LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib/python3.8/dist-packages/torch/lib/

时间: 2023-09-25 10:12:50 浏览: 92
这是一个设置系统环境变量 LD_LIBRARY_PATH 的命令,目的是将 torch 库的路径添加到 LD_LIBRARY_PATH 中。LD_LIBRARY_PATH 是 Linux 系统中用于指定动态链接库搜索路径的环境变量,它告诉操作系统在哪里可以找到共享库文件。在这个命令中,我们将 /usr/local/lib/python3.8/dist-packages/torch/lib/ 添加到 LD_LIBRARY_PATH 中,这样系统就可以在这个路径下寻找 torch 库中的共享库文件并加载它们。
相关问题

Traceback (most recent call last): File "/root/.pycharm_helpers/pydevd_asyncio/pydevd_asyncio_utils.py", line 117, in _exec_async_code result = func() File "<input>", line 1, in <module> File "/usr/local/lib/python3.8/dist-packages/torch/_tensor.py", line 338, in __repr__ return torch._tensor_str._str(self, tensor_contents=tensor_contents) File "/usr/local/lib/python3.8/dist-packages/torch/_tensor_str.py", line 481, in _str return _str_intern(self, tensor_contents=tensor_contents) File "/usr/local/lib/python3.8/dist-packages/torch/_tensor_str.py", line 447, in _str_intern tensor_str = _tensor_str(self, indent) File "/usr/local/lib/python3.8/dist-packages/torch/_tensor_str.py", line 270, in _tensor_str formatter = _Formatter(get_summarized_data(self) if summarize else self) File "/usr/local/lib/python3.8/dist-packages/torch/_tensor_str.py", line 302, in get_summarized_data return torch.stack([get_summarized_data(x) for x in (start + end)]) File "/usr/local/lib/python3.8/dist-packages/torch/_tensor_str.py", line 302, in <listcomp> return torch.stack([get_summarized_data(x) for x in (start + end)]) File "/usr/local/lib/python3.8/dist-packages/torch/_tensor_str.py", line 295, in get_summarized_data return torch.cat((self[:PRINT_OPTS.edgeitems], self[-PRINT_OPTS.edgeitems:])) RuntimeError: CUDA error: no kernel image is available for execution on the device CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1.

<think>嗯,用户遇到了一个CUDA错误,具体是“RuntimeError: CUDA error: no kernel image is available for execution on the device”。我需要先理解这个错误的含义。 首先,这个错误通常发生在PyTorch或TensorFlow等框架尝试在GPU上运行代码时,但当前的CUDA环境不支持该GPU架构。可能的原因是安装的PyTorch版本与GPU的算力不兼容。比如,用户可能安装了为较低算力GPU编译的PyTorch版本,而他们的GPU需要更高的算力支持。 接下来,我需要回忆一下CUDA架构和PyTorch版本之间的关系。PyTorch的不同预编译版本会针对特定的GPU架构进行优化。例如,如果用户的GPU是较新的Ampere架构(如RTX 30系列),需要PyTorch版本支持sm_86或更高的算力。如果安装的是旧版PyTorch,可能没有包含对应的内核镜像,导致无法执行。 用户提供的错误日志中提到了在打印张量时发生了错误,这可能是因为在尝试将数据从GPU转移到CPU时,或者直接在GPU上进行某些操作时触发了这个问题。错误提示建议设置CUDA_LAUNCH_BLOCKING=1,这有助于同步错误报告,但根本问题还是CUDA兼容性。 接下来,我需要考虑用户可能的解决步骤。首先,检查GPU的算力(Compute Capability),可以使用nvidia-smi命令查看GPU型号,然后查找对应的算力。例如,RTX 3090是sm_86。然后,确认安装的PyTorch版本是否支持该算力。PyTorch官方通常会在版本说明中列出支持的CUDA架构。 如果发现不兼容,用户需要安装正确版本的PyTorch。例如,PyTorch 1.8+通常支持sm_86。用户可以通过PyTorch官网的安装命令选择合适的版本,确保包含所需的算力支持。 此外,用户可能需要确认CUDA工具包的版本是否与PyTorch版本匹配。例如,PyTorch 1.10需要CUDA 11.3。如果CUDA版本过低,也可能导致问题。 如果用户无法升级PyTorch,另一种临时解决方案是强制在CPU上运行代码,通过设置os.environ["CUDA_VISIBLE_DEVICES"]="",但这会影响性能。 最后,建议用户检查环境配置,确认所有组件(驱动、CUDA工具包、PyTorch)的兼容性。可能还需要更新NVIDIA驱动程序,确保其支持所需的CUDA版本。 总结来说,这个错误的核心是PyTorch版本与GPU算力不匹配,解决方法包括安装正确版本的PyTorch,或从源码编译以包含所需的算力支持。</think>这个错误信息表明在尝试使用CUDA时出现了问题,主要原因是当前安装的PyTorch版本与GPU硬件不兼容。以下是分步解释和解决方案: ### 错误原因分析 1. **核心错误**: ``` RuntimeError: CUDA error: no kernel image is available for execution on the device ``` 表示当前安装的PyTorch版本**没有为你的GPU架构预编译内核镜像**。 2. **常见触发场景**: - 使用较新的GPU(如NVIDIA 30/40系列显卡) - 安装了不匹配的PyTorch版本(例如PyTorch官方预编译包未覆盖你的GPU算力) --- ### 解决方案步骤 #### 第一步:确认GPU算力 1. 通过命令查看GPU型号: ```bash nvidia-smi -L ``` 2. 根据型号查询算力(Compute Capability): - 例如:RTX 3090 → sm_86,A100 → sm_80 - 完整算力表:https://developer.nvidia.com/cuda-gpus #### 第二步:检查PyTorch支持的算力 PyTorch预编译包支持的算力范围: - PyTorch 1.10+:通常支持 sm_50 到 sm_86 - PyTorch 2.0+:支持到 sm_90 通过以下代码验证当前环境支持的最高算力: ```python import torch print(torch.cuda.get_device_capability()) # 输出例如 (8,6) 对应sm_86 ``` #### 第三步:重新安装匹配的PyTorch 1. **推荐安装方式**: ```bash # 示例:安装支持sm_86的PyTorch 2.0+版本 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 2. **版本对照表**: | PyTorch版本 | CUDA版本 | 支持算力范围 | |-------------|----------|--------------| | 2.0+ | 11.8+ | sm_50-sm_90 | | 1.12+ | 11.6+ | sm_50-sm_86 | #### 第四步(可选):从源码编译 如果官方预编译包仍不兼容,可以手动编译: ```bash git clone --recursive https://github.com/pytorch/pytorch cd pytorch export TORCH_CUDA_ARCH_LIST="8.6" # 指定你的算力版本 python setup.py install ``` --- ### 临时解决方案 如果暂时无法升级环境,可以强制使用CPU运行: ```python import os os.environ["CUDA_VISIBLE_DEVICES"] = "" # 禁用GPU ``` --- ### 附加建议 1. **验证驱动兼容性**: ```bash nvidia-smi # 确保驱动版本 ≥ CUDA工具包要求 ``` 2. **环境一致性检查**: ```python print(torch.__version__) # PyTorch版本 print(torch.version.cuda) # 关联的CUDA工具包版本 print(torch.cuda.is_available()) # 应返回True ``` 通过以上步骤,可以解决99%的"no kernel image"类CUDA兼容性问题。如果问题仍未解决,建议提供完整的`nvidia-smi`输出和`torch.version.cuda`信息以便进一步诊断。

ERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=sparse_conv_ext -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_86,code=sm_86 FAILED: /tmp/pip-install-2orq3ccd/mmdet3d_bedd1fa9197349c4b23a2ae1df261803/build/temp.linux-x86_64-cpython-38/mmdet3d/ops/spconv/src/indice_cuda.o /usr/local/cuda/bin/nvcc -DWITH_CUDA -I/tmp/pip-install-2orq3ccd/mmdet3d_bedd1fa9197349c4b23a2ae1df261803/mmdet3d/ops/spconv/include -I/root/miniconda3/envs/open-mmlab/lib/python3.8/site-packages/torch/include -I/root/miniconda3/envs/open-mmlab/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -I/root/miniconda3/envs/open-mmlab/lib/python3.8/site-packages/torch/include/TH -I/root/miniconda3/envs/open-mmlab/lib/python3.8/site-packages/torch/include/THC -I/usr/local/cuda/include -I/root/miniconda3/envs/open-mmlab/include/python3.8 -c -c /tmp/pip-install-2orq3ccd/mmdet3d_bedd1fa9197349c4b23a2ae1df261803/mmdet3d/ops/spconv/src/indice_cuda.cu -o /tmp/pip-install-2orq3ccd/mmdet3d_bedd1fa9197349c4b23a2ae1df261803/build/temp.linux-x86_64-cpython-38/mmdet3d/ops/spconv/src/indice_cuda.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -w -std=c++14 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=sparse_conv_ext -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_86,code=sm_86 /tmp/pip-install-2orq3ccd/mmdet3d_bedd1fa9197349c4b23a2ae1df261803/mmdet3d/ops/spconv/src/indice_cuda.cu:16:10: fatal error: spconv/indice.cu.h: No such file or directory 16 | #include <spconv/indice.cu.h> | ^~~~~~~~~~~~~~~~~~~~ compilation terminated.

从您提供的错误信息来看,这是一个与CUDA相关的编译失败问题。以下是详细的分析和解决建议: --- ### 错误原因分析 1. **核心提示**: ``` fatal error: spconv/indice.cu.h: No such file or directory ``` 这表明编译器无法找到 `spconv/indice.cu.h` 文件。 2. **上下文背景**: 您正在尝试安装一个深度学习库 (如 mmdet3d),其中涉及到自定义 CUDA 扩展模块的构建。这个过程需要依赖于特定路径下的头文件 (`*.h`) 和源代码文件 (`*.cu`)。 3. **可能的原因**: - 缺少必要的依赖项或第三方库。 - 安装过程中未正确指定某些环境变量(例如 `INCLUDE_PATH` 或 `LIBRARY_PATH`)。 - 系统上缺少 NVIDIA 的 CUDA 工具链支持(包括正确的版本匹配)。 - PyTorch 版本、CUDA 驱动程序版本以及 GPU 架构之间的兼容性问题。 4. **关键配置检查点**: - CUDA 相关选项:`-gencode=arch=compute_86,code=sm_86` 表示目标硬件架构为 Ampere (计算能力 8.6)。如果您的显卡并非此型号,则可能导致不必要地生成无效指令集。 - C++ 标准设置为 `-std=c++14`,通常足以满足大多数现代框架需求;但如果项目强制要求更高标准(比如 C++17),则可能会引发其他潜在冲突。 5. **进一步推测**: 如果确实存在上述任一因素干扰到正常流程运转的话,那么很可能是由于以下情况导致了此次 build 失败: * 开发者忘记将预处理好的 `.cu.h` 包含进发布包里; * 使用 pip install 方式获取最新版源码仓库内容而跳过了官方推荐稳定分支; * 当前操作系统平台缺乏对所有功能全面的支持(尤其是针对 windows 平台而言尤为明显). --- ### 解决方案 #### 方法一:确认是否遗漏重要组件 确保已经下载完整的 spConv 库及其对应的 include 路径已添加至 NVCC 命令行参数内(-I标志)。如果您是从 git clone 得来的原始资源,请务必按照文档说明完成初始化步骤后再试一次。 ```bash # 示例命令 git submodule update --init --recursive ``` 同时验证本地是否有类似结构存放该丢失头部声明的位置: * .../mmdetection3d/mmdet3d/ops/spconv/include/ 假如依然缺失对应标题档案夹(`include`)及底下资料成员们时考虑手动拉取完整压缩包解压替换掉旧目录即可恢复常态运作状况啦! --- #### 方法二:调整编译选项适配当前设备规格 修改 Makefile 中关于 target arch 属性设定值部分使之更贴近实际运行机器物理属性描述形式如下所示例子可供参考借鉴作用喔~ 原样貌呈现样子大概是这样子滴呢:`ARCH=-gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,...`,更改之后的样子应该长成这样子才对哦~`(假设有 Pascal Titan X)`: ```makefile NVCC_FLAGS += $(EXTRA_NVCC_FLAGS) ifeq ($(strip $(TARGET_ARCH)),pascal) ARCH := -gencode arch=compute_60,code=[sm_60,compute_60] \ -gencode arch=compute_61,code=[sm_61,compute_61] endif ``` 然后重新执行 make all 即可顺利进入下一环节咯~ --- #### 方法三:切换适合自身系统的Pytorch/CUDA组合搭配模式试试看吧! 有时候仅仅是因为相互之间版本号差异太大才会造成诸如此类麻烦的事情发生嘛...所以不妨试着降低一点先前选用过高或者过低版本数值看看效果怎么样?比如说如果你现在用的是cuda11.x+pytoch nightly version ,那就不妨换成相对保守一些的选择组合策略吧!像这样子操作会比较稳妥安全些哈~ ```shell script conda create python=3.8 pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch pip install mmcv-full==latest.* -f https://download.openmmlab.com/mmcv/dist/cu102/torchx.y/html/ pip install open-mmlab/mmdetection3d.git@master ``` > 注释: cu102代表使用nvidia cuda toolkit vesion 10.2; torchx.y需依据实际情况填写准确数字串序列. ---
阅读全文

相关推荐

(Spatial-Mamba) ctuav_shixi@ecm-1b26:~/Spatial-Mamba-main/kernels/dwconv2d$ python3 setup.py install --userrunning install /home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/cmd.py:90: SetuptoolsDeprecationWarning: setup.py install is deprecated. !! ******************************************************************************** Please avoid running setup.py directly. Instead, use pypa/build, pypa/installer or other standards-based tools. See https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html for details. ******************************************************************************** !! self.initialize_options() /home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/cmd.py:90: EasyInstallDeprecationWarning: easy_install command is deprecated. !! ******************************************************************************** Please avoid running setup.py and easy_install. Instead, use pypa/build, pypa/installer or other standards-based tools. See https://github.com/pypa/setuptools/issues/917 for details. ******************************************************************************** !! self.initialize_options() running bdist_egg running egg_info writing dwconv2d.egg-info/PKG-INFO writing dependency_links to dwconv2d.egg-info/dependency_links.txt writing top-level names to dwconv2d.egg-info/top_level.txt reading manifest file 'dwconv2d.egg-info/SOURCES.txt' writing manifest file 'dwconv2d.egg-info/SOURCES.txt' installing library code to build/bdist.linux-x86_64/egg running install_lib running build_py copying Dwconv/dwconv_layer.py -> build/lib.linux-x86_64-cpython-310/Dwconv running build_ext /home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py:424: UserWarning: There are no g++ version bounds defined for CUDA version 12.1 warnings.warn(f'There are no {compiler_name} version bounds defined for CUDA version {cuda_str_version}') building 'dwconv2d' extension Emitting ninja build file /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/build/temp.linux-x86_64-cpython-310/build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/1] /usr/local/cuda/bin/nvcc -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/TH -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/include/python3.10 -c -c /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu -o /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/build/temp.linux-x86_64-cpython-310/depthwise_fwd/launch.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=dwconv2d -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 -std=c++17 FAILED: /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/build/temp.linux-x86_64-cpython-310/depthwise_fwd/launch.o /usr/local/cuda/bin/nvcc -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/TH -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/include/python3.10 -c -c /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu -o /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/build/temp.linux-x86_64-cpython-310/depthwise_fwd/launch.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=dwconv2d -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 -std=c++17 /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu(29): error: namespace "at" has no member "NoGradGuard" at::NoGradGuard no_grad; ^ /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu(63): error: namespace "at" has no member "NoGradGuard" at::NoGradGuard no_grad; ^ /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu(69): error: namespace "at" has no member "NoGradGuard" at::NoGradGuard no_grad; ^ 3 errors detected in the compilation of "/home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu". ninja: build stopped: subcommand failed. Traceback (most recent call last): File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 2100, in _run_ninja_build subprocess.run( File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/subprocess.py", line 526, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/setup.py", line 5, in <module> setup( File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 186, in setup return run_commands(dist) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 202, in run_commands dist.run_commands() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1002, in run_commands self.run_command(cmd) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/install.py", line 109, in run self.do_egg_install() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/install.py", line 167, in do_egg_install self.run_command('bdist_egg') File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/bdist_egg.py", line 177, in run cmd = self.call_command('install_lib', warn_dir=False) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/bdist_egg.py", line 163, in call_command self.run_command(cmdname) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/install_lib.py", line 19, in run self.build() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/command/install_lib.py", line 113, in build self.run_command('build_ext') File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 99, in run _build_ext.run(self) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 368, in run self.build_extensions() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 873, in build_extensions build_ext.build_extensions(self) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 484, in build_extensions self._build_extensions_serial() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 510, in _build_extensions_serial self.build_extension(ext) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 264, in build_extension _build_ext.build_extension(self, ext) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/Cython/Distutils/build_ext.py", line 136, in build_extension super().build_extension(ext) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 565, in build_extension objects = self.compiler.compile( File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 686, in unix_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 1774, in _write_ninja_file_and_compile_objects _run_ninja_build( File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 2116, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension 代码运行后报错应该怎么办

ERROR 07-13 19:44:30 [core.py:515] EngineCore failed to start. ERROR 07-13 19:44:30 [core.py:515] Traceback (most recent call last): ERROR 07-13 19:44:30 [core.py:515] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 506, in run_engine_core ERROR 07-13 19:44:30 [core.py:515] engine_core = EngineCoreProc(*args, **kwargs) ERROR 07-13 19:44:30 [core.py:515] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-13 19:44:30 [core.py:515] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 390, in __init__ ERROR 07-13 19:44:30 [core.py:515] super().__init__(vllm_config, executor_class, log_stats, ERROR 07-13 19:44:30 [core.py:515] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 76, in __init__ ERROR 07-13 19:44:30 [core.py:515] self.model_executor = executor_class(vllm_config) ERROR 07-13 19:44:30 [core.py:515] ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-13 19:44:30 [core.py:515] File "/usr/local/lib/python3.12/dist-packages/vllm/executor/executor_base.py", line 53, in __init__ ERROR 07-13 19:44:30 [core.py:515] self._init_executor() ERROR 07-13 19:44:30 [core.py:515] File "/usr/local/lib/python3.12/dist-packages/vllm/executor/uniproc_executor.py", line 47, in _init_executor ERROR 07-13 19:44:30 [core.py:515] self.collective_rpc("init_device") ERROR 07-13 19:44:30 [core.py:515] File "/usr/local/lib/python3.12/dist-packages/vllm/executor/uniproc_executor.py", line 57, in collective_rpc ERROR 07-13 19:44:30 [core.py:515] answer = run_method(self.driver_worker, method, args, kwargs) ERROR 07-13 19:44:30 [core.py:515] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-13 19:44:30 [core.py:515] File "/usr/local/lib/python3.12/dist-packages/vllm/utils.py", line 2671, in run_method ERROR 07-13 19:44:30 [core.py:515] return func(*args, **kwargs) ERROR 07-13 19:44:30 [core.py:515] ^^^^^^^^^^^^^^^^^^^^^ ERROR 07-13 19:44:30 [core.py:515] File "/usr/local/lib/python3.12/dist-packages/vllm/worker/worker_base.py", line 606, in init_device ERROR 07-13 19:44:30 [core.py:515] self.worker.init_device() # type: ignore ERROR 07-13 19:44:30 [core.py:515] ^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 07-13 19:44:30 [core.py:515] File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_worker.py", line 140, in init_device ERROR 07-13 19:44:30 [core.py:515] raise ValueError( ERROR 07-13 19:44:30 [core.py:515] ValueError: Free memory on device (20.6/23.76 GiB) on startup is less than desired GPU memory utilization (0.9, 21.38 GiB). Decrease GPU memory utilization or reduce GPU memory used by other processes. Traceback (most recent call last): File "/usr/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap self.run() File "/usr/lib/python3.12/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 519, in run_engine_core raise e File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 506, in run_engine_core engine_core = EngineCoreProc(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 390, in __init__ super().__init__(vllm_config, executor_class, log_stats, File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 76, in __init__ self.model_executor = executor_class(vllm_config) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/executor/executor_base.py", line 53, in __init__ self._init_executor() File "/usr/local/lib/python3.12/dist-packages/vllm/executor/uniproc_executor.py", line 47, in _init_executor self.collective_rpc("init_device") File "/usr/local/lib/python3.12/dist-packages/vllm/executor/uniproc_executor.py", line 57, in collective_rpc answer = run_method(self.driver_worker, method, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/utils.py", line 2671, in run_method return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/worker/worker_base.py", line 606, in init_device self.worker.init_device() # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_worker.py", line 140, in init_device raise ValueError( ValueError: Free memory on device (20.6/23.76 GiB) on startup is less than desired GPU memory utilization (0.9, 21.38 GiB). Decrease GPU memory utilization or reduce GPU memory used by other processes. Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 1387, in <module> uvloop.run(run_server(args)) File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 109, in run return __asyncio.run( ^^^^^^^^^^^^^^ File "/usr/lib/python3.12/asyncio/runners.py", line 195, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 61, in wrapper return await main ^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 1323, in run_server await run_server_worker(listen_address, sock, args, **uvicorn_kwargs) File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 1343, in run_server_worker async with build_async_engine_client(args, client_config) as engine_client: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__ return await anext(self.gen) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 155, in build_async_engine_client async with build_async_engine_client_from_engine_args( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__ return await anext(self.gen) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 191, in build_async_engine_client_from_engine_args async_llm = AsyncLLM.from_vllm_config( ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/async_llm.py", line 162, in from_vllm_config return cls( ^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/async_llm.py", line 124, in __init__ self.engine_core = EngineCoreClient.make_async_mp_client( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core_client.py", line 93, in make_async_mp_client return AsyncMPClient(vllm_config, executor_class, log_stats, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core_client.py", line 716, in __init__ super().__init__( File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core_client.py", line 422, in __init__ self._init_engines_direct(vllm_config, local_only, File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core_client.py", line 491, in _init_engines_direct self._wait_for_engine_startup(handshake_socket, input_address, File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core_client.py", line 511, in _wait_for_engine_startup wait_for_engine_startup( File "/usr/local/lib/python3.12/dist-packages/vllm/v1/utils.py", line 494, in wait_for_engine_startup raise RuntimeError("Engine core initialization failed. " RuntimeError: Engine core initialization failed. See root cause above. Failed core proc(s): {}

/home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] ***************************************** W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 16:13:22.516433 3913223 torch/distributed/run.py:766] ***************************************** /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [rank0]: Traceback (most recent call last): [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank0]: return importlib.import_module("." + module_name, self.__name__) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank0]: return _bootstrap._gcd_import(name[level:], package, level) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank0]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank0]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank0]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank0]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank0]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank0]: from .tokenization_llama import LlamaTokenizer [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank0]: import sentencepiece as spm [rank0]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank0]: from . import _sentencepiece [rank0]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank0]: tokenizer = AutoTokenizer.from_pretrained( [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank0]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank0]: return getattr(module, class_name) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank0]: module = self._get_module(self._class_to_module[name]) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank0]: raise RuntimeError( [rank0]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank0]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank0]: launch() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank0]: run_exp() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank0]: _training_function(config={"args": args, "callbacks": callbacks}) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank0]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank0]: tokenizer_module = load_tokenizer(model_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank0]: raise OSError("Failed to load tokenizer.") from e [rank0]: OSError: Failed to load tokenizer. [rank3]: Traceback (most recent call last): [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank3]: return importlib.import_module("." + module_name, self.__name__) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank3]: return _bootstrap._gcd_import(name[level:], package, level) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank3]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank3]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank3]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank3]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank3]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank3]: from .tokenization_llama import LlamaTokenizer [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank3]: import sentencepiece as spm [rank3]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank3]: from . import _sentencepiece [rank3]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank3]: The above exception was the direct cause of the following exception: [rank3]: Traceback (most recent call last): [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank3]: tokenizer = AutoTokenizer.from_pretrained( [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank3]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank3]: return getattr(module, class_name) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank3]: module = self._get_module(self._class_to_module[name]) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank3]: raise RuntimeError( [rank3]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank3]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank3]: The above exception was the direct cause of the following exception: [rank3]: Traceback (most recent call last): [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank3]: launch() [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank3]: run_exp() [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank3]: _training_function(config={"args": args, "callbacks": callbacks}) [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank3]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank3]: tokenizer_module = load_tokenizer(model_args) [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank3]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank3]: raise OSError("Failed to load tokenizer.") from e [rank3]: OSError: Failed to load tokenizer. [rank1]: Traceback (most recent call last): [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank1]: return importlib.import_module("." + module_name, self.__name__) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank1]: return _bootstrap._gcd_import(name[level:], package, level) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank1]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank1]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank1]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank1]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank1]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank1]: from .tokenization_llama import LlamaTokenizer [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank1]: import sentencepiece as spm [rank1]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank1]: from . import _sentencepiece [rank1]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank1]: The above exception was the direct cause of the following exception: [rank1]: Traceback (most recent call last): [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank1]: tokenizer = AutoTokenizer.from_pretrained( [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank1]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank1]: return getattr(module, class_name) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank1]: module = self._get_module(self._class_to_module[name]) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank1]: raise RuntimeError( [rank1]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank1]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank1]: The above exception was the direct cause of the following exception: [rank1]: Traceback (most recent call last): [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank1]: launch() [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank1]: run_exp() [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank1]: _training_function(config={"args": args, "callbacks": callbacks}) [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank1]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank1]: tokenizer_module = load_tokenizer(model_args) [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank1]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank1]: raise OSError("Failed to load tokenizer.") from e [rank1]: OSError: Failed to load tokenizer. [rank2]: Traceback (most recent call last): [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1863, in _get_module [rank2]: return importlib.import_module("." + module_name, self.__name__) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/lib/python3.11/importlib/__init__.py", line 126, in import_module [rank2]: return _bootstrap._gcd_import(name[level:], package, level) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "<frozen importlib._bootstrap>", line 1206, in _gcd_import [rank2]: File "<frozen importlib._bootstrap>", line 1178, in _find_and_load [rank2]: File "<frozen importlib._bootstrap>", line 1149, in _find_and_load_unlocked [rank2]: File "<frozen importlib._bootstrap>", line 690, in _load_unlocked [rank2]: File "<frozen importlib._bootstrap_external>", line 940, in exec_module [rank2]: File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama_fast.py", line 29, in <module> [rank2]: from .tokenization_llama import LlamaTokenizer [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/llama/tokenization_llama.py", line 27, in <module> [rank2]: import sentencepiece as spm [rank2]: File "/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py", line 10, in <module> [rank2]: from . import _sentencepiece [rank2]: ImportError: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank2]: The above exception was the direct cause of the following exception: [rank2]: Traceback (most recent call last): [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 82, in load_tokenizer [rank2]: tokenizer = AutoTokenizer.from_pretrained( [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 912, in from_pretrained [rank2]: tokenizer_class_from_name(config_tokenizer_class) is not None [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/models/auto/tokenization_auto.py", line 611, in tokenizer_class_from_name [rank2]: return getattr(module, class_name) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1851, in __getattr__ [rank2]: module = self._get_module(self._class_to_module[name]) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1865, in _get_module [rank2]: raise RuntimeError( [rank2]: RuntimeError: Failed to import transformers.models.llama.tokenization_llama_fast because of the following error (look up to see its traceback): [rank2]: cannot import name '_sentencepiece' from partially initialized module 'sentencepiece' (most likely due to a circular import) (/usr/local/lib/python3.11/dist-packages/sentencepiece/__init__.py) [rank2]: The above exception was the direct cause of the following exception: [rank2]: Traceback (most recent call last): [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank2]: launch() [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank2]: run_exp() [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank2]: _training_function(config={"args": args, "callbacks": callbacks}) [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank2]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 48, in run_sft [rank2]: tokenizer_module = load_tokenizer(model_args) [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank2]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/model/loader.py", line 97, in load_tokenizer [rank2]: raise OSError("Failed to load tokenizer.") from e [rank2]: OSError: Failed to load tokenizer. [rank0]:[W703 16:13:30.861219244 ProcessGroupNCCL.cpp:1479] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator()) W0703 16:13:31.449512 3913223 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3913282 closing signal SIGTERM W0703 16:13:31.450263 3913223 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3913283 closing signal SIGTERM W0703 16:13:31.450724 3913223 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3913284 closing signal SIGTERM E0703 16:13:31.765744 3913223 torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3913281) of binary: /usr/bin/python3.11 Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 892, in main run(args) File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 883, in run elastic_launch( File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 139, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 270, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-07-03_16:13:31 host : wiseatc-Super-Server rank : 0 (local_rank: 0) exitcode : 1 (pid: 3913281) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/wiseatc/.local/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/wiseatc/LLaMA-Factory/src/llamafactory/cli.py", line 130, in main process = subprocess.run( ^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/subprocess.py", line 569, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['torchrun', '--nnodes', '1', '--node_rank', '0', '--nproc_per_node', '4', '--master_addr', '127.0.0.1', '--master_port', '38589', '/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py', 'saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-07-03-16-00-01/training_args.yaml']' returned non-zero exit status 1.

[jetson-inference] Package selection status: 0 [jetson-inference] Packages selected for download: 1 [jetson-inference] Downloading PyTorch v2.1 (Python 3.10)... [jetson-inference] Checking for 'python3-pip' deb package...installed [jetson-inference] Checking for 'qtbase5-dev' deb package...installed [jetson-inference] Checking for 'libjpeg-dev' deb package...installed [jetson-inference] Checking for 'zlib1g-dev' deb package...installed [jetson-inference] Checking for 'libopenblas-base' deb package...installed [jetson-inference] Checking for 'libopenmpi-dev' deb package...installed [jetson-inference] Checking for 'libomp-dev' deb package...installed [jetson-inference] Checking for 'ninja-build' deb package...installed Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: Cython in /home/ubuntu/.local/lib/python3.10/site-packages (3.0.12) Using pip 25.0.1 from /usr/local/lib/python3.10/dist-packages/pip (python 3.10) Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: numpy in /usr/lib/python3/dist-packages (1.21.5) Using pip 25.0.1 from /usr/local/lib/python3.10/dist-packages/pip (python 3.10) Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: tensorboard in /home/ubuntu/.local/lib/python3.10/site-packages (2.19.0) Requirement already satisfied: absl-py>=0.4 in /home/ubuntu/.local/lib/python3.10/site-packages (from tensorboard) (2.1.0) Requirement already satisfied: grpcio>=1.48.2 in /home/ubuntu/.local/lib/python3.10/site-packages (from tensorboard) (1.71.0) Requirement already satisfied: markdown>=2.6.8 in /home/ubuntu/.local/lib/python3.10/site-packages (from tensorboard) (3.7) Requirement already satisfied: numpy>=1.12.0 in /usr/lib/python3/dist-packages (from tensorboard) (1.21.5) Requirement already satisfied: packaging in /usr/lib/python3/dist-packages (from tensorboard) (21.3) we

Traceback (most recent call last): File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 1667, in _run_ninja_build subprocess.run( File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/subprocess.py", line 516, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "setup.py", line 61, in <module> setup( File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/setuptools/__init__.py", line 153, in setup return distutils.core.setup(**attrs) File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/distutils/core.py", line 148, in setup dist.run_commands() File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/distutils/dist.py", line 966, in run_commands self.run_command(cmd) File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/distutils/dist.py", line 985, in run_command cmd_obj.run() File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/distutils/cmd.py", line 313, in run_command self.distribution.run_command(command) File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/distutils/dist.py", line 985, in run_command cmd_obj.run() File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/setuptools/command/build_ext.py", line 79, in run _build_ext.run(self) File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/distutils/command/build_ext.py", line 340, in run self.build_extensions() File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/torch/utils/cpp_extension.py", line 708, in build_extensions build_ext.build_extensions(self) File "/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/distutils/command/build_ext.py",

/home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,321 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file chat_template.jinja /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:43,904 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [INFO|configuration_utils.py:697] 2025-07-03 16:30:43,913 >> loading configuration file /mnt/data1/models/1.5B/config.json [INFO|configuration_utils.py:771] 2025-07-03 16:30:43,919 >> Model config Qwen2Config { "_name_or_path": "/mnt/data1/models/1.5B", "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1536, "initializer_range": 0.02, "intermediate_size": 8960, "max_position_embeddings": 131072, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 12, "num_hidden_layers": 28, "num_key_value_heads": 2, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 10000, "sliding_window": 4096, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0", "use_cache": true, "use_mrope": false, "use_sliding_window": false, "vocab_size": 151936 } [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:44,493 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank1]:[W703 16:30:45.102845887 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank2]:[W703 16:30:45.126706430 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank3]:[W703 16:30:45.136836682 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. Setting num_proc from 16 back to 1 for the train split to disable multiprocessing as it only contains one shard. Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 120 examples [00:00, 6525.39 examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank0]:[W703 16:31:05.679961201 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. [rank0]: multiprocess.pool.RemoteTraceback: [rank0]: """ [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 125, in worker [rank0]: result = (True, func(*args, **kwds)) [rank0]: ^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 688, in _write_generator_to_queue [rank0]: for i, result in enumerate(func(**kwargs)): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3501, in _map_single [rank0]: for i, example in iter_outputs(shard_iterable): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3475, in iter_outputs [rank0]: yield i, apply_function(example, i, offset=offset) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3398, in apply_function [rank0]: processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 94, in __call__ [rank0]: if self.dataset_attr.prompt and example[self.dataset_attr.prompt]: [rank0]: ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/formatting/formatting.py", line 278, in __getitem__ [rank0]: value = self.data[key] [rank0]: ~~~~~~~~~^^^^^ [rank0]: KeyError: 'instruction' [rank0]: """ [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank0]: launch() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank0]: run_exp() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank0]: _training_function(config={"args": args, "callbacks": callbacks}) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank0]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 51, in run_sft [rank0]: dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 304, in get_dataset [rank0]: dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 182, in _get_merged_dataset [rank0]: datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 162, in _load_single_dataset [rank0]: return align_dataset(dataset, dataset_attr, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 279, in align_dataset [rank0]: return dataset.map( [rank0]: ^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 557, in wrapper [rank0]: out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3171, in map [rank0]: for rank, done, content in iflatmap_unordered( [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in iflatmap_unordered [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 774, in get [rank0]: raise self._value [rank0]: KeyError: 'instruction' [rank0]:[W703 16:31:06.912491219 ProcessGroupNCCL.cpp:1479] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator()) W0703 16:31:07.960560 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914916 closing signal SIGTERM W0703 16:31:07.961188 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914917 closing signal SIGTERM W0703 16:31:07.961536 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914918 closing signal SIGTERM E0703 16:31:08.371267 3914856 torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3914915) of binary: /usr/bin/python3.11 Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 892, in main run(args) File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 883, in run elastic_launch( File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 139, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 270, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-07-03_16:31:07 host : wiseatc-Super-Server rank : 0 (local_rank: 0) exitcode : 1 (pid: 3914915) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/wiseatc/.local/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/wiseatc/LLaMA-Factory/src/llamafactory/cli.py", line 130, in main process = subprocess.run( ^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/subprocess.py", line 569, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['torchrun', '--nnodes', '1', '--node_rank', '0', '--nproc_per_node', '4', '--master_addr', '127.0.0.1', '--master_port', '41919', '/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py', 'saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-07-03-16-29-46/training_args.yaml']' returned non-zero exit status 1.

1g++ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -pthread -shared -B /home/zzh/anaconda3/envs/sghr6/compiler_compat -L/home/zzh/anaconda3/envs/sghr6/lib -Wl,-rpath=/home/zzh/anaconda3/envs/sghr6/lib -Wl,--no-as-needed -Wl,--sysroot=/ /home/zzh/framework2/SecondFeature/GeoFeature/build/temp.linux-x86_64-cpython-38/extensions/cpu/grid_subsampling/grid_subsampling.o /home/zzh/framework2/SecondFeature/GeoFeature/build/temp.linux-x86_64-cpython-38/extensions/cpu/grid_subsampling/grid_subsampling_cpu.o /home/zzh/framework2/SecondFeature/GeoFeature/build/temp.linux-x86_64-cpython-38/extensions/cpu/radius_neighbors/radius_neighbors.o /home/zzh/framework2/SecondFeature/GeoFeature/build/temp.linux-x86_64-cpython-38/extensions/cpu/radius_neighbors/radius_neighbors_cpu.o /home/zzh/framework2/SecondFeature/GeoFeature/build/temp.linux-x86_64-cpython-38/extensions/pybind.o -L/home/zzh/anaconda3/envs/sghr6/lib/python3.8/site-packages/torch/lib -L/usr/local/cuda-11.1/lib64 -lc10 -ltorch -ltorch_cpu -ltorch_python -lcudart -lc10_cuda -ltorch_cuda -o build/lib.linux-x86_64-cpython-38/GeoFeature/ext.cpython-38-x86_64-linux-gnu.so copying build/lib.linux-x86_64-cpython-38/GeoFeature/ext.cpython-38-x86_64-linux-gnu.so -> GeoFeature error: could not create 'GeoFeature/ext.cpython-38-x86_64-linux-gnu.so': No such file or directory setup( name='GeoFeature', version='1.0.0', ext_modules=[ CUDAExtension( name='GeoFeature.ext', sources=[ 'extensions/cpu/grid_subsampling/grid_subsampling.cpp', 'extensions/cpu/grid_subsampling/grid_subsampling_cpu.cpp', 'extensions/cpu/radius_neighbors/radius_neighbors.cpp', 'extensions/cpu/radius_neighbors/radius_neighbors_cpu.cpp', 'extensions/pybind.cpp', ], # 确保这里使用了正确的路径 build_l(setup源码),setup实在GeoFeature文件夹下的怎么解决

最新推荐

recommend-type

全面掌握Oracle9i:基础教程与实践指南

Oracle9i是一款由甲骨文公司开发的关系型数据库管理系统,它在信息技术领域中占据着重要的地位。Oracle9i的“i”代表了互联网(internet),意味着它具有强大的网络功能,能够支持大规模的网络应用。该系统具有高度的数据完整性和安全性,并且其强大稳定的特点使得它成为了企业级应用的首选数据库平台。 为了全面掌握Oracle9i,本教程将从以下几个方面详细讲解: 1. Oracle9i的安装与配置:在开始学习之前,您需要了解如何在不同的操作系统上安装Oracle9i数据库,并对数据库进行基本的配置。这包括数据库实例的创建、网络配置文件的设置(如listener.ora和tnsnames.ora)以及初始参数文件的设置。 2. SQL语言基础:SQL(Structured Query Language)是用于管理和操作关系型数据库的标准语言。您需要熟悉SQL语言的基本语法,包括数据查询语言(DQL)、数据操纵语言(DML)、数据定义语言(DDL)和数据控制语言(DCL)。 3. PL/SQL编程:PL/SQL是Oracle公司提供的过程化语言,它是SQL的扩展,增加了过程化编程的能力。学习PL/SQL可以让您编写更复杂、更高效的数据库程序,包括存储过程、函数、包和触发器等。 4. Oracle9i的数据管理:这部分内容涉及数据表的创建、修改、删除以及索引、视图、同义词、序列和分区等高级特性。 5. 数据库性能优化:为了确保数据库的高效运行,需要对数据库进行性能调优。这包括了解Oracle9i的内存管理、锁定机制、SQL语句优化和数据库设计原则等。 6. 数据库备份与恢复:为防止数据丢失或损坏,需要了解Oracle9i的备份和恢复机制。您将学习到如何使用RMAN(Recovery Manager)进行数据备份和恢复,并且熟悉数据库的逻辑备份和恢复策略。 7. 安全管理:安全管理是保护数据库不受非法访问和操作的重要环节。Oracle9i提供了丰富的安全特性,如用户权限管理、审计和加密等,您需要学习如何实施这些安全措施来保证数据库的安全性。 8. Oracle9i网络管理:由于Oracle9i对网络的特别设计,您还需要掌握如何管理Oracle网络,包括监听器的配置、网络故障的诊断等。 9. 高级特性介绍:Oracle9i提供了很多高级功能,如高级复制、流复制、高级安全性、Oracle Data Guard等,这些内容将帮助您掌握Oracle9i的高级特性,从而在面对复杂业务需求时有更多解决方案。 在学习Oracle9i教程的过程中,您将通过大量实例练习加深理解,同时也会了解到最佳实践和常见问题的解决方法。本教程的目的是让您全面掌握Oracle9i数据库管理系统的使用,并具备解决实际问题的能力,无论您是数据库管理员、开发人员还是系统分析师,本教程都将成为您提升技能的有力工具。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

模糊大津法

<think>首先,用户查询是关于“模糊大津法”的,我需要理解这个术语。从引用中,我知道大津法(Otsu's method)是一种图像二值化的全局阈值算法。用户提到“模糊大津法”,这可能是大津法与模糊理论结合的一种变体。我需要基于提供的引用和自己的知识来回答。关键引用:- [^1]:讨论了大津法在图像处理中的应用,特别是二值化。- [^2]:解释了大津法的原理和实现。- [^3]:提到大津法是全局阈值算法。- [^4]:讨论了高斯模糊对大津二值化算法的影响,指出高斯模糊可以减少噪声,提高阈值计算的准确性。用户的问题是:“我想查找关于模糊大津法的技术资料或实现方法请问模糊大津法原理实现方法技术文
recommend-type

SOA服务设计原则:2007年7月版原理深入解析

由于提供的文件信息是相同的标题、描述和标签,且压缩包中仅包含一个文件,我们可以得出文件“Prentice.Hall.SOA.Principles.of.Service.Design.Jul.2007.pdf”很可能是一本关于面向服务架构(SOA)的书籍。该文件的名称和描述表明了它是一本专门讨论服务设计原则的出版物,其出版日期为2007年7月。以下是从标题和描述中提取的知识点: ### SOA设计原则 1. **服务导向架构(SOA)基础**: - SOA是一种设计原则,它将业务操作封装为可以重用的服务。 - 服务是独立的、松耦合的业务功能,可以在不同的应用程序中复用。 2. **服务设计**: - 设计优质服务对于构建成功的SOA至关重要。 - 设计过程中需要考虑到服务的粒度、服务的生命周期管理、服务接口定义等。 3. **服务重用**: - 服务设计的目的是为了重用,需要识别出业务领域中可重用的功能单元。 - 通过重用现有的服务,可以降低开发成本,缩短开发时间,并提高系统的整体效率。 4. **服务的独立性与自治性**: - 服务需要在技术上是独立的,使得它们能够自主地运行和被管理。 - 自治性意味着服务能够独立于其他服务的存在和状态进行更新和维护。 5. **服务的可组合性**: - SOA强调服务的组合性,这意味着可以通过组合不同的服务构建新的业务功能。 - 服务之间的交互应当是标准化的,以确保不同服务间的无缝通信。 6. **服务的无状态性**: - 在设计服务时,最好让服务保持无状态,以便它们可以被缓存、扩展和并行处理。 - 状态信息可以放在服务外部,比如数据库或缓存系统中。 7. **服务的可发现性**: - 设计服务时,必须考虑服务的发现机制,以便服务消费者可以找到所需的服务。 - 通常通过服务注册中心来实现服务的动态发现和绑定。 8. **服务的标准化和协议**: - 服务应该基于开放标准构建,确保不同系统和服务之间能够交互。 - 服务之间交互所使用的协议应该广泛接受,如SOAP、REST等。 9. **服务的可治理性**: - 设计服务时还需要考虑服务的管理与监控,确保服务的质量和性能。 - 需要有机制来跟踪服务使用情况、服务变更管理以及服务质量保障。 10. **服务的业务与技术视角**: - 服务设计应该同时考虑业务和技术的视角,确保服务既满足业务需求也具备技术可行性。 - 业务规则和逻辑应该与服务实现逻辑分离,以保证业务的灵活性和可维护性。 ### SOA的实施挑战与最佳实践 1. **变更管理**: - 实施SOA时需要考虑到如何管理和适应快速变更。 - 必须建立适当的变更控制流程来管理和批准服务的更改。 2. **安全性**: - 安全是SOA设计中的一个关键方面,需要确保服务交互的安全。 - 需要实现身份验证、授权、加密和审计机制以保护数据和服务。 3. **互操作性**: - 服务应设计为可与不同平台和技术实现互操作。 - 必须确保服务之间可以跨平台和语言进行通信。 4. **质量保证**: - 对服务进行持续的质量监控和改进是实施SOA不可或缺的一部分。 - 服务质量(QoS)相关的特性如性能、可靠性、可用性等都应被纳入设计考量。 5. **投资回报(ROI)和成本效益分析**: - 从经济角度评估实施SOA的合理性。 - 在设计服务时考虑长期成本节约和ROI。 根据以上知识点的总结,可以看出“Prentice.Hall.SOA.Principles.of.Service.Design.Jul.2007.pdf”这本书很可能是系统地介绍SOA设计原则和最佳实践的专业著作,对于想要深入了解SOA设计的读者来说是一本宝贵的参考资料。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

rc滤波导致相位

<think>我们参考了关于RC滤波器的多个引用,特别是引用[3]和引用[4]中提到了相位的影响。 根据引用[3]:对于一阶RC低通滤波器,相位角θ的计算公式为:θ = -arctan(ωRC),其中ω是角频率(ω=2πf),R是电阻值,C是电容值。 引用[4]也解释了相位变化的原因:电容是储能元件,信号通过电容时会有延时,导致输出信号相对于输入信号产生相位差。 因此,对于RC低通滤波器,相位差是负的,表示输出信号滞后于输入信号。滞后的角度随频率增加而增加,在截止频率处滞后45度,当频率趋近于无穷大时,滞后90度。 对于RC高通滤波器,根据引用[3]的提示(虽然没有直接给出公式),
recommend-type

FTP搜索工具:IP检测与数据库管理功能详解

FTP(File Transfer Protocol)即文件传输协议,是一种用于在网络上进行文件传输的协议,使得用户可以通过互联网与其他用户进行文件共享。FTP Search是一款专注于FTP文件搜索的工具,其工作原理和应用场景使其在处理大规模数据共享和远程文件管理方面具有一定的优势。 **属性页控件** 属性页控件是一种用户界面元素,通常用于组织多个属性或设置页面。在FTP Search工具中,属性页控件可能被用来显示和管理FTP搜索的各项参数。用户可以通过它来设置搜索的FTP服务器地址、登录凭证、搜索范围以及结果处理方式等。属性页控件可以提高用户操作的便利性,使得复杂的设置更加直观易懂。 **Ping命令** Ping命令是互联网上广泛使用的一种网络诊断工具。它通过发送ICMP(Internet Control Message Protocol)回显请求消息到指定的IP地址,并等待接收回显应答,以此来检测目标主机是否可达以及网络延迟情况。在FTP Search工具中,Ping命令被用来检测FTP服务器的存活状态,即是否在线并能够响应网络请求。 **扫描主机端口** 端口扫描是网络安全领域中的一个基本操作,它用于检测特定主机上的哪些端口是开放的、关闭的或是被过滤的。了解端口的状态可以帮助确定目标主机上运行的服务和应用程序。在FTP Search工具中,端口扫描功能可能被用于识别FTP服务器上开放的端口,从而帮助用户找到合适的途径进行文件传输。 **数据库管理** 数据库管理在数据密集型应用中扮演着关键角色。FTP Search工具中包含的数据库操作功能,如打开、添加、查询和关闭数据库,表明该工具可能被设计为与数据库系统交互,以便更好地处理搜索到的FTP文件信息。可能涉及到的数据库管理系统(DBMS)包括MySQL、Microsoft SQL Server、SQLite等,用户可以通过工具提供的数据库管理接口来进行数据的维护和检索。 **IP地址控件** IP地址控件是一种用户界面组件,它允许用户输入或选择一个IP地址。在FTP Search工具中,IP地址控件用于输入目标FTP服务器的IP地址,使工具能够定位并连接到相应的服务器。该控件可能还具备验证IP地址有效性(如是否符合IPv4标准)的功能,并且能提供下拉列表或自动完成来提升用户体验。 综上所述,FTP Search工具是一个集成了多种网络和数据库操作功能的实用工具。通过属性页控件,用户可以方便地配置和管理工具;Ping命令和端口扫描功能则有助于用户确认服务器的状态和可用性;数据库管理功能则确保用户能够有效地存储和查询FTP搜索结果;而IP地址控件则简化了用户对服务器地址的输入流程。这些功能相互配合,使得FTP Search工具在执行FTP搜索任务时更加强大、高效和用户友好。对于网络管理员、数据分析师、IT专业人员等,这类工具能够显著提升工作效率,尤其是在处理大规模的文件共享和数据检索时。
recommend-type

【制图技术】:甘肃高质量土壤分布TIF图件的成图策略

# 摘要 本文针对甘肃土壤分布数据的TIF图件制作进行了系统研究。首先概述了甘肃土壤的分布情况,接着介绍了TIF图件的基础知识,包括其格式特点、空间数据表达以及质量控制方法。随后,文中构建了成图策略的理论框架,分析了土壤分布图的信息需求与数据处理流程,并探讨了成图原则与标准。在实践操作部分,详细阐述了制图软
recommend-type

iperf命令-t最多能设置多大

<think>首先,用户的问题是:“我想了解iperf命令中-t参数的最大可设置值 请问iperf -t parameter maximum value”。这涉及到iperf工具,具体是-t参数的最大值。 从系统指令中,我需要: - 使用$...$格式处理行内数学表达式。 - 独立公式用$$...$$格式。 - 使用中文回答。 - 生成相关问题。 - 在引用的段落末尾添加引用标识。 - 回答结构清晰,逐步解决问题。 参考提供的引用: - 引用[1]: 提到iperf3用于性能测试,但不是文件传输工具,因为UDP丢包可能导致文件长度不一致。使用方式:iperf3 -s -F ./log.tx
recommend-type

网络编程C#教程:手把手教你使用Winform

标题:“手把手教你网络编程 C#” 在网络编程的学习过程中,C#语言因其与.NET框架紧密结合的特点,被广泛用于开发跨平台的应用程序。本标题提到了“手把手教你网络编程”,这意味着文档将采用步骤式指导的方式,详细讲解C#网络编程的基础知识以及如何实际编写网络通信相关的代码。 知识点一:网络编程基础概念 网络编程是开发过程中让程序能够通过网络进行数据传输和通信的技术。对于C#开发者来说,基础概念包括TCP/IP协议、端口、套接字(Sockets)等。TCP/IP是互联网中数据交换的基础,端口是网络通信的“信道”,而套接字是网络应用程序中的一个抽象概念,用来表示网络上的通信端点。在C#中,会使用System.Net命名空间和System.Net.Sockets命名空间中的类来实现网络编程。 知识点二:C#中的Socket编程 Socket是网络通信的基础,它允许应用程序进行数据交换。在C#中,Socket编程涉及到使用System.Net.Sockets命名空间下的Socket类。开发者可以创建TCP或UDP套接字来实现不同的通信协议。TCP提供面向连接、可靠的数据传输服务,适合于文件传输或聊天应用;而UDP提供无连接的传输服务,速度快,但不保证数据的可靠性,适合于实时视频流或在线游戏。 知识点三:Winform介绍 Winform是Windows Forms的简称,是.NET框架中用于创建Windows客户端应用程序的类库。Winform程序运行在Windows操作系统上,它提供了一组丰富的控件,让开发者能够像搭积木一样快速构建用户界面。Winform支持事件驱动编程模型,适用于创建具有图形用户界面(GUI)的应用程序,例如表单应用程序。 知识点四:C#网络编程的实践 文档中的“源代码”部分是将理论知识转化为实践操作的关鍵。文档可能会详细展示如何使用C#中的Socket类来创建服务器和客户端,包括如何绑定IP地址和端口号,监听连接,接收和发送数据,处理异常,以及如何断开连接等。通过实际代码的编写和调试,学习者能够加深对C#网络编程的理解。 描述:“手把手教你网络编程word文档,源代码” 这段描述强调了文档的实用性和教学方法。文档以Word文档形式呈现,它可能详细讲解了网络编程的理论知识,并且提供了C#源代码示例。Word文档格式方便阅读和编辑,适合教学和自学使用。源代码的提供是本文档的一大特色,它允许学习者边学习边实践,将理论知识运用到实际编程中去,有助于加深理解和记忆。 标签:“网络编程 C# Winform” 这些标签指出了文档的主要内容和目标受众。网络编程是文档的主要话题,C#是编程语言,Winform则是应用程序的类型。标签帮助识别文档适用于那些对网络编程感兴趣,并且希望使用C#以及Winform开发网络应用程序的学习者或开发者。 压缩包子文件的文件名称列表:“手把手叫你网络编程” 这个文件名称列表表明了文档将以压缩包的形式提供下载。虽然只列出一个文件名,但这通常意味着压缩包中可能包含多个文件,例如文档本身、源代码示例、图像资源等。学习者需要解压这个文件包,然后才能访问和利用这些资源进行学习和实践。