应用程序。开发人员能够利用GDI+提供的丰富API实现复杂的图形操作,提供用户友好的界面和交互体验。这不仅有助于提高软件的图形处理能力,同时也能够满足设计人员对于高质量视觉效果的追求。
recommend-type

超参数调优:锂电池预测模型优化的不传之秘

# 摘要 本文针对锂电池预测模型的优化进行了系统性的研究,深入探讨了理论基础、超参数调优的策略与技巧,并实践了在锂电池预测模型中的应用。通过理论分析与实验验证,本文揭示了超参数与模型性能之间的关系,并探讨了多种超参数优化方法。同时,本文提供了针对锂电池预测模型的性能评估方法,识别并解决了过拟合与
recommend-type

青龙面板怎么搭建

<think>我们正在回答用户关于如何在服务器上搭建青龙面板的问题。根据用户提供的引用,我们有多个不同的安装方法,主要使用Docker进行部署。我们将综合这些引用,给出一个清晰、步骤详细的安装教程。 注意:青龙面板是一个支持Python3、JavaScript、Shell、TypeScript的定时任务管理平台,常用于运行各种脚本。 我们将按照以下步骤进行: 1. 准备环境:确保服务器已安装Docker和Docker Compose。 2. 创建目录并下载配置文件(如果使用docker-compose方式)。 3. 运行容器。 4. 访问面板并进行初始化配置。 由于引用中有
recommend-type

全面深入掌握应用密码学第二版精华

### 知识点概述 **标题**:Applied Cryptography PART1 **描述**:《应用密码学第二版》是一本全面的密码学资料,它涵盖密码学的基础知识和高级应用,对于想要深入理解并运用密码学的读者来说,是一个宝贵的资源。 **标签**:Applied Cryptography 密码 应用 **压缩包子文件列表**:APPLYC12.pdf、APPLYC11.pdf、APPLYC3.pdf、APPLYC4.pdf、APPLYC2.pdf、APPLYC5.pdf、APPLYC13.pdf、APPLYC6.pdf、APPLYC14.pdf、APPLYC9.pdf ### 知识点详细说明 #### 密码学基础 密码学(Cryptography)是研究信息加密和解密的数学原理和计算方法的学科。在《应用密码学第二版》中,可能涉及以下基础知识: 1. **对称密钥加密**:使用相同的密钥进行加密和解密,如AES(高级加密标准)和DES(数据加密标准)算法。 2. **非对称密钥加密**:使用一对密钥(公钥和私钥),公钥加密信息,私钥解密,如RSA算法。 3. **哈希函数**:一种单向加密函数,将任意长度的数据映射到固定长度的值,如SHA-256和MD5。 4. **数字签名**:利用非对称密钥加密原理,用于验证消息的完整性和来源。 #### 密码学的应用 **应用密码学**涉及到将密码学原理和技术应用到实际的安全问题和解决方案中。在该书籍中,可能会探讨以下应用领域: 1. **网络安全**:包括SSL/TLS协议,用于保护互联网上的通信安全。 2. **区块链技术**:密码学在区块链中的应用,如工作量证明(Proof of Work)和非对称密钥。 3. **安全存储**:如何使用加密技术安全地存储数据,例如在数据库中的加密技术。 4. **安全协议**:在不同计算平台间交换加密信息的协议,例如IPSec。 #### 密码学进阶主题 进阶主题可能包括: 1. **密码学中的数学基础**:素数、群、环、域以及椭圆曲线等数学概念。 2. **密码分析**:研究攻击加密系统的方法,包括已知明文攻击、选择明文攻击等。 3. **量子密码学**:探讨量子计算对当前加密算法的影响,以及量子安全的加密技术。 #### 文档内容细节 从压缩包子文件列表来看,文档内容可能按照章节或主题进行分割,例如: - **APPLYC12.pdf** 和 **APPLYC11.pdf** 可能涵盖了密码学的基础知识和基本概念。 - **APPLYC3.pdf** 和 **APPLYC4.pdf** 可能讨论了对称加密算法以及实现的案例和方法。 - **APPLYC2.pdf** 和 **APPLYC5.pdf** 可能深入讲解了非对称加密技术,如RSA算法。 - **APPLYC13.pdf** 和 **APPLYC6.pdf** 可能包含了哈希函数和数字签名的详细描述。 - **APPLYC14.pdf** 和 **APPLYC9.pdf** 可能介绍了密码学在网络安全、区块链、安全存储和安全协议中的应用实例。 ### 结论 《应用密码学第二版》作为一本全面的密码学参考书,不仅为读者提供了密码学的基础理论知识,还深入探讨了这些理论在现实世界中的具体应用。通过阅读这本书籍,读者将能够更好地理解密码学的原理,并学会如何在实际中运用这些知识来解决安全问题。特别是对于那些希望在信息安全领域深造的学习者来说,该书无疑是一份宝贵的资源。通过对压缩包子文件列表的分析,我们可以看到这本书覆盖了广泛的加密算法和技术,使其成为密码学爱好者的必读之作。
recommend-type

LSTM网络结构选择指南:让锂电池寿命预测更准确

# 摘要 长短期记忆网络(LSTM)作为一种特殊的循环神经网络(RNN),近年来因其在序列数据处理上的卓越性能受到广泛关注。本文首先介绍了LSTM网络的基础知识及在锂电池寿命预测中的应用概述。随后深入探讨了LSTM的理论框架、关键技术、网络结构选择与优化。文中详细分析了锂电池寿命预测的数据处理流程、模型