优化这段代码来提高运行速度:import torch.nn as nn class MyLinear(nn.Module): def __init__(self, in_features, out_features): super(MyLinear, self).__init__() self.linears = nn.ModuleList([nn.Linear(in_features, out_features) for i in range(5)]) def forward(self, x): chunks = torch.chunk(x, 5, dim=1) outputs = [linear(chunk) for linear, chunk in zip(self.linears, chunks)] return torch.cat(outputs, dim=1)

时间: 2024-03-13 10:46:38 浏览: 185
可以使用 PyTorch 内置的函数 `torch.matmul()` 和 `torch.transpose()` 来优化代码,从而提高运行速度。 下面是优化后的代码: ``` import torch.nn as nn class MyLinear(nn.Module): def __init__(self, in_features, out_features): super(MyLinear, self).__init__() self.linears = nn.ModuleList([nn.Linear(in_features, out_features) for i in range(5)]) def forward(self, x): chunks = torch.chunk(x, 5, dim=1) chunks = torch.stack(chunks, dim=0) weights = torch.stack([linear.weight for linear in self.linears], dim=0) outputs = torch.matmul(chunks, weights.transpose(1, 2)).reshape(x.shape[0], -1) return outputs ``` 此代码使用 `torch.chunk()` 将输入张量 `x` 沿着维度 `1` 分成 $5$ 个张量,然后使用 `torch.stack()` 将它们沿着新的维度 `0` 拼接在一起。接着使用 `torch.stack()` 将每个线性层的权重张量沿着新的维度 `0` 拼接在一起,然后使用 `torch.matmul()` 进行矩阵乘法运算,将 `chunks` 张量与 `weights` 张量的转置张量相乘,并将结果沿着维度 `1` 和 `2` 进行转置。最后使用 `torch.reshape()` 将输出张量重新变形为二维张量,得到最终的输出张量。
阅读全文

相关推荐

import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt # 固定随机种子 torch.manual_seed(42) # 仿真电机模型 class MotorModel: def __init__(self): self.T = 0.1 self.dt = 0.01 self.speed = 0.0 def update(self, u): self.speed += (u - self.speed) * self.dt / self.T return self.speed # PyTorch 实现的 BP 神经网络 class BPNN_PID(nn.Module): def __init__(self): super(BPNN_PID, self).__init__() self.hidden_size = 5 self.fc1 = nn.Linear(3, self.hidden_size) # 输入层到隐藏层 self.fc2 = nn.Linear(self.hidden_size, 3) # 隐藏层到输出层 self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() def forward(self, inputs): x = self.tanh(self.fc1(inputs)) x = self.sigmoid(self.fc2(x)) Kp = x[:, 0] * 10 Ki = x[:, 1] * 0.2 Kd = x[:, 2] * 0.5 Kp = torch.clamp(Kp, 0.1, 8) Ki = torch.clamp(Ki, 0.01, 0.15) Kd = torch.clamp(Kd, 0.05, 0.4) return Kp, Ki, Kd # 增量式PID控制器 class IncrementalPID: def __init__(self): self.Kp = 0.0 self.Ki = 0.0 self.Kd = 0.0 self.e_prev = [0.0, 0.0] self.u_prev = 0.0 def compute(self, error, dt): _u = self.Kp * (error - self.e_prev[0]) + \ self.Ki * error + \ self.Kd * (error - 2 * self.e_prev[0] + self.e_prev[1]) self.e_prev[1] = self.e_prev[0] self.e_prev[0] = error u = self.u_prev + _u u = np.clip(u, -1000, 1000) self.u_prev = u return u # 生成训练数据 def generate_dataset(): X = [] y = [] motor = MotorModel() for _ in range(1000): target = np.random.uniform(-500, 500) actual = motor.speed error = target - actual X.append([target / 1000, actual / 1000, error / 1000]) ideal_Kp = 5 * (1 - abs(error) / 1000) ideal_Ki = 0.1 * (1 - abs(error) / 1000) ideal_Kd = 0.2 * (abs(error) / 1000) y.append([ideal_Kp / 10, ideal_Ki / 0.2, ideal_Kd / 0.5]) motor.update(np.clip(error * 0.5, -1000, 1000)) return np.array(X), np.array(y) # 训练模型 def train_bpnn(model, epochs=100): X, y = generate_dataset() X_train = torch.tensor(X, dtype=torch.float32) y_train = torch.tensor(y, dtype=torch.float32) optimizer = optim.Adam(model.parameters(), lr=0.005) criterion = nn.MSELoss() for epoch in range(epochs): model.train() optimizer.zero_grad() # 前向传播 output = model(X_train) # 计算损失 # 正确写法应保持批次维度 kp_pred, ki_pred, kd_pred = output loss = criterion(kp_pred, y_train[:, 0]) + \ criterion(ki_pred, y_train[:, 1]) + \ criterion(kd_pred, y_train[:, 2]) # 反向传播 loss.backward() optimizer.step() if epoch % 10 == 0: print(f"Epoch [{epoch}/{epochs}], Loss: {loss.item():.4f}") # 主控制循环 def main(): motor = MotorModel() pid = IncrementalPID() model = BPNN_PID() train_bpnn(model, epochs=100) # 训练模型 # 导出模型为 ONNX 文件 dummy_input = torch.tensor([[0.5, 0.0, 0.0]], dtype=torch.float32) # 假设的输入 torch.onnx.export(model, dummy_input, "bpnn_pid_model.onnx", verbose=True) print("ONNX model has been saved as 'bpnn_pid_model.onnx'.") if __name__ == "__main__": main() 我想看到数据的变化情况

# 引入模块 import time import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader import torchvision # 初始化运行device device = torch.device('cuda:0') # 定义模型网络 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.net = nn.Sequential( # 卷积层 nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=1), # 池化层 nn.MaxPool2d(kernel_size=2), # 卷积层 nn.Conv2d(16, 32, 3, 1, 1), # 池化层 nn.MaxPool2d(2), # 将多维输入一维化 nn.Flatten(), nn.Linear(32*7*7, 16), # 激活函数 nn.ReLU(), nn.Linear(16, 10) ) def forward(self, x): return self.net(x) # 下载数据集 train_data = torchvision.datasets.MNIST( root='mnist', download=True, train=True, transform=torchvision.transforms.ToTensor() ) # 定义训练相关参数 batch_size = 64 model = CNN().to(device) # 定义模型 train_dataloader = DataLoader(train_data, batch_size=batch_size) # 定义DataLoader loss_func = nn.CrossEntropyLoss().to(device) # 定义损失函数 optimizer = torch.optim.SGD(model.parameters(), lr=0.1) # 定义优化器 epochs = 10 # 设置循环次数 # 设置循环 for epoch in range(epochs): for imgs, labels in train_dataloader: start_time = time.time() # 记录训练开始时间 imgs = imgs.to(device) # 把img数据放到指定NPU上 labels = labels.to(device) # 把label数据放到指定NPU上 outputs = model(imgs) # 前向计算 loss = loss_func(outputs, labels) # 损失函数计算 optimizer.zero_grad() loss.backward() # 损失函数反向计算 optimizer.step() # 更新优化器 # 定义保存模型 torch.save({ 'epoch': 10, 'arch': CNN, 'state_dict': model.state_dict(), 'optimizer' : optimizer.state_dict(), },'checkpoint.pth.tar') 这是代码

import torch import torch.nn as nn class BidirectionalLSTM(nn.Module): def __init__(self, nIn, nHidden, nOut): super(BidirectionalLSTM, self).__init__() self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True) self.embedding = nn.Linear(nHidden * 2, nOut) def forward(self, input): recurrent, _ = self.rnn(input) T, b, h = recurrent.size() t_rec = recurrent.view(T * b, h) output = self.embedding(t_rec) output = output.view(T, b, -1) return output class CRNN(nn.Module): def __init__(self, imgH, nc, nclass, nh, n_rnn=2, leakyRelu=False): super(CRNN, self).__init__() assert imgH % 16 == 0, 'imgH has to be a multiple of 16' ks = [3, 3, 3, 3, 3, 3, 2] ps = [1, 1, 1, 1, 1, 1, 0] ss = [1, 1, 1, 1, 1, 1, 1] nm = [64, 128, 256, 256, 512, 512, 512] cnn = nn.Sequential() def convRelu(i, batchNormalization=False): nIn = nc if i == 0 else nm[i - 1] nOut = nm[i] cnn.add_module('conv{0}'.format(i), nn.Conv2d(nIn, nOut, ks[i], ss[i], ps[i])) if batchNormalization: cnn.add_module('batchnorm{0}'.format(i), nn.BatchNorm2d(nOut)) if leakyRelu: cnn.add_module('relu{0}'.format(i), nn.LeakyReLU(0.2, inplace=True)) else: cnn.add_module('relu{0}'.format(i), nn.ReLU(True)) convRelu(0) cnn.add_module('pooling{0}'.format(0), nn.MaxPool2d(2, 2)) # 64x16x64 convRelu(1) cnn.add_module('pooling{0}'.format(1), nn.MaxPool2d(2, 2)) # 128x8x32 convRelu(2, True) convRelu(3) cnn.add_module('pooling{0}'.format(2), nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # 256x4x16 convRelu(4, True) convRelu(5) cnn.add_module('pooling{0}'.format(3), nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # 512x2x16 convRelu(6, True) # 512x1x16 self.cnn = cnn self.rnn = nn.Sequential( BidirectionalLSTM(512, nh, nh), BidirectionalLSTM(nh, nh, nclass)) def forward(self, input): # conv features conv = self.cnn(input) b, c, h, w = conv.size() assert h == 1, "the height of conv must be 1" conv = conv.squeeze(2) conv = conv.permute(2, 0, 1) # [w, b, c] # rnn features output = self.rnn(conv) return output def create_model(imgH=32, nc=3, nclass=37, nh=256, n_rnn=2, leakyRelu=False, pretrained=False): model = CRNN(imgH, nc, nclass, nh, n_rnn, leakyRelu) return model if __name__ == "__main__": model = create_model(imgH=32, nc=3, nclass=37) x = torch.randn(4, 3, 32, 128) output = model(x) print(f"Input shape: {x.shape}") print(f"Output shape: {output.shape}") 就把我的crnn模型替换主干网络为resnet34

import os import argparse import yaml import torch import torch.nn.functional as F import torch.nn as nn import numpy as np from tqdm import tqdm from natsort import natsorted from glob import glob from skimage import img_as_ubyte import utils from basicsr.models.archs.kbnet_l_arch import KBNet_l try: from yaml import CLoader as Loader except ImportError: from yaml import Loader parser = argparse.ArgumentParser(description='Image Deraining using Restormer') parser.add_argument('--input_dir', default='./Datasets/', type=str, help='Directory of validation images') parser.add_argument('--result_dir', default='./results/', type=str, help='Directory for results') parser.add_argument('--yml', default='Deraining/Options/kbnet_l.yml', type=str) args = parser.parse_args() ####### Load yaml ####### yaml_file = args.yml name = os.path.basename(yaml_file).split('.')[0] x = yaml.load(open(yaml_file, mode='r'), Loader=Loader) s = x['network_g'].pop('type') pth_path = x['path']['pretrain_network_g'] print('**', yaml_file, pth_path) ########################## model_restoration = eval(s)(**x['network_g']) checkpoint = torch.load(pth_path) model_restoration.load_state_dict(checkpoint['params']) print("===>Testing using weights: ", pth_path) model_restoration.cuda() model_restoration = nn.DataParallel(model_restoration) model_restoration.eval() factor = 8 datasets = ['Test1200', 'Test2800'] for dataset in datasets: result_dir = os.path.join(args.result_dir, dataset) os.makedirs(result_dir, exist_ok=True) inp_dir = os.path.join(args.input_dir, 'test', dataset, 'input') files = natsorted(glob(os.path.join(inp_dir, '*.png')) + glob(os.path.join(inp_dir, '*.jpg'))) with torch.no_grad(): for file_ in tqdm(files): torch.cuda.ipc_collect() torch.cuda.empty_cache() img = np.float32(utils.load_img(file_)) / 255. img = torch.from_numpy(img).permute(2, 0, 1) input_ = img.unsqueeze(0).c

import torch import torchvision from torch.utils.tensorboard import SummaryWriter # from model import * # 准备数据集 from torch import nn from torch.utils.data import DataLoader train_data = torchvision.datasets.CIFAR10(root="data", train=True, transform=torchvision.transforms.ToTensor(), download=False) test_data = torchvision.datasets.CIFAR10(root="data", train=False, transform=torchvision.transforms.ToTensor(), download=False) # length 长度 train_data_size = len(train_data) test_data_size = len(test_data) # 如果train_data_size=10, 训练数据集的长度为:10 print("训练数据集的长度为:{}".format(train_data_size)) print("测试数据集的长度为:{}".format(test_data_size)) # 利用 DataLoader 来加载数据集 train_dataloader = DataLoader(train_data, batch_size=64) test_dataloader = DataLoader(test_data, batch_size=64) # 创建网络模型 class Tudui(nn.Module): def __init__(self): super(Tudui, self).__init__() self.model = nn.Sequential( nn.Conv2d(3, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 64, 5, 1, 2), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(64*4*4, 64), nn.Linear(64, 10) ) def forward(self, x): x = self.model(x) return x tudui = Tudui() if torch.cuda.is_available(): tudui = tudui.cuda() # 损失函数 loss_fn = nn.CrossEntropyLoss() if torch.cuda.is_available(): loss_fn = loss_fn.cuda() # 优化器 # learning_rate = 0.01 # 1e-2=1 x (10)^(-2) = 1 /100 = 0.01 learning_rate = 1e-2 optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate) # 设置训练网络的一些参数 # 记录训练的次数 total_train_step = 0 # 记录测试的次数 total_test_step = 0 # 训练的轮数 epoch = 10 # 添加tensorboard writer = SummaryWriter("logs_train") for i in range(epoch): print("-------第 {} 轮训练开始-------".format(i+1)) # 训练步骤开始 tudui.train() for data in train_dataloader: imgs, targets = data if torch.cuda.is_available(): imgs = imgs.cuda() targets = targets.cuda() outputs = tudui(imgs) loss = loss_fn(outputs, targets) # 优化器优化模型 optimizer.zero_grad() loss.backward() optimizer.step() total_train_step = total_train_step + 1 if total_train_step % 100 == 0: print("训练次数:{}, Loss: {}".format(total_train_step, loss.item())) writer.add_scalar("train_loss", loss.item(), total_train_step) # 测试步骤开始 tudui.eval() total_test_loss = 0 total_accuracy = 0 with torch.no_grad(): for data in test_dataloader: imgs, targets = data if torch.cuda.is_available(): imgs = imgs.cuda() targets = targets.cuda() outputs = tudui(imgs) loss = loss_fn(outputs, targets) total_test_loss = total_test_loss + loss.item() accuracy = (outputs.argmax(1) == targets).sum() total_accuracy = total_accuracy + accuracy print("整体测试集上的Loss: {}".format(total_test_loss)) print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size)) writer.add_scalar("test_loss", total_test_loss, total_test_step) writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step) total_test_step = total_test_step + 1 torch.save(tudui, "tudui_{}.pth".format(i)) print("模型已保存") writer.close()为什么我用了GPU但是比cpu还慢

import torch import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import torch.nn as nn from pyDOE import lhs import time # 自动设备选择 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.set_default_dtype(torch.float32) ##################################################################### # 改进1:增强的随机种子设置 def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # 关闭加速基准,保证可重复性 setup_seed(888888) ##################################################################### # 改进2:参数化配置类 class Config: def __init__(self): # 时空域参数 self.x0, self.x1 = 0.0, 1.0 # x范围 self.y0, self.y1 = 0.0, 1.0 # y范围 self.t0, self.t1 = 0.0, 2.0 # 时间范围 self.c = 1.0 # 波速 # 采样参数 self.N_f = 20000 # 域内点数量 self.N_b = 1000 # 边界点数量 self.N_i = 1000 # 初始条件点数量 # 网络参数 self.num_neurons = 64 self.num_layers = 6 self.activation = nn.Tanh() # 训练参数 self.epochs = 20000 self.lr = 1e-3 self.lr_decay = 0.5 self.decay_step = 5000 self.lambda_pde = 1.0 # PDE损失权重 self.lambda_ic = 1.0 # 初始条件权重 self.lambda_bc = 1.0 # 边界条件权重 config = Config() ##################################################################### # 改进3:增强的采样策略 def generate_data(config): # 域内采样 (x, y, t) interior = config.x0 + (config.x1 - config.x0) * lhs(3, config.N_f) # 边界采样(增加边界采样密度) t_boundary = np.random.uniform(config.t0, config.t1, (config.N_b, 1)) # 四个空间边界 x_boundary = np.vstack([ np.hstack([np.full((config.N_b // 4, 1), config.x0), lhs(2, config.N_b // 4)]), np.hstack([np.full((config.N_b // 4, 1), config.x1), lhs(2, config.N_b // 4)]), np.hstack([lhs(1, config.N_b // 4), np.full((config.N_b // 4, 1), config.y0),

import torch import torchvision from torch.utils.tensorboard import SummaryWriter # from model import * # 准备数据集 from torch import nn from torch.utils.data import DataLoader # 定义训练的设备 device = torch.device("cuda") train_data = torchvision.datasets.CIFAR10(root="data", train=True, transform=torchvision.transforms.ToTensor(), download=True) test_data = torchvision.datasets.CIFAR10(root="data", train=False, transform=torchvision.transforms.ToTensor(), download=True) # length 长度 train_data_size = len(train_data) test_data_size = len(test_data) # 如果train_data_size=10, 训练数据集的长度为:10 print("训练数据集的长度为:{}".format(train_data_size)) print("测试数据集的长度为:{}".format(test_data_size)) # 利用 DataLoader 来加载数据集 train_dataloader = DataLoader(train_data, batch_size=64) test_dataloader = DataLoader(test_data, batch_size=64) # 创建网络模型 class Tudui(nn.Module): def __init__(self): super(Tudui, self).__init__() self.model = nn.Sequential( nn.Conv2d(3, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 64, 5, 1, 2), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(64*4*4, 64), nn.Linear(64, 10) ) def forward(self, x): x = self.model(x) return x tudui = Tudui() tudui = tudui.to(device) # 损失函数 loss_fn = nn.CrossEntropyLoss() loss_fn = loss_fn.to(device) # 优化器 # learning_rate = 0.01 # 1e-2=1 x (10)^(-2) = 1 /100 = 0.01 learning_rate = 1e-2 optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate) # 设置训练网络的一些参数 # 记录训练的次数 total_train_step = 0 # 记录测试的次数 total_test_step = 0 # 训练的轮数 epoch = 10 # 添加tensorboard writer = SummaryWriter("logs_train") for i in range(epoch): print("-------第 {} 轮训练开始-------".format(i+1)) # 训练步骤开始 tudui.train() for data in train_dataloader: imgs, targets = data imgs = imgs.to(device) targets = targets.to(device) outputs = tudui(imgs) loss = loss_fn(outputs, targets) # 优化器优化模型 optimizer.zero_grad() loss.backward() optimizer.step() total_train_step = total_train_step + 1 if total_train_step % 100 == 0: print("训练次数:{}, Loss: {}".format(total_train_step, loss.item())) writer.add_scalar("train_loss", loss.item(), total_train_step) # 测试步骤开始 tudui.eval() total_test_loss = 0 total_accuracy = 0 with torch.no_grad(): for data in test_dataloader: imgs, targets = data imgs = imgs.to(device) targets = targets.to(device) outputs = tudui(imgs) loss = loss_fn(outputs, targets) total_test_loss = total_test_loss + loss.item() accuracy = (outputs.argmax(1) == targets).sum() total_accuracy = total_accuracy + accuracy print("整体测试集上的Loss: {}".format(total_test_loss)) print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size)) writer.add_scalar("test_loss", total_test_loss, total_test_step) writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step) total_test_step = total_test_step + 1 torch.save(tudui, "tudui_{}.pth".format(i)) print("模型已保存") writer.close() 这一段代码出不来结果,cpu能出来结果,gpu也能识别,但是这段代码一直不出结果一直卡着,我的显卡是4050,风扇也一直转

import numpy as np import pandas as pd import torch import torch.nn as nn from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split #======================== 数据加载与预处理 ======================== def load_data(): # 注意:请确认Excel中的目标列名称(示例中使用"燃烧效率") df = pd.read_excel(r"C:\Users\Administrator\Desktop\掺氨比、燃尽风位置、主燃区温度\原数据1.xlsx") # 特征合并(数值型特征 + 编码后分类特征) X = df[["掺氨比", "主燃区温度", "燃尽风位置"]].values # 数值型特征 y = df["NO排放浓度"].values # 修改为实际目标列名 return X, y #======================== 自编码器模型 ======================== class CombustionVAE(nn.Module): def __init__(self, input_dim): super().__init__() # 编码器(输入维度需匹配特征总数) self.encoder = nn.Sequential( nn.Linear(input_dim, 16), nn.LeakyReLU(0.2), nn.Linear(16, 8), nn.Linear(8, 2) # 潜在空间维度设为2 ) # 解码器 self.decoder = nn.Sequential( nn.Linear(2, 8), nn.LeakyReLU(0.2), nn.Linear(8, 16), nn.Linear(16, input_dim) ) def forward(self, x): latent = self.encoder(x) return self.decoder(latent) #======================== 物理约束函数 ======================== def apply_physical_constraints(data, encoder): """ 应用燃烧过程物理限制: 1. 掺氨比 ∈ [0, 1] 2. 主燃区温度 ∈ [800, 1600] 3. 燃尽风位置编码需为有效独热向量 """ # 数值型特征约束 data[:, 0] = np.clip(data[:, 0], 0, 100) # 掺氨比 data[:, 1] = np.clip(data[:, 1], 800, 1600) # 温度 data[:, 2] = np.clip(data[:, 2], 0, 1) #燃尽风位置 # 分类特征约束(确保独热编码有效性) position_cols = data[:, 2:2+encoder.categories_[0].shape[0]] position_cols = np.where(position_cols > 0.5, 1.0, 0.0) # 阈值处理 data[:, 2:2+encoder.categories_[0].shape[0]] = position_cols return data #======================== 主流程 ======================== if __name__ == "__main__": # 加载并预处理数据 X, y = load_data() scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42) # 训练自编码器 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = CombustionVAE(input_dim=X_train.shape[1]).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) print("开始训练自编码器...") for epoch in range(1000): inputs = torch.FloatTensor(X_train).to(device) reconstructed = model(inputs) # 带物理约束的损失函数 mse_loss = nn.MSELoss()(reconstructed, inputs) phys_loss = torch.mean(reconstructed[:,0] * reconstructed[:,1]) # 示例约束:掺氨比与温度负相关 loss = mse_loss + 0.05 * phys_loss optimizer.zero_grad() loss.backward() optimizer.step() if epoch % 100 == 0: print(f"Epoch {epoch}, Loss: {loss.item():.4f}") # 生成合成数据 with torch.no_grad(): model.eval() z = torch.randn(500, 2).to(device) # 生成5000个样本 synthetic = model.decoder(z).cpu().numpy() # 反标准化并应用约束 synthetic_data = scaler.inverse_transform(synthetic) # 生成标签(使用代理模型) print("\n训练代理模型生成标签...") proxy_model = RandomForestRegressor(n_estimators=100) proxy_model.fit(X_train, y_train) synthetic_labels = proxy_model.predict(scaler.transform(synthetic_data)) # 构建最终数据集 final_X = np.vstack([X, synthetic_data]) final_y = np.concatenate([y, synthetic_labels]) # 保存数据集(包含特征名称) feature_names = ["掺氨比", "主燃区温度", "燃尽风位置"] expanded_df = pd.DataFrame(final_X, columns=feature_names) expanded_df["NO排放浓度"] = final_y expanded_df.to_excel("扩展燃烧数据集.xlsx", index=False) print("\n数据扩展完成!生成样本量:", len(expanded_df)) 如何保存数据

class ISBI_Loader(Dataset): def __init__(self, data_path): self.data_path = data_path self.imgs_path = glob.glob(os.path.join(data_path, 'sn150kv/*.dcm')) self.lab_path = glob.glob(os.path.join(data_path, '90kv/*.dcm')) def __getitem__(self, index): image_path = self.imgs_path[index] label_path = self.lab_path[index] # 读取图像和标签 image = pydicom.dcmread(image_path, sitk.sitkInt16) label = pydicom.dcmread(label_path, sitk.sitkInt16) # 获取图像和标签的像素数据 image_data = image.pixel_array label_data = label.pixel_array # 归一化处理 image = image_data / 4096.0 label = label_data / 4096.0 # 转换为torch张量,并添加一个维度 image = torch.FloatTensor(image).unsqueeze(0) label = torch.FloatTensor(label).unsqueeze(0) # 使用 PyWavelets 进行 2D 小波变换 coeffs1image = pywt.dwt2(image, 'haar') cAimage, (cHimage, cVimage, cDimage) = coeffs1image # 将每个张量添加一个新维度到dim=0,并转换为FloatTensor low_freq_image = torch.FloatTensor(cAimage.astype(np.float32)).unsqueeze(0) high_freq_H = torch.FloatTensor(cHimage.astype(np.float32)).unsqueeze(0) high_freq_V = torch.FloatTensor(cVimage.astype(np.float32)).unsqueeze(0) high_freq_D = torch.FloatTensor(cDimage.astype(np.float32)).unsqueeze(0) # 在通道维度上拼接高频分量 combined_high_freq = torch.cat([high_freq_H, high_freq_V, high_freq_D], dim=0) # 添加随机旋转 angle = random.uniform(0, 360) # 这里我们选择 -30 到 30 度的随机旋转 low_freq_image = TF.rotate(low_freq_image, angle) combined_high_freq = TF.rotate(combined_high_freq, angle) label = TF.rotate(label, angle) 上述为数据集读取,我想进行修改。1.修改小波函数,对CT图像进行4层分解,保留4层的高频部分和低频部分。2.修改为gpu处理的小波函数,加速计算。 完整数据集代码, 小波基选择符合CT图像分解的小波基。

最新推荐

recommend-type

在C++中加载TorchScript模型的方法

class MyModule(torch.nn.Module): def __init__(self, N, M): super(MyModule, self).__init__() self.weight = torch.nn.Parameter(torch.rand(N, M)) @torch.jit.script_method def forward(self, input):...
recommend-type

12月英语网络统考复习资料2-作文范文汇总.doc

12月英语网络统考复习资料2-作文范文汇总.doc
recommend-type

15利用公共密钥基础结构配置网络安全性.ppt

15利用公共密钥基础结构配置网络安全性.ppt
recommend-type

1云金融-任务三-云计算带来的金融变革和发展趋势.pptx

1云金融-任务三-云计算带来的金融变革和发展趋势.pptx
recommend-type

构建基于ajax, jsp, Hibernate的博客网站源码解析

根据提供的文件信息,本篇内容将专注于解释和阐述ajax、jsp、Hibernate以及构建博客网站的相关知识点。 ### AJAX AJAX(Asynchronous JavaScript and XML)是一种用于创建快速动态网页的技术,它允许网页在不重新加载整个页面的情况下,与服务器交换数据并更新部分网页内容。AJAX的核心是JavaScript中的XMLHttpRequest对象,通过这个对象,JavaScript可以异步地向服务器请求数据。此外,现代AJAX开发中,常常用到jQuery中的$.ajax()方法,因为其简化了AJAX请求的处理过程。 AJAX的特点主要包括: - 异步性:用户操作与数据传输是异步进行的,不会影响用户体验。 - 局部更新:只更新需要更新的内容,而不是整个页面,提高了数据交互效率。 - 前后端分离:AJAX技术允许前后端分离开发,让前端开发者专注于界面和用户体验,后端开发者专注于业务逻辑和数据处理。 ### JSP JSP(Java Server Pages)是一种动态网页技术标准,它允许开发者将Java代码嵌入到HTML页面中,从而实现动态内容的生成。JSP页面在服务器端执行,并将生成的HTML发送到客户端浏览器。JSP是Java EE(Java Platform, Enterprise Edition)的一部分。 JSP的基本工作原理: - 当客户端首次请求JSP页面时,服务器会将JSP文件转换为Servlet。 - 服务器上的JSP容器(如Apache Tomcat)负责编译并执行转换后的Servlet。 - Servlet生成HTML内容,并发送给客户端浏览器。 JSP页面中常见的元素包括: - 指令(Directives):如page、include、taglib等。 - 脚本元素:脚本声明(Script declarations)、脚本表达式(Scriptlet)和脚本片段(Expression)。 - 标准动作:如jsp:useBean、jsp:setProperty、jsp:getProperty等。 - 注释:在客户端浏览器中不可见的注释。 ### Hibernate Hibernate是一个开源的对象关系映射(ORM)框架,它提供了从Java对象到数据库表的映射,简化了数据库编程。通过Hibernate,开发者可以将Java对象持久化到数据库中,并从数据库中检索它们,而无需直接编写SQL语句或掌握复杂的JDBC编程。 Hibernate的主要优点包括: - ORM映射:将对象模型映射到关系型数据库的表结构。 - 缓存机制:提供了二级缓存,优化数据访问性能。 - 数据查询:提供HQL(Hibernate Query Language)和Criteria API等查询方式。 - 延迟加载:可以配置对象或对象集合的延迟加载,以提高性能。 ### 博客网站开发 构建一个博客网站涉及到前端页面设计、后端逻辑处理、数据库设计等多个方面。使用ajax、jsp、Hibernate技术栈,开发者可以更高效地构建功能完备的博客系统。 #### 前端页面设计 前端主要通过HTML、CSS和JavaScript来实现,其中ajax技术可以用来异步获取文章内容、用户评论等,无需刷新页面即可更新内容。 #### 后端逻辑处理 JSP可以在服务器端动态生成HTML内容,根据用户请求和数据库中的数据渲染页面。Hibernate作为ORM框架,可以处理Java对象与数据库表之间的映射,并提供数据库的CRUD(创建、读取、更新、删除)操作。 #### 数据库设计 博客网站的数据库设计通常包含多个表,如用户表(存储用户信息)、文章表(存储文章信息)、评论表(存储用户评论信息)等。使用Hibernate框架可以简化数据库操作,同时确保数据的一致性和安全性。 #### 安全性和性能优化 安全性是构建网站时需要考虑的重要方面,包括但不限于SQL注入防护、XSS攻击防护、会话管理等。性能优化方面,可以利用Hibernate的缓存机制,以及对JSP页面和ajax请求进行适当的缓存处理。 ### 结论 ajax、jsp、Hibernate技术结合可以构建出高效、动态、易于维护的博客网站。在开发过程中,应当关注前后端分离、用户体验优化、系统性能和安全性等关键要素,确保博客网站的稳定和长期可用性。通过本篇文章,读者应该已经对这些技术有了初步了解,并能够结合文件提供的源码开始进行相关开发实践。
recommend-type

【Unity Sunny Land关卡设计高级指南】:打造完美关卡的8大技巧

# 1. Unity关卡设计概述 ## 1.1 关卡设计的核心要素 关卡设计作为游戏开发中不可或缺的一环,承担着构建游戏世界、呈现故事背景、引导玩家体验和激发玩家兴趣的责任。一个优秀的关卡不仅需要有吸引人的视觉效果和有趣的挑战,还需平衡玩家体验,提供连贯的游戏故事。 ## 1.2 关卡设计师的角色 在Unity引擎的环境下,关卡设计师需要具备对场景布局、角色互动、剧情
recommend-type

C++ 模版

<think>我们正在讨论C++模板的使用和常见问题。根据用户要求,所有行内数学表达式使用$...$,独立公式使用$$...$$,用中文回答,并生成相关问题。同时,回答要结构清晰,帮助用户逐步解决问题。 首先,回顾用户的问题:用户想了解C++模板的使用和常见问题。我们将从以下几个方面展开: 1. 模板的基本概念和用途 2. 函数模板和类模板 3. 模板特化和偏特化 4. 模板元编程简介 5. 常见问题及解决方案 注意:在回答中,我们会引用站内提供的引用内容(引用[1]和引用[2])作为参考,但主要围绕模板展开。 ### 1. 模板的基本概念和用途 C++模板是一种支持泛型编程的特性,允许
recommend-type

C#随机数摇奖系统功能及隐藏开关揭秘

### C#摇奖系统知识点梳理 #### 1. C#语言基础 C#(发音为“看井”)是由微软开发的一种面向对象的、类型安全的编程语言。它是.NET框架的核心语言之一,广泛用于开发Windows应用程序、ASP.NET网站、Web服务等。C#提供丰富的数据类型、控制结构和异常处理机制,这使得它在构建复杂应用程序时具有很强的表达能力。 #### 2. 随机数的生成 在编程中,随机数生成是常见的需求之一,尤其在需要模拟抽奖、游戏等场景时。C#提供了System.Random类来生成随机数。Random类的实例可以生成一个伪随机数序列,这些数在统计学上被认为是随机的,但它们是由确定的算法生成,因此每次运行程序时产生的随机数序列相同,除非改变种子值。 ```csharp using System; class Program { static void Main() { Random rand = new Random(); for(int i = 0; i < 10; i++) { Console.WriteLine(rand.Next(1, 101)); // 生成1到100之间的随机数 } } } ``` #### 3. 摇奖系统设计 摇奖系统通常需要以下功能: - 用户界面:显示摇奖结果的界面。 - 随机数生成:用于确定摇奖结果的随机数。 - 动画效果:模拟摇奖的视觉效果。 - 奖项管理:定义摇奖中可能获得的奖品。 - 规则设置:定义摇奖规则,比如中奖概率等。 在C#中,可以使用Windows Forms或WPF技术构建用户界面,并集成上述功能以创建一个完整的摇奖系统。 #### 4. 暗藏的开关(隐藏控制) 标题中提到的“暗藏的开关”通常是指在程序中实现的一个不易被察觉的控制逻辑,用于在特定条件下改变程序的行为。在摇奖系统中,这样的开关可能用于控制中奖的概率、启动或停止摇奖、强制显示特定的结果等。 #### 5. 测试 对于摇奖系统来说,测试是一个非常重要的环节。测试可以确保程序按照预期工作,随机数生成器的随机性符合要求,用户界面友好,以及隐藏的控制逻辑不会被轻易发现或利用。测试可能包括单元测试、集成测试、压力测试等多个方面。 #### 6. System.Random类的局限性 System.Random虽然方便使用,但也有其局限性。其生成的随机数序列具有一定的周期性,并且如果使用不当(例如使用相同的种子创建多个实例),可能会导致生成相同的随机数序列。在安全性要求较高的场合,如密码学应用,推荐使用更加安全的随机数生成方式,比如RNGCryptoServiceProvider。 #### 7. Windows Forms技术 Windows Forms是.NET框架中用于创建图形用户界面应用程序的库。它提供了一套丰富的控件,如按钮、文本框、标签等,以及它们的事件处理机制,允许开发者设计出视觉效果良好且功能丰富的桌面应用程序。 #### 8. WPF技术 WPF(Windows Presentation Foundation)是.NET框架中用于构建桌面应用程序用户界面的另一种技术。与Windows Forms相比,WPF提供了更现代化的控件集,支持更复杂的布局和样式,以及3D图形和动画效果。WPF的XAML标记语言允许开发者以声明性的方式设计用户界面,与C#代码分离,易于维护和更新。 #### 9. 压缩包子文件TransBallDemo分析 从文件名“TransBallDemo”可以推测,这可能是一个C#的示例程序或者演示程序,其中“TransBall”可能表示旋转的球体,暗示该程序包含了动画效果,可能是用来模拟转动的球体(如转盘或摇奖球)。该文件可能是用来展示如何实现一个带有视觉动画效果的摇奖系统的C#程序。 总结以上内容,我们可以得出构建一个C#摇奖系统需要深入理解C#语言及其随机数生成机制,设计用户界面,集成动画效果,确保隐藏控制逻辑的安全性,以及全面测试系统以保证其正确性和公平性。通过掌握Windows Forms或WPF技术,可以进一步增强系统的视觉和交互体验。
recommend-type

【数据驱动的力量】:管道缺陷判别方法论与实践经验

# 摘要 数据驱动技术在管道缺陷检测领域展现出强大的力量,本文首先概述了数据驱动的力量和管道缺陷判别的基础理论。接着,重点探讨了管道缺陷的类型与特征、数据采集与预处理、数据驱动模型的选择与构建。在实践技巧章节,本文详述了实战数据集的准备与处理、缺陷识别算法的应用、以及性能评估与模型优化。此外,高级应用章节深入讨论了实时数据处理分析、多模态数据融合技术、以及深度学习在缺
recommend-type

FatalError: `Segmentation fault` is detected by the operating system. [TimeInfo: *** Aborted at 1752568501 (unix time) try "date -d @1752568501" if you are using GNU date ***] [SignalInfo: *** SIGSEGV (@0x0) received by PID 3203 (TID 0x7f8a04143340) from PID 0 ***],训练模型中出现上述错误,怎么解决

<think>我们面对的是一个模型训练过程中出现的Segmentation fault错误。根据引用[1],Segmentation Fault通常是由非法内存访问引起的,常见原因包括空指针解引用、数组越界、使用未初始化指针等。在深度学习训练场景中,还可能涉及显存溢出、CUDA内核错误等。 引用[2]展示了一个具体案例:在PaddlePaddle框架中遇到Segmentation fault,并提示了C++ Traceback。这通常表明底层C++代码出现了问题。而引用[3]则提到Python环境下的Segmentation fault,可能涉及Python扩展模块的错误。 解决步骤: 1