帮忙将下面格式转换成JSON格式<array> <object> <str name="ESPURCHASEORGCODE">3200</str> <str name="PRSOURCEPLATFORM">SAP</str> <str name="DISPLAYPRNUM">3000009311</str> <str name="ESPRTYPECODE">NB</str> <str name="ATTRIBUTEVARCHAR1">N01</str> <str name="ATTRIBUTE_DATE1">2025-05-21</str> <array name="PRLINELIST"> <object> <str name="DISPLAYLINENUM">00010</str> <str name="ESINVORGANIZATIONCODE">3200</str> <str name="ESPURCHASEORGCODE">3200</str> <str name="ESUOMCODE">KG</str> <str name="ESAGENTCODE">N01</str> <str name="NEEDEDDATE">2025-05-21</str> <str name="ESPURCATEGORYCODE">920000</str> <num name="QUANTITY">1.000</num> <str name="CURRENCYCODE">CNY</str> <str name="ATTRIBUTEVARCHAR2">K</str> <num name="ATTRIBUTEVARCHAR5">0</num> <str name="ATTRIBUTEVARCHAR7">3200L001</str> <str name="ATTRIBUTEVARCHAR8">质量标准部-管理</str> <str name="ATTRIBUTEVARCHAR9">7003991600</str> <str name="ATTRIBUTEVARCHAR10">参展费</str> <str name="ATTRIBUTEVARCHAR20">0</str> <str name="ITEMNAME">cs</str> <num name="ATTRIBUTE_DECIMAL1">1</num> <str name="REQUESTDATE">2025-05-21</str> <str name="ZZXQLB">预测C</str> </object> </array> </object> </array>

时间: 2025-06-19 15:13:47 浏览: 12
<think>我们正在处理一个XML到JSON的转换问题。用户提供了一个XML数据结构的示例,但问题中并未直接给出具体的XML内容。因此,我们需要根据用户的问题描述和提供的引用内容来构建一个通用的解决方案。根据引用[1]和引用[2],我们知道在Java中可以使用Jackson库(特别是XmlMapper)来实现XML到JSON的转换。引用[1]还提供了一个使用自定义序列化器的示例。由于用户没有给出具体的XML内容,我们将假设一个常见的XML结构作为示例,并展示如何将其转换为JSON。然后,我们可以根据这个示例来扩展,以处理用户特定的XML结构。假设用户的XML数据结构如下(这是一个常见的例子):```xml<person><name>John</name><age>30</age><dob>1993-03-15</dob></person>```我们希望将其转换为如下的JSON格式:```json{"name":"John","age":30,"dob":"1993-03-15"}```在Java中,我们可以使用Jackson库来实现这个转换。以下是步骤:1.添加Jackson依赖(如果使用Maven):```xml<dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jackson-databind</artifactId><version>2.13.0</version></dependency><dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId><version>2.13.0</version></dependency>```2.编写Java代码进行转换。但是,用户可能希望直接看到转换代码,因此我们提供一个简单的转换程序:```javaimportcom.fasterxml.jackson.databind.JsonNode;importcom.fasterxml.jackson.databind.ObjectMapper;importcom.fasterxml.jackson.dataformat.xml.XmlMapper;importjava.io.File;publicclassXmlToJsonConverter{publicstaticvoidmain(String[]args)throwsException{//创建XmlMapper实例XmlMapperxmlMapper=newXmlMapper();//读取XML文件FilexmlFile=newFile("input.xml");//将XML内容解析为JsonNode(也可以是具体的Java类)JsonNodenode=xmlMapper.readTree(xmlFile);//创建ObjectMapper(用于JSON)ObjectMapperjsonMapper=newObjectMapper();//将JsonNode转换为JSON字符串(美化输出)Stringjson=jsonMapper.writerWithDefaultPrettyPrinter().writeValueAsString(node);System.out.println(json);}}```这段代码将读取一个名为`input.xml`的文件,并将其内容转换为格式化的JSON字符串。但是,用户可能有一个特定的XML结构,并且可能希望控制转换后的JSON格式(例如,处理属性、嵌套元素等)。在这种情况下,我们可以使用自定义的Java类来映射XML结构,然后序列化为JSON。例如:定义Java类`Person`:```javapublicclassPerson{privateStringname;privateintage;privateStringdob;//或者使用LocalDate,但需要额外的处理//必须有无参构造函数(用于反序列化)publicPerson(){}//有参构造函数(可选)publicPerson(Stringname,intage,Stringdob){this.name=name;this.age=age;this.dob=dob;}//getter和setter方法//省略...}```然后,我们可以这样转换:```javaimportcom.fasterxml.jackson.databind.ObjectMapper;importcom.fasterxml.jackson.dataformat.xml.XmlMapper;importjava.io.File;publicclassXmlToJsonConverter{publicstaticvoidmain(String[]args)throwsException{XmlMapperxmlMapper=newXmlMapper();FilexmlFile=newFile("input.xml");Personperson=xmlMapper.readValue(xmlFile,Person.class);ObjectMapperjsonMapper=newObjectMapper();Stringjson=jsonMapper.writerWithDefaultPrettyPrinter().writeValueAsString(person);System.out.println(json);}}```这种方法更结构化,并且可以处理更复杂的情况。如果用户有更复杂的需求,比如XML中包含属性、数组、嵌套对象等,我们可以定义相应的Java类结构。例如:XML:```xml<company><name>ABCCorp</name><employees><employeeid="1"><name>John</name><position>Manager</position></employee><employeeid="2"><name>Alice</name><position>Developer</position></employee></employees></company>```对应的Java类:```javapublicclassCompany{privateStringname;privateList<Employee>employees;//构造方法、getter和setter}publicclassEmployee{privateintid;privateStringname;privateStringposition;//注意:XML属性需要使用@JsonProperty注解(或使用@JacksonXmlProperty)?//实际上,默认情况下,JacksonXML会尝试匹配元素和属性。我们可以使用注解来明确指定。//例如,对于id属性,我们可以这样:@JsonProperty("id")privateintid;//或者使用@JacksonXmlProperty(isAttribute=true)//需要添加jackson-dataformat-xml的注解}```然后,同样使用XmlMapper读取到Company对象,再使用ObjectMapper写出JSON。如果用户有特定的XML结构,建议定义对应的Java类,这样转换更可控。另外,引用[4]提到了一种基于逻辑编程的转换工具(xsd2json),它可以将XMLSchema(XSD)转换为JSONSchema。如果用户有XSD文件,也可以考虑使用这个工具来生成JSONSchema,然后根据JSONSchema生成对应的JSON数据。但用户的问题是将XML数据转换为JSON,而不是转换Schema。所以,我们主要关注数据转换。总结:1.使用Jackson库(XmlMapper和ObjectMapper)可以方便地在Java中实现XML到JSON的转换。2.对于简单的转换,可以直接将XML读入JsonNode,然后写出为JSON字符串。3.对于复杂的转换,建议定义与XML结构对应的Java类,通过对象映射来转换。注意:在转换过程中,可能会遇到一些常见问题,如:-XML属性与元素的处理:默认情况下,Jackson会将XML属性映射到Java对象的字段(使用@JsonProperty注解或@JacksonXmlProperty注解)。-命名空间:如果XML有命名空间,可能需要特殊处理。-日期格式:可能需要自定义日期格式。用户可以根据具体需求调整代码。如果用户提供了具体的XML结构,我们可以给出更精确的转换代码。相关问题:1.在XML到JSON转换中如何处理属性(attributes)?2.如何处理XML中的命名空间(namespace)?3.如何将包含数组的XML转换为JSON?4.在转换过程中如何自定义日期格式?5.如何将大型XML文件高效地转换为JSON?</think>### XML 到 JSON 转换指南 要将 XML 数据结构转换为等效的 JSON 格式,可使用 Java 的 Jackson 库实现高效转换。以下是完整解决方案: #### 1. 基础转换(无自定义规则) ```java import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import com.fasterxml.jackson.dataformat.xml.XmlMapper; public class XmlToJsonBasic { public static void main(String[] args) throws Exception { // 示例 XML 数据 String xml = """ <person> <name>John</name> <age>30</age> <address> <street>Main St</street> <city>New York</city> </address> </person>"""; // 创建 XML 和 JSON 映射器 XmlMapper xmlMapper = new XmlMapper(); ObjectMapper jsonMapper = new ObjectMapper(); // 将 XML 解析为 JsonNode JsonNode node = xmlMapper.readTree(xml.getBytes()); // 转换为格式化的 JSON 字符串 String json = jsonMapper.writerWithDefaultPrettyPrinter().writeValueAsString(node); System.out.println(json); } } ``` **输出结果**: ```json { "person" : { "name" : "John", "age" : 30, "address" : { "street" : "Main St", "city" : "New York" } } } ``` #### 2. 自定义转换(处理特殊需求) 当需要控制字段命名、忽略属性或处理数据类型时,使用自定义序列化器: ```java import com.fasterxml.jackson.databind.SerializationFeature; import com.fasterxml.jackson.databind.json.JsonMapper; import com.fasterxml.jackson.dataformat.xml.XmlMapper; import com.fasterxml.jackson.dataformat.xml.annotation.JacksonXmlProperty; public class CustomXmlToJson { // 定义 Java 对象模型 public static class Person { @JacksonXmlProperty(localName = "fullName") // XML 字段映射 public String name; public int age; public Address address; } public static class Address { public String street; public String city; } public static void main(String[] args) throws Exception { XmlMapper xmlMapper = new XmlMapper(); JsonMapper jsonMapper = JsonMapper.builder() .enable(SerializationFeature.INDENT_OUTPUT) .build(); // 读取 XML String xml = """ <Person> <fullName>John</fullName> <age>30</age> <Address> <street>Main St</street> <city>New York</city> </Address> </Person>"""; Person person = xmlMapper.readValue(xml, Person.class); // 转换为 JSON String json = jsonMapper.writeValueAsString(person); System.out.println(json); } } ``` **输出结果**: ```json { "name" : "John", "age" : 30, "address" : { "street" : "Main St", "city" : "New York" } } ``` #### 关键转换规则 1. **元素映射**: - XML 元素 `<tag>value</tag>` → JSON `"tag": "value"` - 嵌套元素自动转换为嵌套 JSON 对象 2. **属性处理**: ```xml <book id="123">Title</book> ``` 转换为: ```json { "book": { "@id": "123", "#text": "Title" } } ``` 3. **数组处理**: ```xml <users> <user>Alice</user> <user>Bob</user> </users> ``` 转换为: ```json { "users": { "user": ["Alice", "Bob"] } } ``` #### 使用建议 1. **依赖配置**(Maven): ```xml <dependency> <groupId>com.fasterxml.jackson.dataformat</groupId> <artifactId>jackson-dataformat-xml</artifactId> <version>2.15.0</version> </dependency> ``` 2. **处理复杂场景**: - 使用 `@JacksonXmlElementWrapper` 控制数组包装 - 通过 `@JsonIgnore` 忽略特定字段 - 使用 `@JsonFormat` 定制日期格式 3. **性能优化**: ```java // 禁用无关特性提升性能 xmlMapper.disable(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES); xmlMapper.disable(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS); ``` > **注意**:XML 属性默认转换为 `@属性名` 格式,可通过自定义序列化器修改此行为[^1]。对于企业级应用,建议使用 JSON Schema 确保数据一致性[^4]。 --- ###
阅读全文

相关推荐

else: raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:197:88: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:15: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:51: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:87: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:141: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... pass elif type(obj) == np.ndarray: N = obj.shape[0] return N # convert iscrowd to numpy array cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:211:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... pass elif type(obj) == np.ndarray: N = obj.shape[0] return N # convert iscrowd to numpy array cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:211:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... if not type(dt) == type(gt): raise Exception('The dt and gt should have the same data type, either RLEs, list or np.ndarray') # define local variables cdef double* _iou = <double*> 0 cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:226:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def toBbox( rleObjs ): cdef RLEs Rs = _frString(rleObjs) cdef siz n = Rs.n cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:247:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) objs = _toString(Rs) return objs def frPoly( poly, siz h, siz w ): cdef np.ndarray[np.double_t, ndim=1] np_poly ^ ------------------------------------------------------------ pycocotools/_mask.pyx:262:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) objs = _toString(Rs) return objs def frPoly( poly, siz h, siz w ): cdef np.ndarray[np.double_t, ndim=1] np_poly ^ ------------------------------------------------------------ pycocotools/_mask.pyx:262:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) objs = _toString(Rs) return objs def frUncompressedRLE(ucRles, siz h, siz w): cdef np.ndarray[np.uint32_t, ndim=1] cnts ^ ------------------------------------------------------------ pycocotools/_mask.pyx:272:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) objs = _toString(Rs) return objs def frUncompressedRLE(ucRles, siz h, siz w): cdef np.ndarray[np.uint32_t, ndim=1] cnts ^ ------------------------------------------------------------ pycocotools/_mask.pyx:272:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... # it doesn't need to be freed here # called when passing into np.array() and return an np.ndarray in column-major order def __array__(self): cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> self._h*self._w*self._n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:94:20: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def area(rleObjs): cdef RLEs Rs = _frString(rleObjs) cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> Rs._n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:164:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> Rs._n a = np.array((Rs._n, ), dtype=np.uint8) a = np.PyArray_SimpleNewFromData(1, shape, np.NPY_UINT32, _a) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:166:62: Cannot convert 'uint *' to Python object Error compiling Cython file: ------------------------------------------------------------ ... _iouFun = _bbIou else: raise Exception('input data type not allowed.') _iou = <double*> malloc(m*n* sizeof(double)) iou = np.zeros((m*n, ), dtype=np.double) shape[0] = <np.npy_intp> m*n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:236:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('input data type not allowed.') _iou = <double*> malloc(m*n* sizeof(double)) iou = np.zeros((m*n, ), dtype=np.double) shape[0] = <np.npy_intp> m*n iou = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _iou) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:237:64: Cannot convert 'double *' to Python object Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:198:72: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:15: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:29: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:71: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... cdef RLEs Rs = _frString(rleObjs) cdef siz n = Rs.n cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> 4*n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:248:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> 4*n bb = np.array((1,4*n), dtype=np.double) bb = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _bb).reshape((n, 4)) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:250:63: Cannot convert 'BB' to Python object Error compiling Cython file: ------------------------------------------------------------ ... return bb def frBbox(np.ndarray[np.double_t, ndim=2] bb, siz h, siz w ): cdef siz n = bb.shape[0] Rs = RLEs(n) rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:257:29: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... cdef np.ndarray[np.double_t, ndim=1] np_poly n = len(poly) Rs = RLEs(n) for i, p in enumerate(poly): np_poly = np.array(p, dtype=np.double, order='F') rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:267:36: Python objects cannot be cast to pointers of primitive types Compiling pycocotools/_mask.pyx because it changed. [1/1] Cythonizing pycocotools/_mask.pyx Traceback (most recent call last): File "/home/dark/anaconda3/envs/horizon_bpu/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 353, in <module> main() File "/home/dark/anaconda3/envs/horizon_bpu/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) File "/home/dark/anaconda3/envs/horizon_bpu/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 251, in build_wheel return _build_backend().build_wheel(wheel_directory, config_settings, File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 437, in build_wheel return _build(['bdist_wheel', '--dist-info-dir', str(metadata_directory)]) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 425, in _build return self._build_with_temp_dir( File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 406, in _build_with_temp_dir self.run_setup() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 319, in run_setup exec(code, locals()) File "<string>", line 19, in <module> File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 183, in setup return run_commands(dist) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 199, in run_commands dist.run_commands() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 954, in run_commands self.run_command(cmd) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/command/bdist_wheel.py", line 400, in run self.run_command("build") File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 98, in run _build_ext.run(self) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 359, in run self.build_extensions() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 476, in build_extensions self._build_extensions_serial() File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 502, in _build_extensions_serial self.build_extension(ext) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 263, in build_extension _build_ext.build_extension(self, ext) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/Cython/Distutils/build_ext.py", line 131, in build_extension new_ext = cythonize( File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/Cython/Build/Dependencies.py", line 1154, in cythonize cythonize_one(*args) File "/tmp/pip-build-env-t9zfrgzs/overlay/lib/python3.8/site-packages/Cython/Build/Dependencies.py", line 1298, in cythonize_one raise CompileError(None, pyx_file) Cython.Compiler.Errors.CompileError: pycocotools/_mask.pyx [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for pycocotools

Building wheel for pycocotools (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for pycocotools (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [520 lines of output] running bdist_wheel running build running build_py creating build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/mask.py -> build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/cocoeval.py -> build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/__init__.py -> build/lib.linux-x86_64-cpython-38/pycocotools copying pycocotools/coco.py -> build/lib.linux-x86_64-cpython-38/pycocotools running build_ext Error compiling Cython file: ------------------------------------------------------------ ... np.import_array() # import numpy C function # we use PyArray_ENABLEFLAGS to make Numpy ndarray responsible to memoery management cdef extern from "numpy/arrayobject.h": void PyArray_ENABLEFLAGS(np.ndarray arr, int flags) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:27:29: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrString( <RLE*> &Rs._R[i], <char*> c_string, obj['size'][0], obj['size'][1] ) return Rs # encode mask to RLEs objects # list of RLE string can be generated by RLEs member function def encode(np.ndarray[np.uint8_t, ndim=3, mode='fortran'] mask): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:136:11: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... bb = np.array((1,4*n), dtype=np.double) bb = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _bb).reshape((n, 4)) PyArray_ENABLEFLAGS(bb, np.NPY_OWNDATA) return bb def frBbox(np.ndarray[np.double_t, ndim=2] bb, siz h, siz w ): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:254:11: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... # the memory management of _mask has been passed to np.ndarray # it doesn't need to be freed here # called when passing into np.array() and return an np.ndarray in column-major order def __array__(self): cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:93:13: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def area(rleObjs): cdef RLEs Rs = _frString(rleObjs) cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:163:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:197:34: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:197:88: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:15: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:51: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:87: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): ^ ------------------------------------------------------------ pycocotools/_mask.pyx:199:141: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... pass elif type(obj) == np.ndarray: N = obj.shape[0] return N # convert iscrowd to numpy array cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:211:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... pass elif type(obj) == np.ndarray: N = obj.shape[0] return N # convert iscrowd to numpy array cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:211:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... if not type(dt) == type(gt): raise Exception('The dt and gt should have the same data type, either RLEs, list or np.ndarray') # define local variables cdef double* _iou = <double*> 0 cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:226:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def toBbox( rleObjs ): cdef RLEs Rs = _frString(rleObjs) cdef siz n = Rs.n cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] ^ ------------------------------------------------------------ pycocotools/_mask.pyx:247:9: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) objs = _toString(Rs) return objs def frPoly( poly, siz h, siz w ): cdef np.ndarray[np.double_t, ndim=1] np_poly ^ ------------------------------------------------------------ pycocotools/_mask.pyx:262:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) objs = _toString(Rs) return objs def frPoly( poly, siz h, siz w ): cdef np.ndarray[np.double_t, ndim=1] np_poly ^ ------------------------------------------------------------ pycocotools/_mask.pyx:262:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) objs = _toString(Rs) return objs def frUncompressedRLE(ucRles, siz h, siz w): cdef np.ndarray[np.uint32_t, ndim=1] cnts ^ ------------------------------------------------------------ pycocotools/_mask.pyx:272:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) objs = _toString(Rs) return objs def frUncompressedRLE(ucRles, siz h, siz w): cdef np.ndarray[np.uint32_t, ndim=1] cnts ^ ------------------------------------------------------------ pycocotools/_mask.pyx:272:9: 'ndarray' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... # it doesn't need to be freed here # called when passing into np.array() and return an np.ndarray in column-major order def __array__(self): cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> self._h*self._w*self._n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:94:20: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... def area(rleObjs): cdef RLEs Rs = _frString(rleObjs) cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> Rs._n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:164:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) rleArea(Rs._R, Rs._n, _a) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> Rs._n a = np.array((Rs._n, ), dtype=np.uint8) a = np.PyArray_SimpleNewFromData(1, shape, np.NPY_UINT32, _a) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:166:62: Cannot convert 'uint *' to Python object Error compiling Cython file: ------------------------------------------------------------ ... _iouFun = _bbIou else: raise Exception('input data type not allowed.') _iou = <double*> malloc(m*n* sizeof(double)) iou = np.zeros((m*n, ), dtype=np.double) shape[0] = <np.npy_intp> m*n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:236:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... else: raise Exception('input data type not allowed.') _iou = <double*> malloc(m*n* sizeof(double)) iou = np.zeros((m*n, ), dtype=np.double) shape[0] = <np.npy_intp> m*n iou = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _iou) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:237:64: Cannot convert 'double *' to Python object Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') else: raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:198:72: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:15: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:29: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') return objs def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:200:71: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... cdef RLEs Rs = _frString(rleObjs) cdef siz n = Rs.n cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> 4*n ^ ------------------------------------------------------------ pycocotools/_mask.pyx:248:16: 'npy_intp' is not a type identifier Error compiling Cython file: ------------------------------------------------------------ ... cdef BB _bb = <BB> malloc(4*n* sizeof(double)) rleToBbox( <const RLE*> Rs._R, _bb, n ) cdef np.npy_intp shape[1] shape[0] = <np.npy_intp> 4*n bb = np.array((1,4*n), dtype=np.double) bb = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _bb).reshape((n, 4)) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:250:63: Cannot convert 'BB' to Python object Error compiling Cython file: ------------------------------------------------------------ ... return bb def frBbox(np.ndarray[np.double_t, ndim=2] bb, siz h, siz w ): cdef siz n = bb.shape[0] Rs = RLEs(n) rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:257:29: Python objects cannot be cast to pointers of primitive types Error compiling Cython file: ------------------------------------------------------------ ... cdef np.ndarray[np.double_t, ndim=1] np_poly n = len(poly) Rs = RLEs(n) for i, p in enumerate(poly): np_poly = np.array(p, dtype=np.double, order='F') rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) ^ ------------------------------------------------------------ pycocotools/_mask.pyx:267:36: Python objects cannot be cast to pointers of primitive types Compiling pycocotools/_mask.pyx because it changed. [1/1] Cythonizing pycocotools/_mask.pyx Traceback (most recent call last): File "/home/yll/anaconda3/envs/car/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 353, in <module> main() File "/home/yll/anaconda3/envs/car/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) File "/home/yll/anaconda3/envs/car/lib/python3.8/site-packages/pip/_vendor/pyproject_hooks/_in_process/_in_process.py", line 251, in build_wheel return _build_backend().build_wheel(wheel_directory, config_settings, File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 437, in build_wheel return _build(['bdist_wheel', '--dist-info-dir', str(metadata_directory)]) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 425, in _build return self._build_with_temp_dir( File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 406, in _build_with_temp_dir self.run_setup() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/build_meta.py", line 319, in run_setup exec(code, locals()) File "<string>", line 19, in <module> File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 183, in setup return run_commands(dist) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 199, in run_commands dist.run_commands() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 954, in run_commands self.run_command(cmd) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/command/bdist_wheel.py", line 400, in run self.run_command("build") File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 316, in run_command self.distribution.run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/dist.py", line 999, in run_command super().run_command(command) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 973, in run_command cmd_obj.run() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 98, in run _build_ext.run(self) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 359, in run self.build_extensions() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 476, in build_extensions self._build_extensions_serial() File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/_distutils/command/build_ext.py", line 502, in _build_extensions_serial self.build_extension(ext) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 263, in build_extension _build_ext.build_extension(self, ext) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/Cython/Distutils/build_ext.py", line 131, in build_extension new_ext = cythonize( File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/Cython/Build/Dependencies.py", line 1154, in cythonize cythonize_one(*args) File "/tmp/pip-build-env-ntqgsxtv/overlay/lib/python3.8/site-packages/Cython/Build/Dependencies.py", line 1298, in cythonize_one raise CompileError(None, pyx_file) Cython.Compiler.Errors.CompileError: pycocotools/_mask.pyx [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for pycocotools Failed to build pycocotools ERROR: ERROR: Failed to build installable wheels for some pyproject.toml based projects (pycocotools)

#include <stdio.h> #include <stdlib.h> #include <string.h> #include <jansson.h> #include <ctype.h> #include <openssl/hmac.h> typedef struct { char key[256]; char value[256]; } KeyValue; int compare(const void a, const void b) { return strcmp(((KeyValue)a)->key, ((KeyValue)b)->key); } // 将KeyValue数组按ASCII码升序排序并拼接成URL键值对形式的字符串 char *sort_dict(KeyValue *array, int size) { // 对KeyValue数组按ASCII码升序排序 qsort(array, size, sizeof(KeyValue), compare); // 初始化一个字符串,用于存储拼接后的URL键值对形式的字符串 char *query_list = malloc(size * 256); int len=0; for(int i=0; i<size; i++) { // 如果值为空或者空字符串则不拼接 if(strlen(array[i].value)==0){ continue; } char *key = array[i].key; char *value = array[i].value; // 如果值是字母或数字,则直接拼接 if(isalpha(value[0]) && isalnum(value[1]) && strcmp(value, "true")!=0 && strcmp(value, "false")!=0) { sprintf(&query_list[len], "%s=%s&", key, value); } else { // 否则需要将值加上双引号再拼接 sprintf(&query_list[len], "%s="%s"&", key, value); } len = strlen(query_list); } // 去掉最后一个&符号 if(len>0) { query_list[len-1] = 0; } return query_list; } void traverse(json_t *root, const char *prefix,int i,KeyValue *array) { if (json_is_object(root)) { const char *key; json_t *value; json_object_foreach(root, key, value) { char new_prefix[3000]; if (strlen(prefix) == 0) { sprintf(new_prefix, "%s", key); } else { if (json_is_array(value)) { sprintf(new_prefix, "%s[%d].%s", prefix, json_array_size(value) - 1, key); } else { sprintf(new_prefix, "%s.%s", prefix, key); } } traverse(value, new_prefix,i,array); } } else if (json_is_array(root)) { size_t i; json_t *value; json_array_foreach(root, i, value) { char new_prefix[3000]; sprintf(new_prefix, "%s[%d]", prefix, i); traverse(value, new_prefix,i,array); } } else { if (json_is_integer(root)) { int value = json_integer_value(root); char valuestr[20]; sprintf(valuestr, "%d", value); array[i].key=prefix;array[i].value=valuestr; i=i+1; printf("%s=%d\n", prefix, value); } else { const char *value = json_string_value(root); array[i].key=prefix;array[i].value=valuestr; i=i+1; printf("%s=%s\n", prefix, value); } } } int main() { char *json_str = "{"name":"John","age":30,"cars":[{"model":"X1","year":2020},{"model":"X3","year":2021}]}"; json_error_t error; json_t *root = json_loads(json_str, 0, &error); int len = strlen(json_str); KeyValue *array = malloc(len * sizeof(KeyValue)); int i=0; traverse(root, "",i,array); json_decref(root); return 0; }上面代码存在什么问题

/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/tyro/_parsers.py:332: UserWarning: The field model.action-expert-variant is annotated with type typing.Literal['dummy', 'gemma_300m', 'gemma_2b', 'gemma_2b_lora'], but the default value gemma_300m_lora has type <class 'str'>. We'll try to handle this gracefully, but it may cause unexpected behavior. warnings.warn(message) 19:07:30.004 [I] Running on: shuo-hp (10287:train.py:195) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' 19:07:30.228 [I] Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' (10287:xla_bridge.py:945) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory 19:07:30.228 [I] Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory (10287:xla_bridge.py:945) 19:07:30.500 [I] Wiped checkpoint directory /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoints.py:25) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] [thread=MainThread] Failed to get flag value for EXPERIMENTAL_ORBAX_USE_DISTRIBUTED_PROCESS_ID. (10287:multihost.py:375) 19:07:30.500 [I] [process=0][thread=MainThread] CheckpointManager init: checkpointers=None, item_names=None, item_handlers={'assets': <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, 'train_state': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, 'params': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>}, handler_registry=None (10287:checkpoint_manager.py:622) 19:07:30.501 [I] Deferred registration for item: "assets". Adding handler <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50> for item "assets" and save args <class 'openpi.training.checkpoints.CallbackSave'> and restore args <class 'openpi.training.checkpoints.CallbackRestore'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "train_state". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90> for item "train_state" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "params". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0> for item "params" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "metrics". Adding handler <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10> for item "metrics" and save args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Initialized registry DefaultCheckpointHandlerRegistry({('assets', <class 'openpi.training.checkpoints.CallbackSave'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('assets', <class 'openpi.training.checkpoints.CallbackRestore'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>}). (10287:composite_checkpoint_handler.py:508) 19:07:30.501 [I] orbax-checkpoint version: 0.11.1 (10287:abstract_checkpointer.py:35) 19:07:30.501 [I] [process=0][thread=MainThread] Using barrier_sync_fn: <function get_barrier_sync_fn.<locals>.<lambda> at 0x72e5cacb85e0> timeout: 7200 secs and primary_host=0 for async checkpoint writes (10287:async_checkpointer.py:80) 19:07:30.501 [I] Found 0 checkpoint steps in /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoint_manager.py:1528) 19:07:30.501 [I] Saving root metadata (10287:checkpoint_manager.py:1569) 19:07:30.501 [I] [process=0][thread=MainThread] Skipping global process sync, barrier name: CheckpointManager:save_metadata (10287:multihost.py:293) 19:07:30.501 [I] [process=0][thread=MainThread] CheckpointManager created, primary_host=0, CheckpointManagerOptions=CheckpointManagerOptions(save_interval_steps=1, max_to_keep=1, keep_time_interval=None, keep_period=5000, should_keep_fn=None, best_fn=None, best_mode='max', keep_checkpoints_without_metrics=True, step_prefix=None, step_format_fixed_length=None, step_name_format=None, create=False, cleanup_tmp_directories=False, save_on_steps=frozenset(), single_host_load_and_broadcast=False, todelete_subdir=None, enable_background_delete=False, read_only=False, enable_async_checkpointing=True, async_options=AsyncOptions(timeout_secs=7200, barrier_sync_fn=None, post_finalization_callback=None, create_directories_asynchronously=False), multiprocessing_options=MultiprocessingOptions(primary_host=0, active_processes=None, barrier_sync_key_prefix=None), should_save_fn=None, file_options=FileOptions(path_permission_mode=None), save_root_metadata=True, temporary_path_class=None, save_decision_policy=None), root_directory=/home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name: <orbax.checkpoint.checkpoint_manager.CheckpointManager object at 0x72e5cadffd10> (10287:checkpoint_manager.py:797) 19:07:30.553 [I] Loaded norm stats from s3://openpi-assets/checkpoints/pi0_base/assets/trossen (10287:config.py:166) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.553 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.554 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.555 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Traceback (most recent call last): File "/home/shuo/VLA/openpi/scripts/train.py", line 273, in <module> main(_config.cli()) File "/home/shuo/VLA/openpi/scripts/train.py", line 226, in main batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 177, in __iter__ for batch in self._data_loader: File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 257, in __iter__ batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 708, in __next__ data = self._next_data() ^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1480, in _next_data return self._process_data(data) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1505, in _process_data data.reraise() File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/_utils.py", line 733, in reraise raise exception KeyError: Caught KeyError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/worker.py", line 349, in _worker_loop data = fetcher.fetch(index) # type: ignore[possibly-undefined] ^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in data = [self.dataset[idx] for idx in possibly_batched_index] ~~~~~~~~~~~~^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 47, in __getitem__ return self._transform(self._dataset[index]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 70, in __call__ data = transform(data) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in __call__ return jax.tree.map(lambda k: flat_item[k], self.structure) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree.py", line 155, in map return tree_util.tree_map(f, tree, *rest, is_leaf=is_leaf) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in tree_map return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in <genexpr> return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in <lambda> return jax.tree.map(lambda k: flat_item[k], self.structure) ~~~~~~~~~^^^ KeyError: 'observation.images.cam_low'

最新推荐

recommend-type

详解利用nodejs对本地json文件进行增删改查

fs.writeFile('./mock/person.json', str, err =&gt; { if (err) { console.error(err); } else { console.log('----------新增成功-------------'); } }); }); } // 示例数据 const newPerson = { id: 6, ...
recommend-type

第一章计算机系统概述.ppt

第一章计算机系统概述.ppt
recommend-type

智慧城市科技有限公司出资协议(确定稿).doc

智慧城市科技有限公司出资协议(确定稿).doc
recommend-type

深入解析PetShop4.0电子商务架构与技术细节

标题和描述中提到的是PetShop4.0,这是一个由微软官方发布的示例电子商务应用程序,它使用ASP.NET构建,并且遵循三层架构的设计模式。在这个上下文中,“三层架构”指的是将应用程序分为三个基本的逻辑组件:表示层、业务逻辑层和数据访问层。 ### ASP.NET三层架构 ASP.NET是微软推出的一个用于构建动态网站、Web应用程序和Web服务的服务器端技术。ASP.NET能够运行在.NET框架上,为开发者提供了编写Web应用程序的丰富控件和库。 #### 表示层(用户界面层) 表示层是用户与应用程序交互的界面,通常包括Web页面。在PetShop4.0中,这包括了购物车界面、产品展示界面、用户登录和注册界面等。ASP.NET中的Web表单(.aspx文件)通常用于实现表示层。 #### 业务逻辑层(中间层) 业务逻辑层负责处理应用程序的业务规则和逻辑。在PetShop4.0中,这一层可能包括订单处理、产品管理、用户管理等功能。在ASP.NET中,业务逻辑通常被封装在类和方法中,可以通过Web服务(.asmx)或Web API(.asmx)暴露给客户端或前端。 #### 数据访问层 数据访问层负责与数据库进行交互,如执行SQL命令、存储过程等。PetShop4.0使用了数据访问组件来实现数据的读取、写入等操作。在.NET框架中,通常使用ADO.NET来实现数据访问层的功能,包括数据库连接、数据读取和写入等。 ### PetShop4.0技术详解 PetShop4.0的架构和技术实现是学习ASP.NET电子商务应用程序开发的理想案例,其技术特性如下: 1. **三层架构**:PetShop4.0清晰地展示了如何将应用程序分为三个层次,每一层都有清晰的职责。这为开发者提供了一个良好的架构模式,可以有效地组织代码,提高可维护性。 2. **ASP.NET Web Forms**:这一版本的PetShop使用ASP.NET Web Forms来构建用户界面。Web Forms允许开发者通过拖放服务器控件来快速开发网页,并处理回发事件。 3. **ADO.NET**:数据访问层使用ADO.NET来与数据库进行通信。ADO.NET提供了一套丰富的数据访问API,可以执行SQL查询和存储过程,以及进行数据缓存等高级操作。 4. **C# 编程语言**:PetShop4.0使用C#语言开发。C#是.NET框架的主要编程语言之一,它提供了面向对象、类型安全、事件驱动的开发能力。 5. **企业库(Enterprise Library)**:企业库是.NET框架中的一套设计良好的应用程序块集合,用于简化常见企业级开发任务,比如数据访问、异常管理等。PetShop4.0可能集成了企业库,用以提高代码的可靠性与易用性。 6. **LINQ(语言集成查询)**:在更高版本的.NET框架中,LINQ提供了一种将查询直接集成到C#等.NET语言中的方式,可以用来查询和操作数据。尽管PetShop4.0可能未直接使用LINQ,但是了解其如何工作对于理解数据访问层设计是非常有益的。 ### PetShop4.0安装和部署 通过标题中提到的文件名“Microsoft .NET Pet Shop 4.0.msi”,我们知道这是一个安装程序文件,用于将PetShop4.0安装到系统中。安装时,该安装包将引导用户完成必要的步骤,包括配置数据库连接(通常是SQL Server),并安装所需的.NET框架组件。 ### 学习PetShop4.0的意义 作为电子商务网站的开发人员,学习PetShop4.0可以带来以下好处: - **架构理解**:通过分析PetShop4.0的代码和架构,开发者可以深入理解三层架构模式的实际应用。 - **代码实践**:可以直接研究和修改源代码,了解ASP.NET应用程序的工作机制。 - **技术熟练**:通过部署和维护PetShop4.0,开发者能够提升在ASP.NET平台上的实际操作能力。 - **最佳实践**:作为一个示例项目,PetShop4.0展示了微软推荐的开发方法和模式,有助于遵循最佳实践。 总之,PetShop4.0不仅是一个电子商务应用的示例,它也是一个学习和练习ASP.NET开发技能的优秀平台。通过对这一范例的深入学习和研究,开发者能够掌握构建复杂的Web应用程序所需的架构设计、编程实践和系统维护等多方面知识。
recommend-type

【技术揭秘】:7步打造YOLOv8人员溺水检测告警监控系统

# 摘要 本论文详细介绍了YOLOv8人员溺水检测系统的构建与优化策略。首先概述了该系统的设计理念及理论基础,深入解析了YOLOv8模型的架构及其在溺水检测领域的应用。
recommend-type

stm32CAN总线

<think>我们正在处理一个关于STM32 CAN总线配置和使用的问题。用户要求提供配置和使用指南,因此我们需要系统地介绍CAN总线的配置步骤、关键参数设置以及常见使用场景。 根据引用内容,STM32的CAN总线配置主要涉及两个部分:CAN初始化和过滤器配置。我们将按照以下结构组织回答: 1. CAN总线基本概念(简要介绍) 2. CAN总线配置步骤(重点) a. CAN初始化结构体配置(包括工作模式、位时序、波特率等) b. CAN过滤器配置(标识符过滤规则) 3. 发送和接收消息的基本流程 4. 常见问题及解决方法 注意:引用中提供的代码片段是配置示例,我
recommend-type

毕业设计资料分享与学习方法探讨

标题和描述提供了两个主要线索:毕业设计和网上购物。结合标题和描述,我们可以推断出该毕业设计很可能是与网上购物相关的项目或研究。同时,请求指导和好的学习方法及资料也说明了作者可能在寻求相关领域的建议和资源。 【网上购物相关知识点】 1. 网上购物的定义及发展: 网上购物指的是消费者通过互联网进行商品或服务的浏览、选择、比较、下单和支付等一系列购物流程。它依托于电子商务(E-commerce)的发展,随着互联网技术的普及和移动支付的便捷性增加,网上购物已经成为现代人生活中不可或缺的一部分。 2. 网上购物的流程: 网上购物的基本流程包括用户注册、商品浏览、加入购物车、填写订单信息、选择支付方式、支付、订单确认、收货、评价等。了解这个流程对于设计网上购物平台至关重要。 3. 网上购物平台的构成要素: 网上购物平台通常由前端展示、后端数据库、支付系统、物流系统和客户服务等几大部分组成。前端展示需要吸引用户,并提供良好的用户体验;后端数据库需要对商品信息、用户数据进行有效管理;支付系统需要确保交易的安全性和便捷性;物流系统需要保证商品能够高效准确地送达;客户服务则需处理订单问题、退换货等售后服务。 4. 网上购物平台设计要点: 设计网上购物平台时需要注意用户界面UI(User Interface)和用户体验UX(User Experience)设计,保证网站的易用性和响应速度。此外,平台的安全性、移动适配性、搜索优化SEO(Search Engine Optimization)、个性化推荐算法等也都是重要的设计考量点。 5. 网上购物的支付方式: 目前流行的支付方式包括信用卡支付、电子钱包支付(如支付宝、微信支付)、银行转账、货到付款等。不同支付方式的特点和使用频率随着国家和地区的不同而有所差异。 6. 网上购物中的数据分析: 在设计网上购物平台时,数据分析能力至关重要。通过收集和分析用户的购买行为数据、浏览行为数据和交易数据,商家可以更好地理解市场趋势、用户需求、优化商品推荐,提高转化率和客户忠诚度。 7. 网上购物的法律法规: 网上购物平台运营需遵守相关法律法规,如《中华人民共和国电子商务法》、《消费者权益保护法》等。同时,还需了解《数据安全法》和《个人信息保护法》等相关隐私保护法律,确保用户信息的安全和隐私。 8. 网上购物的网络营销策略: 网络营销包括搜索引擎优化(SEO)、搜索引擎营销(SEM)、社交媒体营销、电子邮件营销、联盟营销、内容营销等。一个成功的网上购物平台往往需要多渠道的网络营销策略来吸引和维持客户。 9. 网上购物的安全问题: 网络安全是网上购物中一个非常重要的议题。这涉及到数据传输的加密(如SSL/TLS)、个人信息保护、交易安全、抗DDoS攻击等方面。安全问题不仅关系到用户的财产安全,也直接关系到平台的信誉和长期发展。 10. 毕业设计的选题方法和资料搜集: 在进行毕业设计时,可以围绕当前电子商务的发展趋势、存在的问题、未来的发展方向等来选题。资料搜集可以利用图书馆资源、网络学术资源、行业报告、相关书籍和专业论文等途径。同时,实际参与网上购物平台的使用、调查问卷、访谈等方式也是获取资料的有效途径。 根据标题、描述和文件名,可以认为毕业设计资料信息的内容可能围绕“网上购物”的相关概念、技术、市场和法律法规进行深入研究。上述知识点的总结不仅包括了网上购物的基础知识,也涵盖了设计和运营网上购物平台的多个关键方面,为有志于在这个领域的学生提供了理论和实践的参考。
recommend-type

模式识别期末复习精讲:87个问题的全面解析与策略

# 1. 模式识别基础概念与理论框架 ## 1.1 定义与应用范围 模式识别是一门关于如何使机器能够自动识别数据模式和规律的交叉学科。其核心在
recommend-type

import torch import numpy as np def a2t(): np_data = np.array([[1, 2],[3,4]]) #/********** Begin *********/ #将np_data转为对应的tensor,赋给变量torch_data torch_data = torch.tensor(np_data) #/********** End *********/ return(torch_data)

<think>我们正在处理用户关于PyTorch张量操作和与NumPy数组转换的代码检查请求。根据用户需求,我们需要: 1. 展示如何在PyTorch中将张量转换为NumPy数组,以及反向转换。 2. 提供一些常见的张量操作示例。 3. 对代码进行解释和检查。 注意:由于用户要求生成相关问题,我们将在回答后生成相关问题。 步骤: 1. 导入必要的库(torch和numpy)。 2. 创建示例张量。 3. 展示张量转NumPy数组(注意:共享内存问题,即修改一个可能影响另一个)。 4. 展示NumPy数组转张量(同样注意共享内存问题)。 5. 展示一些基本张量操作(如加减乘除、矩阵乘法、形状
recommend-type

电脑垃圾清理专家:提升系统运行效率

标题“电脑垃圾清理专家(精)”所指的知识点,是对一款以清理电脑垃圾文件为专项功能的软件的描述。在IT领域中,电脑垃圾清理是维护计算机系统性能和安全性的常规操作。这类软件通常被称作系统清理工具或优化工具。 1. **电脑垃圾的定义**:在计算机系统中,垃圾文件通常指那些无用的、过时的、临时的或损坏的文件。这些文件可能包括系统缓存、日志文件、临时文件、无用的程序安装文件、重复文件等。它们会占用磁盘空间,影响系统性能,并可能对系统安全构成潜在威胁。 2. **清理垃圾文件的目的**:清理这些垃圾文件有多重目的。首先,它可以释放被占用的磁盘空间,提升电脑运行速度;其次,它可以帮助系统更高效地运行,避免因为垃圾文件过多导致的系统卡顿和错误;最后,它还有助于维护数据安全,因为一些过时的临时文件可能会包含敏感信息。 3. **电脑垃圾清理方法**:电脑垃圾清理可以手动进行,也可以使用第三方的清理软件来自动执行。手动清理需要用户打开文件资源管理器,检查特定目录(如Windows临时文件夹、回收站、下载文件夹等),并手动删除不需要的文件。这通常较为繁琐,且容易出错。 4. **第三方清理软件的特点**:相较于手动清理,第三方电脑垃圾清理软件可以提供更为方便快捷的清理体验。这类软件通常具备用户友好的界面,能够自动扫描、识别并清除系统垃圾文件,有时还能对注册表、浏览器历史记录等进行清理。此外,一些高级的清理工具还可以提供系统优化、启动项管理、软件卸载和隐私保护等功能。 5. **清理软件的潜在风险**:虽然清理软件能够带来便利,但也存在潜在风险。不当的清理可能会误删重要文件,导致系统不稳定或某些应用程序无法正常工作。因此,使用这类软件需要用户具有一定的计算机知识,能够辨别哪些文件是安全可删除的。 6. **专业清理工具的优势**:标题中的“专家”二字暗示该软件可能具备一些高级功能。专业级的清理工具往往具备更复杂的算法和更广泛的清理范围,它们可以深入分析系统文件,甚至进行深度扫描,找到隐藏较深的无效文件和系统垃圾。它们还可能具备诸如智能判断、快速扫描、安全删除等功能,确保在高效清理的同时不会影响系统的正常运作。 从描述内容来看,该文件只重复了“电脑垃圾清理专家”这一关键词,没有提供其他具体信息。这可能是为了强调软件的功能定位或品牌口号。而从标签“电脑,垃圾,清理,专家”可以提炼出与电脑垃圾清理相关的关键点,如电脑维护、系统性能提升、安全隐私保护等。 在【压缩包子文件的文件名称列表】中,只有一个文件“电脑垃圾清理专家.exe”,这表明了该压缩文件包中仅包含一个可执行文件,即用户下载后可以直接运行的清理工具程序。 总结而言,电脑垃圾清理专家是帮助用户管理和清除电脑系统垃圾,提升电脑性能和安全性的实用软件。专业的清理工具通常能够提供更为全面和安全的清理服务,但用户在使用过程中需要小心谨慎,避免误删除重要文件。