活动介绍

STM32 keil float 转 uint8_t数组

时间: 2024-09-26 15:04:20 浏览: 217
STM32微控制器使用Keil集成开发环境时,如果需要将浮点数(float)转换为uint8_t数组,首先你需要了解的是浮点数通常采用IEEE 754标准表示,而uint8_t数组通常用于存储整数或字节数据。这是一个常见的数据转换步骤,但因为涉及到精度损失,所以需要特别处理。 以下是一个简单的步骤说明: 1. **包含头文件**: 首先,确保包含`stdint.h`头文件,它包含了必要的数据类型定义。 ```c #include <stdint.h> ``` 2. **定义转换函数**: 创建一个函数,例如`floatToByteArray()`, 它接受一个float值和一个指向uint8_t数组的指针。 ```c void floatToByteArray(float value, uint8_t *array, int byteCount) { // 指定转换所需的位数,如32位单精度float需要4字节 floatBitsToUint8(value, array, byteCount); } ``` 3. **实现转换内部函数**: 使用宏或手动编写代码将float值拆分为它的二进制形式,并逐字节存储到数组。这里可以使用位操作来实现。 ```c // 如果你有位运算能力的话 #define FLOAT_TO_BYTE(val, arr, index) \ do { \ arr[index] = (val & 0xFF); \ val >>= 8; \ } while (0); void floatBitsToUint8(float f, uint8_t *arr, int byteCount) { for (int i = 0; i < byteCount; ++i) { FLOAT_TO_BYTE(f, arr, i); } } // 或者如果你不想用位运算,使用库函数或者在线工具(但可能会丢失精度) void floatBitsToUint8(float f, uint8_t *arr, int byteCount) { float_to_fixed_point(f, arr, byteCount, sizeof(float) * CHAR_BIT); } ``` 请注意,上述代码展示了基本的概念,实际应用中可能存在精度损失。如果你想保留尽可能多的小数部分,可能需要使用专门的固定点数学库。
阅读全文

相关推荐

基于stm32cubemx,stm32f103c8t6,kile5mdk,和oled.c,oled.h文件帮我写雨滴传感器的驱动文件rain.c和rain.h,并在main.c中写出显示语句在显示屏上显示,雨量大小,雨滴传感器的AO接PA6,用到的电位器是3362#ifndef __OLED_H_ #define __OLED_H_ #include "stdint.h" #include "i2c.h" void WriteCmd(void); //向设备写控制命令 void OLED_WR_CMD(uint8_t cmd); //向设备写数据 void OLED_WR_DATA(uint8_t data); //初始化oled屏幕 void OLED_Init(void); //清屏 void OLED_Clear(void); //开启OLED显示 void OLED_Display_On(void); //关闭OLED显示 void OLED_Display_Off(void); //设置光标 void OLED_Set_Pos(uint8_t x, uint8_t y); void OLED_On(void); //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 16/12 void OLED_ShowChar(uint8_t x,uint8_t y,uint8_t chr,uint8_t Char_Size); //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //mode:模式 0,填充模式;1,叠加模式 //num:数值(0~4294967295); void OLED_ShowNum(uint8_t x,uint8_t y,unsigned int num,uint8_t len,uint8_t size2); //显示一个字符号串 void OLED_ShowString(uint8_t x,uint8_t y,uint8_t *chr,uint8_t Char_Size); //显示汉字 //hzk 用取模软件得出的数组 void OLED_ShowCHinese(uint8_t x,uint8_t y,uint8_t no); #endif #include "oled.h" #include "oledfont.h" //几个变量声明 uint8_t **Hzk; //初始化命令 uint8_t CMD_Data[]={ 0xAE, 0x00, 0x10, 0x40, 0xB0, 0x81, 0xFF, 0xA1, 0xA6, 0xA8, 0x3F, 0xC8, 0xD3, 0x00, 0xD5, 0x80, 0xD8, 0x05, 0xD9, 0xF1, 0xDA, 0x12, 0xD8, 0x30, 0x8D, 0x14, 0xAF}; void WriteCmd() { uint8_t i = 0; for(i=0; i<27; i++){ HAL_I2C_Mem_Write(&hi2c1 ,0x78,0x00,I2C_MEMADD_SIZE_8BIT,CMD_Data+i,1,0x100); } } //向设备写控制命令 void OLED_WR_CMD(uint8_t cmd) { HAL_I2C_Mem_Write(&hi2c1 ,0x78,0x00,I2C_MEMADD_SIZE_8BIT,&cmd,1,0x100); } //向设备写数据 void OLED_WR_DATA(uint8_t data) { HAL_I2C_Mem_Write(&hi2c1 ,0x78,0x40,I2C_MEMADD_SIZE_8BIT,&data,1,0x100); } //初始化oled屏幕 void OLED_Init(void) { HAL_Delay(200); WriteCmd(); } //清屏 void OLED_Clear() { uint8_t i,n; for(i=0;i<8;i++) { OLED_WR_CMD(0xb0+i); OLED_WR_CMD (0x00); OLED_WR_CMD (0x10); for(n=0;n<128;n++) OLED_WR_DATA(0); } } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_CMD(0X8D); //SET DCDC命令 OLED_WR_CMD(0X14); //DCDC ON OLED_WR_CMD(0XAF); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_CMD(0X8D); //SET DCDC命令 OLED_WR_CMD(0X10); //DCDC OFF OLED_WR_CMD(0XAE); //DISPLAY OFF } void OLED_Set_Pos(uint8_t x, uint8_t y) { OLED_WR_CMD(0xb0+y); OLED_WR_CMD(((x&0xf0)>>4)|0x10); OLED_WR_CMD(x&0x0f); } void OLED_On(void) { uint8_t i,n; for(i=0;i<8;i++) { OLED_WR_CMD(0xb0+i); //设置页地址(0~7) OLED_WR_CMD(0x00); //设置显示位置—列低地址 OLED_WR_CMD(0x10); //设置显示位置—列高地址 for(n=0;n<128;n++) OLED_WR_DATA(1); } //更新显示 } unsigned int oled_pow(uint8_t m,uint8_t n) { unsigned int result=1; while(n--)result*=m; return result; } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 16/12 void OLED_ShowChar(uint8_t x,uint8_t y,uint8_t chr,uint8_t Char_Size) { unsigned char c=0,i=0; c=chr-' ';//得到偏移后的值 if(x>128-1){x=0;y=y+2;} if(Char_Size ==16) { OLED_Set_Pos(x,y); for(i=0;i<8;i++) OLED_WR_DATA(F8x16[c*16+i]); OLED_Set_Pos(x,y+1); for(i=0;i<8;i++) OLED_WR_DATA(F8x16[c*16+i+8]); } else { OLED_Set_Pos(x,y); for(i=0;i<6;i++) OLED_WR_DATA(F6x8[c][i]); } } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //mode:模式 0,填充模式;1,叠加模式 //num:数值(0~4294967295); void OLED_ShowNum(uint8_t x,uint8_t y,unsigned int num,uint8_t len,uint8_t size2) { uint8_t t,temp; uint8_t enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) { if(temp==0) { OLED_ShowChar(x+(size2/2)*t,y,' ',size2); continue; }else enshow=1; } OLED_ShowChar(x+(size2/2)*t,y,temp+'0',size2); } } //显示一个字符号串 void OLED_ShowString(uint8_t x,uint8_t y,uint8_t *chr,uint8_t Char_Size) { unsigned char j=0; while (chr[j]!='\0') { OLED_ShowChar(x,y,chr[j],Char_Size); x+=8; if(x>120){x=0;y+=2;} j++; } } //显示汉字 //hzk 用取模软件得出的数组 void OLED_ShowCHinese(uint8_t x,uint8_t y,uint8_t no) { uint8_t t,adder=0; OLED_Set_Pos(x,y); for(t=0;t<16;t++) { OLED_WR_DATA(Hzk[2*no][t]); adder+=1; } OLED_Set_Pos(x,y+1); for(t=0;t<16;t++) { OLED_WR_DATA(Hzk[2*no+1][t]); adder+=1; } } /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "adc.h" #include "i2c.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "OLED.h" #include "stdio.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ double yudi=0; int data=0; //sprintf((char *)LCD_r37_adc," R37:%.2fV ",r37); /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_ADC1_Init(); MX_USART1_UART_Init(); MX_I2C1_Init(); MX_ADC2_Init(); /* USER CODE BEGIN 2 */ OLED_Init(); OLED_Display_On();//����OLED��ʾ //���� OLED_Clear(); // OLED_ShowNum(10,10,10,8,8); // OLED_ShowChar(0, 0,'C',16); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ HAL_ADC_Start(&hadc2); HAL_ADC_PollForConversion(&hadc2,HAL_MAX_DELAY); yudi= 4095-HAL_ADC_GetValue(&hadc2) * 1000/4095.0; uint8_t A[]="hdilisa !!"; OLED_ShowString(0,0,A,sizeof(A)); //OLED_ShowString(0,2,YUDI,sizeof(YUDI)); char display_str[16]; sprintf(display_str, "data:%.2fL/m2", yudi); // 在OLED指定位置显示(x=0,y=0,10) OLED_ShowString(0, 2, (uint8_t*)display_str,10); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */

#include "stm32f10x.h" //STM32头文件 #include "Delay.h" //延时函数头文件 #include "math.h" #include "OLED.h" //OLED屏头文件 #include "key.h" //按键头文件 #include "LED.h" //LED灯头文件 #include "hx711.h" //称重模块头文件 #include "FreeRTOS.h" #include "task.h" #include "freertos_demo.h" #include "bsp_usart.h" #include "semphr.h" uint8_t i=0; //页面标志位 uint16_t Keynum; //按键值存储 uint16_t Keys,Keychange; uint16_t x,y=1234; uint8_t lock=0; //称重计算量 int value; float weight; extern int32_t reset; float Weights=122.0; //122g int32_t Weights_122=8564816; //122g QueueHandle_t xWeightQueue; // 重量数据队列 SemaphoreHandle_t xHX711_Semaphore; // HX711中断信号量 ////蓝牙接收数据存放 //uint8_t Recv[64]; //uint8_t rx_cnt; //按键扫描任务配置 #define KEY_TASK_PRIO 1 #define KEY_TASK_STACK_SIZE 128 TaskHandle_t key_task_handler; void key_task(void * pvParameters); //OLED任务配置 #define OLED_TASK_PRIO 1 #define OLED_TASK_STACK_SIZE 1000 TaskHandle_t oled_task_handler; void oled_task(void * pvParameters); //HX711任务配置 #define HX711_TASK_PRIO 1 #define HX711_TASK_STACK_SIZE 500 TaskHandle_t hx711_task_handler; void hx711_task(void * pvParameters); //GPS任务配置 #define GPS_TASK_PRIO 1 #define GPS_TASK_STACK_SIZE 128 TaskHandle_t gps_task_handler; void gps_task(void * pvParameters); void freertos_demo() { xWeightQueue = xQueueCreate(5, sizeof(float)); xSemaphoreGiveFromISR(xHX711_Semaphore, NULL); // 在HX711中断中触发 //按键任务 xTaskCreate( (TaskFunction_t ) key_task, (char * ) "key_task", (uint16_t ) KEY_TASK_STACK_SIZE, (void * ) NULL, (UBaseType_t ) KEY_TASK_PRIO, (TaskHandle_t * ) &key_task_handler ); //OLED任务 xTaskCreate( (TaskFunction_t ) oled_task, (char * ) "oled_task", (uint16_t ) OLED_TASK_STACK_SIZE, (void * ) NULL, (UBaseType_t ) OLED_TASK_PRIO, (TaskHandle_t * ) &oled_task_handler ); //HX711任务 xTaskCreate( (TaskFunction_t ) hx711_task, (char * ) "hx711_task", (uint16_t ) HX711_TASK_STACK_SIZE, (void * ) NULL, (UBaseType_t ) HX711_TASK_PRIO, (TaskHandle_t * ) &hx711_task_handler ); vTaskStartScheduler(); } // 队列定义(用于任务通信) void hx711_task(void *pvParameters) { HX711_Init(); // 初始化传感器 xHX711_Semaphore = xSemaphoreCreateBinary(); while(1) { if(xSemaphoreTake(xHX711_Semaphore, portMAX_DELAY)) { int32_t raw = HX711_GetData(); // 读取原始数据 weight = (raw - Weights_122) * Weights / 122.0; // 转换为重量 xQueueSend(xWeightQueue, &weight, 0); // 发送到队列 } } } // 按键扫描任务 void key_task(void *pvParameters) { while(1) { Keynum = Button4_4_Scan(); // 非阻塞扫描 if(Keynum) { // 按键事件处理 if(Keynum == 1) i = !i; // 切换显示页面 } vTaskDelay(10); // 10ms周期 } } // OLED显示任务(需调用vApplicationTickHook) void oled_task(void *pvParameters) { OLED_Init(); // 初始化屏幕 while(1) { OLED_Clear(); // 清屏 if(i == 0) { OLED_ShowString(0,0,"Weight:",OLED_8X16); OLED_ShowFloatNum(60,0,weight,2,2,OLED_8X16); // 显示重量 } else { OLED_ShowString(1,1,"Calibrating...",OLED_8X16); } OLED_Update(); // 更新显示 vTaskDelay(500); // 0.5秒刷新 } }

Build started: Project: atk_f407 *** Using Compiler 'V5.06 update 7 (build 960)', folder: 'E:\MDK5\ARM\ARMCC\Bin' Build target 'OLEO' assembling startup_stm32f407xx.s... compiling usart.c... compiling main.c... ..\..\User\main.c(31): warning: #177-D: variable "t" was declared but never referenced uint8_t t = 0; ..\..\User\main.c(35): warning: #177-D: variable "temp" was declared but never referenced float temp; ..\..\User\main.c: 2 warnings, 0 errors compiling stm32f4xx_hal_rcc_ex.c... compiling stm32f4xx_hal_adc.c... "no source": Error: #5: cannot open source input file "H:\xxx\4锛岀▼搴忔簮鐮乗2锛屾爣鍑嗕緥绋?HAL搴撶増鏈琝2锛屾爣鍑嗕緥绋?HAL搴撶増鏈琝瀹為獙12 OLED鏄剧ず瀹為獙\Drivers\STM32F4xx_HAL_Driver\Src\stm32f4xx_hal_adc.c": No such file or directory H:\xxx\4,程序源码\2,标准例程-HAL库版本\2,标准例程-HAL库版本\实验12 OLED显示实验\Drivers\STM32F4xx_HAL_Driver\Src\stm32f4xx_hal_adc.c: 0 warnings, 1 error compiling stm32f4xx_hal_tim.c... "no source": Error: #5: cannot open source input file "H:\xxx\4锛岀▼搴忔簮鐮乗2锛屾爣鍑嗕緥绋?HAL搴撶増鏈琝2锛屾爣鍑嗕緥绋?HAL搴撶増鏈琝瀹為獙12 OLED鏄剧ず瀹為獙\Drivers\STM32F4xx_HAL_Driver\Src\stm32f4xx_hal_tim.c": No such file or directory H:\xxx\4,程序源码\2,标准例程-HAL库版本\2,标准例程-HAL库版本\实验12 OLED显示实验\Drivers\STM32F4xx_HAL_Driver\Src\stm32f4xx_hal_tim.c: 0 warnings, 1 error compiling stm32f4xx_hal_tim_ex.c... "no source": Error: #5: cannot open source input file "H:\xxx\4锛岀▼搴忔簮鐮乗2锛屾爣鍑嗕緥绋?HAL搴撶増鏈琝2锛屾爣鍑嗕緥绋?HAL搴撶増鏈琝瀹為獙12 OLED鏄剧ず瀹為獙\Drivers\STM32F4xx_HAL_Driver\Src\stm32f4xx_hal_tim_ex.c": No such file or directory H:\xxx\4,程序源码\2,标准例程-HAL库版本\2,标准例程-HAL库版本\实验12 OLED显示实验\Drivers\STM32F4xx_HAL_Driver\Src\stm32f4xx_hal_tim_ex.c: 0 warnings, 1 error compiling stm32f4xx_hal_cortex.c... compiling stm32f4xx_hal_adc_ex.c... "no source": Error: #5: cannot open source input file "H:\xxx\4锛岀▼搴忔簮鐮乗2锛屾爣鍑嗕緥绋?HAL搴撶増鏈琝2锛屾爣鍑嗕緥绋?HAL搴撶増鏈琝瀹為獙12 OLED鏄剧ず瀹為獙\Drivers\STM32F4xx_HAL_Driver\Src\stm32f4xx_hal_adc_ex.c": No such file or directory H:\xxx\4,程序源码\2,标准例程-HAL库版本\2,标准例程-HAL库版本\实验12 OLED显示实验\Drivers\STM32F4xx_HAL_Driver\Src\stm32f4xx_hal_

//adc.c #include "adc.h" void ADC1_Init(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_0; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOA, &GPIO_InitStruct); ADC_InitTypeDef ADC_InitStruct; ADC_InitStruct.ADC_Mode = ADC_Mode_Independent; ADC_InitStruct.ADC_ScanConvMode = DISABLE; ADC_InitStruct.ADC_ContinuousConvMode = DISABLE; ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStruct.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStruct); // 调用库函数时传递参数 ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5); ADC_Cmd(ADC1, ENABLE); ADC_ResetCalibration(ADC1); while (ADC_GetResetCalibrationStatus(ADC1)); ADC_StartCalibration(ADC1); while (ADC_GetCalibrationStatus(ADC1)); } uint16_t ADC_GetValue(void) { ADC_SoftwareStartConvCmd(ADC1, ENABLE); while (!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); return ADC_GetConversionValue(ADC1); } //adc.h #ifndef __ADC_H #define __ADC_H #include "stm32f10x.h" void ADC1_Init(void); uint16_t ADC_GetValue(void); #endif //main.c #include "stm32f10x.h" // Device header #include "Delay.h" #include "OLED.h" #include "LightSensor.h" #include "DHT11.h" #include "stdint.h" #include "adc.h" // 添加 ADC 头文件 #include "stdio.h" int main(void) { /*模块初始化*/ OLED_Init(); //OLED初始化 LightSensor_Init(); //光敏传感器初始化 DHT11_Init(); //DHT11初始化 ADC1_Init(); // ADC 初始化 uint8_t temp = 0; uint8_t humi = 0; char temp_str[10] = {0}; char humi_str[10] = {0}; char lux_str[10] = {0}; char adc_str[20] = {0}; // 用于显示 ADC 值的字符串 while (1) { // 读取温湿度 DHT11_Read_Data(&temp, &humi); sprintf(temp_str, "Temp:%d C", temp); sprintf(humi_str, "Humi:%d %%RH", humi); OLED_ShowString(2, 1, temp_str); OLED_ShowString(3, 1, humi_str); // 读取光照强度并显示 float lux = LightSensor_GetLux(); sprintf(lux_str, "Lux:%.1f", lux); OLED_ShowString(1, 1, lux_str); // 读取 ADC 值并显示土壤湿度 uint16_t adc_value = ADC_GetValue(); sprintf(adc_str, "adc:%4d", adc_value); OLED_ShowString(4, 1, adc_str); // OLED 第四行显示 Delay_s(1); } }分析adc.c、adc.h、main.c是否有错误(keil5+stm32(标准库))

*** Using Compiler 'V5.06 update 5 (build 528)', folder: 'E:\Keil5\ARM\ARMCC\Bin' Build target 'OLED' compiling stm32f4xx_ll_adc.c... compiling stm32f4xx_hal_pwr.c... assembling startup_stm32f411xe.s... compiling oled.c... ..\Core\Src\oled.c(23): error: #20: identifier "OLED_DC_GPIO_Port" is undefined LED_DC_Set();//命令/数据标志位置为1,则表示传送的是命令字节 ..\Core\Src\oled.c(23): error: #20: identifier "OLED_DC_Pin" is undefined LED_DC_Set();//命令/数据标志位置为1,则表示传送的是命令字节 ..\Core\Src\oled.c(26): error: #20: identifier "OLED_DC_GPIO_Port" is undefined LED_DC_Clr();//命令/数据标志位置为0,则表示传送的是数据字节 ..\Core\Src\oled.c(26): error: #20: identifier "OLED_DC_Pin" is undefined LED_DC_Clr();//命令/数据标志位置为0,则表示传送的是数据字节 ..\Core\Src\oled.c(27): error: #20: identifier "OLED_CS_GPIO_Port" is undefined LED_CS_Clr();//片选信号为低,表示选中OLED ..\Core\Src\oled.c(27): error: #20: identifier "OLED_CS_Pin" is undefined LED_CS_Clr();//片选信号为低,表示选中OLED ..\Core\Src\oled.c(30): error: #20: identifier "OLED_DC_GPIO_Port" is undefined LED_DC_Set(); ..\Core\Src\oled.c(30): error: #20: identifier "OLED_DC_Pin" is undefined LED_DC_Set(); ..\Core\Src\oled.c(243): error: #20: identifier "OLED_RST_GPIO_Port" is undefined LED_RST_Clr(); ..\Core\Src\oled.c(243): error: #20: identifier "OLED_RST_Pin" is undefined LED_RST_Clr(); ..\Core\Src\oled.c: 0 warnings, 10 errors compiling gpio.c... ../Core/Src/gpio.c(96): error: #20: identifier "OLED_CS_GPIO_Port" is undefined HAL_GPIO_WritePin(OLED_CS_GPIO_Port, OLED_CS_Pin, GPIO_PIN_RESET); ../Core/Src/gpio.c(96): error: #20: identifier "OLED_CS_Pin" is undefined HAL_GPIO_WritePin(OLED_CS_GPIO_Port, OLED_CS_Pin, GPIO_PIN_RESET); ../Core/Src/gpio.c(99): error: #20: identifier "OLED_RST_Pin" is undefined HAL_GPIO_WritePin( PIOB, OLED_RST_Pin|OLED_DC_Pin, GPIO_PIN_RESET); ../Core/Src/gpio.c(99): error: #20: identifier "OLED_DC_Pin" is undefined HAL_GPIO_WritePin( PIOB, OLED_RST_Pin|OLED_DC_Pin, GPIO_PIN_RESET); ../Core/Src/gpio.c: 0 warnings, 4 errors compiling i2c.c... ../Core/Inc/i2c.h(34): error: #20: identifier "I2C_HandleTypeDef" is undefined extern I2C_HandleTypeDef hi2c1; i2c.c(27): error: #20: identifier "I2C_HandleTypeDef" is undefined I2C_HandleTypeDef hi2c1; i2c.c(35): error: #20: identifier "I2C_DUTYCYCLE_2" is undefined hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; i2c.c(37): error: #20: identifier "I2C_ADDRESSINGMODE_7BIT" is undefined hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; i2c.c(38): error: #20: identifier "I2C_DUALADDRESS_DISABLE" is undefined hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; i2c.c(40): error: #20: identifier "I2C_GENERALCALL_DISABLE" is undefined hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; i2c.c(41): error: #20: identifier "I2C_NOSTRETCH_DISABLE" is undefined hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; i2c.c(42): warning: #223-D: function "HAL_I2C_Init" declared implicitly if (HAL_I2C_Init(&hi2c1) != HAL_OK) i2c.c(49): error: #20: identifier "I2C_HandleTypeDef" is undefined void HAL_I2C_MspInit(I2C_HandleTypeDef* i2cHandle) i2c.c(79): error: #20: identifier "I2C_HandleTypeDef" is undefined void HAL_I2C_MspDeInit(I2C_HandleTypeDef* i2cHandle) i2c.c(108): warning: #1-D: last line of file ends without a newline /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ i2c.c: 2 warnings, 9 errors compiling stm32f4xx_hal_rtc_ex.c... compiling stm32f4xx_hal_cortex.c... compiling stm32f4xx_hal_spi.c... compiling stm32f4xx_hal_flash_ramfunc.c... compiling stm32f4xx_hal.c... compiling stm32f4xx_hal_adc.c... compiling tim.c... compiling stm32f4xx_hal_dma_ex.c... compiling usart.c... compiling stm32f4xx_hal_flash.c... compiling stm32f4xx_hal_rcc.c... compiling adc.c... compiling stm32f4xx_hal_exti.c... compiling main.c... ../Core/Src/main.c(289): warning: #177-D: variable "i" was declared but never referenced int i,j; ../Core/Src/main.c(371): warning: #1035-D: single-precision operand implicitly converted to double-precision Res_1 = ( ( (float)adc_values[1] ) / ( (float)adc_values[0] )-1.0)*708; ../Core/Src/main.c(375): warning: #1035-D: single-precision operand implicitly converted to double-precision Res_2 = (int)(( ( (float)adc_values[1] ) / ( (float)adc_values[0] )-1.0)*475000); ../Core/Src/main.c(503): warning: #1035-D: single-precision operand implicitly converted to double-precision Esr = ( ( (float)adc_values[1] ) / ( (float)adc_values[0] )-1.0)*708; ../Core/Src/main.c(489): warning: #550-D: variable "adcget1" was set but never used uint32_t adcget1, adcget2, adc_values[2]; ../Core/Src/main.c(489): warning: #550-D: variable "adcget2" was set but never used uint32_t adcget1, adcget2, adc_values[2]; ../Core/Src/main.c(490): warning: #177-D: variable "Res" was declared but never referenced float Res,Esr; ../Core/Src/main.c: 7 warnings, 0 errors compiling spi.c... compiling stm32f4xx_it.c... compiling stm32f4xx_hal_dma.c... compiling stm32f4xx_hal_pwr_ex.c... compiling stm32f4xx_hal_rtc.c... compiling stm32f4xx_hal_gpio.c... compiling stm32f4xx_hal_rcc_ex.c... compiling stm32f4xx_hal_flash_ex.c... compiling stm32f4xx_hal_adc_ex.c... compiling stm32f4xx_hal_msp.c... compiling rtc.c... compiling stm32f4xx_hal_tim_ex.c... compiling stm32f4xx_hal_tim.c... compiling stm32f4xx_hal_uart.c... compiling system_stm32f4xx.c... "OLED\OLED.axf" - 23 Error(s), 9 Warning(s). Target not created. Build Time Elapsed: 00:02:10

/************************************************* 函数名:main.c 功 能 :key 演示程序 时 间 :2019/02/28 作 者 : *************************************************/ //程序思路: //扫描按键并识别按键 //按键去抖用延时,延时采用精确延时函数 #include <stm32f10x.h> #include "delay.h" //延时函数的头文件 #include <mykey.h> #include <adc.h> #include #include "stdio.h" //系统时钟初始化函数 //采用固件库函数方式编程 //pll:选择的倍频数,从2开始, 最大为9 /******************************************************************************* * Function Name : Rcc_Init * Description : RCC配置(使用外部8MHz晶振) * Input : uint32_t,PLL的倍频系数,例如9就是9*8=72M * Output : 无 * Return : 无 *******************************************************************************/ void I2C_Init(void); void Stm32_Clock_Init(u8 pll); float ReadVoltage(void); void DisplayVoltage(float voltage); uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx); void OLED_DisplayString(uint8_t line, uint8_t *str); void Stm32_Clock_Init(u8 pll); int main(void) { ADC_Init(); I2C_Init(); OLED_Init(); Stm32_Clock_Init(9); //系统时钟设置 delay_init(72); //延时初始化 delay_ms(100); while(1) { float voltage = ReadVoltage(); DisplayVoltage(voltage); delay_ms(1000); // 延迟1秒 } } /* LED PE8--PE15 推挽输出 K1 --k3 PA456 要配成内上拉 kUp PA7 要配成内下拉 */ void OLED_DisplayString(uint8_t line, uint8_t *str) { // 设置显示位置 OLED_SetPosition(0, line); while (*str) { OLED_ShowChar(*str++); } } // 读取ADC值并计算电压 float ReadVoltage(void) { uint16_t adc_value = ADC_GetConversionValue(ADC1); float voltage = (adc_value * 3.3) / 4095.0; // 假设VDD为3.3V return voltage; } // 显示电压值 void DisplayVoltage(float voltage) { char buffer[20]; sprintf(buffer, "电压: %.2f V", voltage); OLED_DisplayString(buffer); // 假设存在这样的函数用于显示字符串 } void Stm32_Clock_Init(u8 pll) { ErrorStatus HSEStartUpStatus; /*将外设RCC寄存器重设为缺省值*/ RCC_DeInit(); /*设置外部高速晶振(HSE)*/ RCC_HSEConfig(RCC_HSE_ON); //RCC_HSE_ON——HSE晶振打开(ON) /*等待HSE起振*/ HSEStartUpStatus = RCC_WaitForHSEStartUp(); if(HSEStartUpStatus == SUCCESS) //SUCCESS:HSE晶振稳定且就绪 { /*设置AHB时钟(HCLK)*/ RCC_HCLKConfig(RCC_SYSCLK_Div1); //RCC_SYSCLK_Div1——AHB时钟= 系统时钟 /* 设置高速AHB时钟(PCLK2)*/ RCC_PCLK2Config(RCC_HCLK_Div1); //RCC_HCLK_Div1——APB2时钟= HCLK /*设置低速AHB时钟(PCLK1)*/ RCC_PCLK1Config(RCC_HCLK_Div2); //RCC_HCLK_Div2——APB1时钟= HCLK / 2 /*设置FLASH存储器延时时钟周期数*/ FLASH_SetLatency(FLASH_ACR_LATENCY_2);//FLASH_Latency_2 2延时周期 /*选择FLASH预取指缓存的模式*/ FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);// 预取指缓存使能 /*设置PLL时钟源及倍频系数*/ //RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); // PLL的输入时钟= HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9 switch(pll) { case 2: RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_2); break; case 3: RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_3); break; case 4: RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_4); break; case 5: RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_5); break; case 6: RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_6); break; case 7: RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_7); break; case 8: RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_8); break; case 9: RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); break; default: RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_2); break; } /*使能PLL */ RCC_PLLCmd(ENABLE); /*检查指定的RCC标志位(PLL准备好标志)设置与否*/ while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) { } /*设置系统时钟(SYSCLK)*/ RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟 /* PLL返回用作系统时钟的时钟源*/ while(RCC_GetSYSCLKSource() != 0x08) //0x08:PLL作为系统时钟 { } } } 帮我找错,以下是错误报告 *** Using Compiler 'V5.06 update 6 (build 750)', folder: 'F:\Keil_v5\ARM\ARMCC\Bin' compiling main.c... main.c(68): warning: #223-D: function "OLED_SetPosition" declared implicitly OLED_SetPosition(0, line); main.c(70): warning: #223-D: function "OLED_ShowChar" declared implicitly OLED_ShowChar(*str++); main.c(84): error: #167: argument of type "char *" is incompatible with parameter of type "uint8_t" OLED_DisplayString(buffer); // 鍋囪瀛樺湪杩欐牱鐨勫嚱鏁扮敤浜庢樉绀哄瓧绗︿覆 main.c(84): error: #165: too few arguments in function call OLED_DisplayString(buffer); // 鍋囪瀛樺湪杩欐牱鐨勫嚱鏁扮敤浜庢樉绀哄瓧绗︿覆 main.c: 2 warnings, 2 errors "main.c" - 2 Error(s), 2 Warning(s).

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "i2c.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stm32f1xx_hal.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define PCA9685_ADDR 0x80 // 写地址(0x40<<1) I2C_HandleTypeDef hi2c1; // PCA9685寄存器定义 #define MODE1_REG 0x00 #define PRESCALE_REG 0xFE #define LED0_ON_L 0x06 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ void PCA9685_Init(uint8_t freq) { uint8_t data[2]; // 复位芯片 data[0] = MODE1_REG; data[1] = 0x00; // 退出睡眠模式 HAL_I2C_Master_Transmit(&hi2c1, PCA9685_ADDR, data, 2, 100); // 设置PWM频率 float prescale_val = 25000000.0 / (4096 * freq) - 1; uint8_t prescale = (uint8_t)(prescale_val + 0.5); data[0] = MODE1_REG; data[1] = 0x10; // 进入睡眠模式(允许设置预分频) HAL_I2C_Master_Transmit(&hi2c1, PCA9685_ADDR, data, 2, 100); data[0] = PRESCALE_REG; data[1] = prescale; HAL_I2C_Master_Transmit(&hi2c1, PCA9685_ADDR, data, 2, 100); data[0] = MODE1_REG; data[1] = 0x80; // 重启 HAL_I2C_Master_Transmit(&hi2c1, PCA9685_ADDR, data, 2, 100); HAL_Delay(5); data[0] = MODE1_REG; data[1] = 0xA0; // 自动增加使能 HAL_I2C_Master_Transmit(&hi2c1, PCA9685_ADDR, data, 2, 100); } void Set_PWM(uint8_t channel, uint16_t on, uint16_t off) { uint8_t data[5]; data[0] = LED0_ON_L + 4 * channel; data[1] = on & 0xFF; // LED_ON_L data[2] = on >> 8; // LED_ON_H data[3] = off & 0xFF; // LED_OFF_L data[4] = off >> 8; // LED_OFF_H HAL_I2C_Master_Transmit(&hi2c1, PCA9685_ADDR, data, 5, 100); } // 舵机角度控制 (0-180度) void Set_Servo_Angle(uint8_t channel, uint8_t angle) { float pulse = (angle * 2.0 / 180.0) + 0.5; // 0.5ms-2.5ms uint16_t value = (uint16_t)(pulse * 4096 / 20); // 20ms周期 Set_PWM(channel, 0, value); } /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ PCA9685_Init(50); // 初始化50Hz PWM频率(舵机标准) /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_I2C1_Init(); /* USER CODE BEGIN 2 */ //主程序编写处*********************************************************************************************************************************************************** /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ // 通道0舵机从0°到180°扫描 for(uint8_t i=0; i<=180; i+=10) { Set_Servo_Angle(0, i); HAL_Delay(200); } for(uint8_t i=180; i>0; i-=10) { Set_Servo_Angle(0, i); HAL_Delay(200); } } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */

最新推荐

recommend-type

Keil MDK-ARM各种数据类型占用的字节数 char short int float double

typedef unsigned int uint32; typedef signed int int32; typedef float fp32; typedef double fp64; ``` 这样,即使在不同的平台或环境下,只要确保对应的typedef正确,代码依然保持清晰和一致。在处理结构体成员...
recommend-type

最新2025甘肃省村界村级行政区划矢量shp数据下载

最新2025甘肃省村界村级行政区划矢量shp数据,几万个面,属性包含村、社区乡、街道镇、市多级属性,非常准确
recommend-type

C++实现的DecompressLibrary库解压缩GZ文件

根据提供的文件信息,我们可以深入探讨C++语言中关于解压缩库(Decompress Library)的使用,特别是针对.gz文件格式的解压过程。这里的“lib”通常指的是库(Library),是软件开发中用于提供特定功能的代码集合。在本例中,我们关注的库是用于处理.gz文件压缩包的解压库。 首先,我们要明确一个概念:.gz文件是一种基于GNU zip压缩算法的压缩文件格式,广泛用于Unix、Linux等操作系统上,对文件进行压缩以节省存储空间或网络传输时间。要解压.gz文件,开发者需要使用到支持gzip格式的解压缩库。 在C++中,处理.gz文件通常依赖于第三方库,如zlib或者Boost.IoStreams。codeproject.com是一个提供编程资源和示例代码的网站,程序员可以在该网站上找到现成的C++解压lib代码,来实现.gz文件的解压功能。 解压库(Decompress Library)提供的主要功能是读取.gz文件,执行解压缩算法,并将解压缩后的数据写入到指定的输出位置。在使用这些库时,我们通常需要链接相应的库文件,这样编译器在编译程序时能够找到并使用这些库中定义好的函数和类。 下面是使用C++解压.gz文件时,可能涉及的关键知识点: 1. Zlib库 - zlib是一个用于数据压缩的软件库,提供了许多用于压缩和解压缩数据的函数。 - zlib库支持.gz文件格式,并且在多数Linux发行版中都预装了zlib库。 - 在C++中使用zlib库,需要包含zlib.h头文件,同时链接z库文件。 2. Boost.IoStreams - Boost是一个提供大量可复用C++库的组织,其中的Boost.IoStreams库提供了对.gz文件的压缩和解压缩支持。 - Boost库的使用需要下载Boost源码包,配置好编译环境,并在编译时链接相应的Boost库。 3. C++ I/O操作 - 解压.gz文件需要使用C++的I/O流操作,比如使用ifstream读取.gz文件,使用ofstream输出解压后的文件。 - 对于流操作,我们常用的是std::ifstream和std::ofstream类。 4. 错误处理 - 解压缩过程中可能会遇到各种问题,如文件损坏、磁盘空间不足等,因此进行适当的错误处理是必不可少的。 - 正确地捕获异常,并提供清晰的错误信息,对于调试和用户反馈都非常重要。 5. 代码示例 - 从codeproject找到的C++解压lib很可能包含一个或多个源代码文件,这些文件会包含解压.gz文件所需的函数或类。 - 示例代码可能会展示如何初始化库、如何打开.gz文件、如何读取并处理压缩数据,以及如何释放资源等。 6. 库文件的链接 - 编译使用解压库的程序时,需要指定链接到的库文件,这在不同的编译器和操作系统中可能略有不同。 - 通常,在编译命令中加入-l参数,比如使用g++的话可能是`g++ -o DecompressLibrary DecompressLibrary.cpp -lz`,其中`-lz`表示链接zlib库。 7. 平台兼容性 - 在不同平台上使用解压库可能需要考虑平台兼容性问题。 - Windows系统可能需要额外的配置和库文件,因为zlib或其他库可能不是默认预装的。 根据以上知识点,我们可以得出,在C++中解压.gz文件主要涉及到对zlib或类似库的使用,以及熟悉C++的I/O操作。正确使用这些库,能够有效地对压缩文件进行解压,并处理可能出现的错误情况。如果从codeproject获取到的C++解压lib确实是针对.gz文件格式的,那么它很可能已经封装好了大部分的操作细节,让开发者能够以更简单的方式实现解压功能。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

VM ware如何查看软件版本信息

<think>首先,用户的问题是:“我想查找VMware软件版本信息的查看方法请问如何在VMware中查看软件版本信息”。用户参考了之前的引用,但那些引用主要是关于查看VMware版本的一般方法,现在用户具体想知道在VMware软件中如何查看版本信息。回顾之前的对话:-用户第一次问的是VSCode的版本查看方法。-现在用户问的是VMware的版本查看方法。-系统级指令要求使用中文回答,正确格式化数学表达式(如果需要),但这里可能不需要数学表达式。-指令还要求生成相关问题,并在回答中引用段落时添加引用标识。用户提供的引用[1]到[5]是关于VMware版本的查看方法、下载等,但用户特别强调“参考
recommend-type

数据库课程设计报告:常用数据库综述

数据库是现代信息管理的基础,其技术广泛应用于各个领域。在高等教育中,数据库课程设计是一个重要环节,它不仅是学习理论知识的实践,也是培养学生综合运用数据库技术解决问题能力的平台。本知识点将围绕“经典数据库课程设计报告”展开,详细阐述数据库的基本概念、课程设计的目的和内容,以及在设计报告中常用的数据库技术。 ### 1. 数据库基本概念 #### 1.1 数据库定义 数据库(Database)是存储在计算机存储设备中的数据集合,这些数据集合是经过组织的、可共享的,并且可以被多个应用程序或用户共享访问。数据库管理系统(DBMS)提供了数据的定义、创建、维护和控制功能。 #### 1.2 数据库类型 数据库按照数据模型可以分为关系型数据库(如MySQL、Oracle)、层次型数据库、网状型数据库、面向对象型数据库等。其中,关系型数据库因其简单性和强大的操作能力而广泛使用。 #### 1.3 数据库特性 数据库具备安全性、完整性、一致性和可靠性等重要特性。安全性指的是防止数据被未授权访问和破坏。完整性指的是数据和数据库的结构必须符合既定规则。一致性保证了事务的执行使数据库从一个一致性状态转换到另一个一致性状态。可靠性则保证了系统发生故障时数据不会丢失。 ### 2. 课程设计目的 #### 2.1 理论与实践结合 数据库课程设计旨在将学生在课堂上学习的数据库理论知识与实际操作相结合,通过完成具体的数据库设计任务,加深对数据库知识的理解。 #### 2.2 培养实践能力 通过课程设计,学生能够提升分析问题、设计解决方案以及使用数据库技术实现这些方案的能力。这包括需求分析、概念设计、逻辑设计、物理设计、数据库实现、测试和维护等整个数据库开发周期。 ### 3. 课程设计内容 #### 3.1 需求分析 在设计报告的开始,需要对项目的目标和需求进行深入分析。这涉及到确定数据存储需求、数据处理需求、数据安全和隐私保护要求等。 #### 3.2 概念设计 概念设计阶段要制定出数据库的E-R模型(实体-关系模型),明确实体之间的关系。E-R模型的目的是确定数据库结构并形成数据库的全局视图。 #### 3.3 逻辑设计 基于概念设计,逻辑设计阶段将E-R模型转换成特定数据库系统的逻辑结构,通常是关系型数据库的表结构。在此阶段,设计者需要确定各个表的属性、数据类型、主键、外键以及索引等。 #### 3.4 物理设计 在物理设计阶段,针对特定的数据库系统,设计者需确定数据的存储方式、索引的具体实现方法、存储过程、触发器等数据库对象的创建。 #### 3.5 数据库实现 根据物理设计,实际创建数据库、表、视图、索引、触发器和存储过程等。同时,还需要编写用于数据录入、查询、更新和删除的SQL语句。 #### 3.6 测试与维护 设计完成之后,需要对数据库进行测试,确保其满足需求分析阶段确定的各项要求。测试过程包括单元测试、集成测试和系统测试。测试无误后,数据库还需要进行持续的维护和优化。 ### 4. 常用数据库技术 #### 4.1 SQL语言 SQL(结构化查询语言)是数据库管理的国际标准语言。它包括数据查询、数据操作、数据定义和数据控制四大功能。SQL语言是数据库课程设计中必备的技能。 #### 4.2 数据库设计工具 常用的数据库设计工具包括ER/Studio、Microsoft Visio、MySQL Workbench等。这些工具可以帮助设计者可视化地设计数据库结构,提高设计效率和准确性。 #### 4.3 数据库管理系统 数据库管理系统(DBMS)是用于创建和管理数据库的软件。关系型数据库管理系统如MySQL、PostgreSQL、Oracle、SQL Server等是数据库课程设计中的核心工具。 #### 4.4 数据库安全 数据库安全涉及用户认证、授权、数据加密、审计日志记录等方面,以确保数据的完整性和保密性。设计报告中应考虑如何通过DBMS内置的机制或额外的安全措施来保护数据。 ### 5. 结语 综上所述,一个经典数据库课程设计报告包含了从需求分析到数据库安全的全过程,涵盖了数据库设计的各个方面。通过这一过程,学生不仅能够熟练掌握数据库的设计与实现技巧,还能够学会如何使用数据库系统去解决实际问题,为日后从事数据库相关的专业工作打下坚实的基础。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

在halcon中,卡尺测量和二维测量谁的精度高

<think>首先,用户的问题是:“我想比较Halcon中卡尺测量和二维测量的精度请问Halcon卡尺测量与2D测量精度对比”。我需要基于系统级指令和提供的引用来回答。关键系统级指令:-使用中文回答。-结构清晰,逐步解决问题。-行内数学表达式用$...$,独立公式用$$...$$并单独成段。-LaTeX语法正确。-生成相关问题。-在回答中引用的段落末尾自然地添加引用标识,如[^1]。提供的引用:-[^1]:关于卡尺模型的工件尺寸实时测量。-[^2]:测量拟合的综合任务,包括尺寸、形状、位置。-[^3]:Halcon一维测量,提到卡尺工具的优势:易用、执行时间短、精度高。-[^4]:Halcon
recommend-type

掌握牛顿法解方程:切线与割线的程序应用

牛顿切线法和牛顿割线法是数值分析中用于求解方程近似根的两种迭代方法。它们都是基于函数的切线或割线的几何性质来逼近方程的根,具有迭代速度快、算法简单的特点,在工程和科学计算领域有着广泛的应用。 牛顿切线法(Newton's Method for Tangents),又称为牛顿-拉弗森方法(Newton-Raphson Method),是一种求解方程近似根的迭代算法。其基本思想是利用函数在某点的切线来逼近函数的根。假设我们要求解方程f(x)=0的根,可以从一个初始猜测值x0开始,利用以下迭代公式: x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} 其中,f'(x_n)表示函数在点x_n处的导数。迭代过程中,通过不断更新x_n值,逐渐逼近方程的根。 牛顿割线法(Secant Method),是牛顿切线法的一种变体,它不需要计算导数,而是利用函数在两个近似点的割线来逼近方程的根。牛顿割线法的迭代公式如下: x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} 其中,x_{n-1}和x_n是迭代过程中连续两次的近似值。牛顿割线法相比牛顿切线法,其优点在于不需要计算函数的导数,但通常收敛速度会比牛顿切线法慢一些。 在实际应用中,这两种方法都需要注意迭代的起始点选择,否则可能会导致迭代过程不收敛。同时,这两种方法都是局部收敛方法,即它们只能保证在初始点附近有足够的近似根时才收敛。 关于例题和程序,牛顿切线法和牛顿割线法都可以通过编程实现。通常在编程实现时,需要输入函数的表达式、初始猜测值、迭代次数限制以及误差容忍度等参数。程序会根据这些输入,通过循环迭代计算,直到满足误差容忍度或达到迭代次数限制为止。 在编程实现过程中,需要注意以下几点: 1. 初始猜测值的选择对迭代的收敛性有较大影响,需要根据具体问题来合理选择。 2. 当迭代过程中遇到函数值或导数值过大、过小,或者分母趋近于零时,需要进行适当的数值处理,以避免数值不稳定或除以零的错误。 3. 对于不同的方程和函数,可能需要选择不同的迭代终止条件,如设定一个误差值或迭代次数上限。 牛顿法(包含牛顿切线法和牛顿割线法)是一类非常强大的数值解法,尤其适用于求解非线性方程,其基本原理和程序实现的知识点在理工科的许多领域都有着广泛的应用,是数值分析领域的一个基石。 请注意,本知识点仅涵盖标题和描述中提到的内容,压缩包子文件列表中的信息并未提供,因此无法提供相关内容的知识点。
recommend-type

【制图技术】:甘肃高质量土壤分布TIF图件的成图策略

# 摘要 本文针对甘肃土壤分布数据的TIF图件制作进行了系统研究。首先概述了甘肃土壤的分布情况,接着介绍了TIF图件的基础知识,包括其格式特点、空间数据表达以及质量控制方法。随后,文中构建了成图策略的理论框架,分析了土壤分布图的信息需求与数据处理流程,并探讨了成图原则与标准。在实践操作部分,详细阐述了制图软