/root/anaconda3/envs/Xinference/lib/python3.10/site-packages/torch/cuda/__init__.py:129: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)

时间: 2025-07-08 09:35:19 浏览: 3
<think>好的,我现在需要帮助用户解决CUDA初始化时出现的UserWarning警告问题,特别是关于“CUDA unknown error”以及环境变量CUDA_VISIBLE_DEVICES设置的问题。用户提到已经检查了Python、PyTorch和CUDA的版本对应,并且将CUDA添加到环境变量中,但问题依然存在。我需要逐步分析可能的原因,并提供相应的解决方案。 首先,我应该回顾用户提供的引用内容。引用[1]提到这个错误可能是由于环境设置不正确,比如在程序启动后更改了CUDA_VISIBLE_DEVICES环境变量,导致系统将可用设备设置为零。引用[2]则指出用户已经确认版本对应,但问题仍然存在,可能需要进一步检查其他配置。 接下来,我需要考虑可能导致此问题的各种原因。常见的因素包括:环境变量设置不当、CUDA驱动版本不匹配、PyTorch安装问题、权限问题、硬件故障等。此外,用户提到的UserWarning可能在CUDA初始化时出现,可能与设备可见性或资源冲突有关。 步骤一:检查环境变量设置。用户可能在程序运行过程中修改了CUDA_VISIBLE_DEVICES,或者在多个地方设置了该变量,导致冲突。建议在启动程序前设置环境变量,并确保没有其他地方覆盖它。 步骤二:验证CUDA和驱动版本。虽然用户确认版本对应,但可能存在驱动未正确安装或版本不兼容的情况。使用nvidia-smi检查驱动状态,以及确认CUDA Toolkit版本是否与PyTorch要求的版本一致。 步骤三:检查PyTorch安装。有时候通过pip或conda安装的PyTorch可能没有正确链接CUDA。可以尝试重新安装,并指定正确的版本,确保包含CUDA支持。 步骤四:权限问题。某些情况下,用户可能没有访问GPU设备的权限。检查/dev/nvidia*文件的权限,确保当前用户有读写权限。 步骤五:硬件和资源冲突。其他进程可能占用了GPU资源,导致初始化失败。使用nvidia-smi查看是否有其他进程正在使用GPU,并尝试终止它们。 步骤六:最小化测试用例。创建一个简单的PyTorch脚本,仅执行CUDA是否可用的检查,排除项目代码中的其他干扰因素。 步骤七:查看完整错误日志。用户可能只看到了警告信息,而更底层的错误被忽略。通过捕获完整的错误输出或调试信息,可以更准确地定位问题。 步骤八:更新或回退软件版本。如果所有配置都正确,但问题依旧,可能存在版本间的隐藏兼容性问题。尝试升级或降级PyTorch、CUDA Toolkit或驱动版本。 在组织回答时,需要将这些步骤分点说明,结构清晰,便于用户逐步排查。同时,引用提供的参考资料,特别是关于环境变量设置的部分,提醒用户注意在程序启动后不要修改CUDA_VISIBLE_DEVICES,并确保正确初始化。 另外,用户提到的UserWarning可能伴随更详细的警告信息,建议用户检查完整的警告内容,以获取更多线索。例如,警告可能指出具体的设备ID或错误类型,帮助进一步诊断。 最后,生成的相关问题应围绕CUDA环境配置、错误排查方法、版本兼容性等方面,帮助用户扩展解决类似问题的能力。</think>### CUDA初始化警告与错误的解决方案 #### 1. 环境变量配置验证 - **检查`CUDA_VISIBLE_DEVICES`设置** 确保在程序启动前通过命令行或脚本设置环境变量,例如: ```bash export CUDA_VISIBLE_DEVICES=0 # Linux/Mac # 或 set CUDA_VISIBLE_DEVICES=0 # Windows ``` 避免在代码运行时动态修改此变量[^1]。 **验证方法**:在Python中执行`import os; print(os.environ.get("CUDA_VISIBLE_DEVICES"))`确认值是否符合预期。 - **清理冲突的环境变量** 某些框架(如TensorFlow)可能覆盖CUDA配置,检查是否存在其他GPU相关的环境变量冲突。 #### 2. CUDA驱动与PyTorch版本匹配 - **确认CUDA Toolkit与驱动版本兼容** 通过`nvidia-smi`查看驱动版本,并对照[CUDA Toolkit文档](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html)确认兼容性。 **示例**: - 驱动版本470.82支持CUDA 11.4 - PyTorch 2.0+需CUDA 11.7/11.8 - **重新安装PyTorch(指定CUDA版本)** 使用以下命令安装与CUDA Toolkit匹配的PyTorch版本: ```bash # CUDA 11.8示例 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` #### 3. 权限与资源冲突排查 - **检查GPU设备权限** 在Linux系统中执行: ```bash ls -l /dev/nvidia* # 查看权限是否为rw-rw-rw- ``` 若权限不足,使用`sudo chmod a+rw /dev/nvidia*`临时修复。 - **终止占用GPU的进程** 通过`nvidia-smi`查询进程ID,使用`kill -9 <PID>`结束异常进程。 #### 4. 最小化测试代码验证 运行以下代码确认CUDA是否可用: ```python import torch print(f"CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): device = torch.device("cuda:0") print(f"Device name: {torch.cuda.get_device_name(0)}") x = torch.randn(3,3).to(device) print(x) ``` 若此代码报错,说明环境配置问题仍未解决[^2]。 #### 5. 进阶调试步骤 - **查看完整错误日志** 在Python脚本开头添加以下代码捕获详细错误: ```python import os os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # 启用同步执行以显示详细错误 ``` - **尝试默认设备初始化** 显式指定设备索引: ```python torch.cuda.init() torch.cuda.set_device(0) ``` #### 6. 版本回退与更新 若问题持续,尝试以下操作: ```bash # 回退PyTorch版本 pip install torch==1.13.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117 # 或更新至最新稳定版 pip install --upgrade torch torchvision torchaudio ```
阅读全文

相关推荐

(Spatial-Mamba) ctuav_shixi@ecm-1b26:~/Spatial-Mamba-main/kernels/dwconv2d$ python3 setup.py install --userrunning install /home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/cmd.py:90: SetuptoolsDeprecationWarning: setup.py install is deprecated. !! ******************************************************************************** Please avoid running setup.py directly. Instead, use pypa/build, pypa/installer or other standards-based tools. See https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html for details. ******************************************************************************** !! self.initialize_options() /home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/cmd.py:90: EasyInstallDeprecationWarning: easy_install command is deprecated. !! ******************************************************************************** Please avoid running setup.py and easy_install. Instead, use pypa/build, pypa/installer or other standards-based tools. See https://github.com/pypa/setuptools/issues/917 for details. ******************************************************************************** !! self.initialize_options() running bdist_egg running egg_info writing dwconv2d.egg-info/PKG-INFO writing dependency_links to dwconv2d.egg-info/dependency_links.txt writing top-level names to dwconv2d.egg-info/top_level.txt reading manifest file 'dwconv2d.egg-info/SOURCES.txt' writing manifest file 'dwconv2d.egg-info/SOURCES.txt' installing library code to build/bdist.linux-x86_64/egg running install_lib running build_py copying Dwconv/dwconv_layer.py -> build/lib.linux-x86_64-cpython-310/Dwconv running build_ext /home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py:424: UserWarning: There are no g++ version bounds defined for CUDA version 12.1 warnings.warn(f'There are no {compiler_name} version bounds defined for CUDA version {cuda_str_version}') building 'dwconv2d' extension Emitting ninja build file /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/build/temp.linux-x86_64-cpython-310/build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/1] /usr/local/cuda/bin/nvcc -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/TH -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/include/python3.10 -c -c /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu -o /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/build/temp.linux-x86_64-cpython-310/depthwise_fwd/launch.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=dwconv2d -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 -std=c++17 FAILED: /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/build/temp.linux-x86_64-cpython-310/depthwise_fwd/launch.o /usr/local/cuda/bin/nvcc -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/TH -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/include/python3.10 -c -c /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu -o /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/build/temp.linux-x86_64-cpython-310/depthwise_fwd/launch.o -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=dwconv2d -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 -std=c++17 /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu(29): error: namespace "at" has no member "NoGradGuard" at::NoGradGuard no_grad; ^ /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu(63): error: namespace "at" has no member "NoGradGuard" at::NoGradGuard no_grad; ^ /home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu(69): error: namespace "at" has no member "NoGradGuard" at::NoGradGuard no_grad; ^ 3 errors detected in the compilation of "/home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/depthwise_fwd/launch.cu". ninja: build stopped: subcommand failed. Traceback (most recent call last): File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 2100, in _run_ninja_build subprocess.run( File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/subprocess.py", line 526, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/ctuav_shixi/Spatial-Mamba-main/kernels/dwconv2d/setup.py", line 5, in <module> setup( File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 186, in setup return run_commands(dist) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 202, in run_commands dist.run_commands() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1002, in run_commands self.run_command(cmd) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/install.py", line 109, in run self.do_egg_install() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/install.py", line 167, in do_egg_install self.run_command('bdist_egg') File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/bdist_egg.py", line 177, in run cmd = self.call_command('install_lib', warn_dir=False) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/bdist_egg.py", line 163, in call_command self.run_command(cmdname) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/install_lib.py", line 19, in run self.build() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/command/install_lib.py", line 113, in build self.run_command('build_ext') File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 99, in run _build_ext.run(self) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 368, in run self.build_extensions() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 873, in build_extensions build_ext.build_extensions(self) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 484, in build_extensions self._build_extensions_serial() File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 510, in _build_extensions_serial self.build_extension(ext) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 264, in build_extension _build_ext.build_extension(self, ext) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/Cython/Distutils/build_ext.py", line 136, in build_extension super().build_extension(ext) File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 565, in build_extension objects = self.compiler.compile( File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 686, in unix_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 1774, in _write_ninja_file_and_compile_objects _run_ninja_build( File "/home/ctuav_shixi/anaconda3/envs/Spatial-Mamba/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 2116, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension 代码运行后报错应该怎么办

exit code: 1 ╰─> [120 lines of output] /media/aaeon/62A6D153A6D12875/jetson/mmcv-2.0.0rc4/setup.py:5: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html from pkg_resources import DistributionNotFound, get_distribution A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/aaeon/62A6D153A6D12875/jetson/mmcv-2.0.0rc4/setup.py", line 10, in <module> import torch File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/torch/__init__.py", line 1382, in <module> from .functional import * # noqa: F403 File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/torch/functional.py", line 7, in <module> import torch.nn.functional as F File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at /tmp/pytorch/torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: Apache Software License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running develop /home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/command/develop.py:41: EasyInstallDeprecationWarning: easy_install command is deprecated. !! ******************************************************************************** Please avoid running setup.py and easy_install. Instead, use pypa/build, pypa/installer or other standards-based tools. See https://github.com/pypa/setuptools/issues/917 for details. ******************************************************************************** !! easy_install.initialize_options(self) /home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/_distutils/cmd.py:90: SetuptoolsDeprecationWarning: setup.py install is deprecated. !! ******************************************************************************** Please avoid running setup.py directly. Instead, use pypa/build, pypa/installer or other standards-based tools. See https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html for details. ******************************************************************************** !! self.initialize_options() running egg_info writing mmcv.egg-info/PKG-INFO writing dependency_links to mmcv.egg-info/dependency_links.txt writing requirements to mmcv.egg-info/requires.txt writing top-level names to mmcv.egg-info/top_level.txt /home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/torch/utils/cpp_extension.py:502: UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja.. Falling back to using the slow distutils backend. warnings.warn(msg.format('we could not find ninja.')) reading manifest file 'mmcv.egg-info/SOURCES.txt' reading manifest template 'MANIFEST.in' adding license file 'LICENSE' adding license file 'LICENSES.md' writing manifest file 'mmcv.egg-info/SOURCES.txt' running build_ext Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/aaeon/62A6D153A6D12875/jetson/mmcv-2.0.0rc4/setup.py", line 315, in <module> setup( File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 186, in setup return run_commands(dist) File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 202, in run_commands dist.run_commands() File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1002, in run_commands self.run_command(cmd) File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/command/develop.py", line 35, in run self.install_for_development() File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/command/develop.py", line 112, in install_for_development self.run_command('build_ext') File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 99, in run _build_ext.run(self) File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 368, in run self.build_extensions() File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 525, in build_extensions _check_cuda_version(compiler_name, compiler_version) File "/home/aaeon/anaconda3/envs/py3.10/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 413, in _check_cuda_version raise RuntimeError(CUDA_MISMATCH_MESSAGE.format(cuda_str_version, torch.version.cuda)) RuntimeError: The detected CUDA version (11.6) mismatches the version that was used to compile PyTorch (12.2). Please make sure to use the same CUDA versions. [end of output] note: This error originates from a subprocess, and is likely not a problem with pip.

Successfully installed nvidia-cublas-cu12-12.4.2.65 nvidia-cuda-cupti-cu12-12.4.99 nvidia-cuda-nvrtc-cu12-12.4.99 nvidia-cuda-runtime-cu12-12.4.99 nvidia-cufft-cu12-11.2.0.44 nvidia-curand-cu12-10.3.5.119 nvidia-cusolver-cu12-11.6.0.99 nvidia-cusparse-cu12-12.3.0.142 nvidia-nvjitlink-cu12-12.4.99 nvidia-nvtx-cu12-12.4.99 torch-2.4.1+cu124 torchvision-0.19.1+cu124 (yolo_env) pai@paiROS:~$ python Python 3.8.20 (default, Oct 3 2024, 15:24:27) [GCC 11.2.0] :: Anaconda, Inc. on linux Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>> print(torch.cuda.get_device_name(0)) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/pai/anaconda3/envs/yolo_env/lib/python3.8/site-packages/torch/cuda/__init__.py", line 435, in get_device_name return get_device_properties(device).name File "/home/pai/anaconda3/envs/yolo_env/lib/python3.8/site-packages/torch/cuda/__init__.py", line 465, in get_device_properties _lazy_init() # will define _get_device_properties File "/home/pai/anaconda3/envs/yolo_env/lib/python3.8/site-packages/torch/cuda/__init__.py", line 314, in _lazy_init torch._C._cuda_init() RuntimeError: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. >>> print(torch.version.cuda) 12.4 >>> print(torch.cuda.is_available()) /home/pai/anaconda3/envs/yolo_env/lib/python3.8/site-packages/torch/cuda/__init__.py:128: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.) return torch._C._cuda_getDeviceCount() > 0 False >>> exit() (yolo_env) pai@paiROS:~$ nvcc -v nvcc fatal : No input files specified; use option --help for more inform

2025-04-02 10:41:12,742 ERROR trial_runner.py:616 -- Trial CQL_ExpertGuidedEnv_5836b_00000: Error processing event. Traceback (most recent call last): File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trial_runner.py", line 586, in _process_trial results = self.trial_executor.fetch_result(trial) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/ray_trial_executor.py", line 609, in fetch_result result = ray.get(trial_future[0], timeout=DEFAULT_GET_TIMEOUT) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/_private/client_mode_hook.py", line 47, in wrapper return func(*args, **kwargs) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/worker.py", line 1456, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(TypeError): ray::CQL.train_buffered() (pid=15131, ip=10.200.84.15) File "python/ray/_raylet.pyx", line 480, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trainable.py", line 167, in train_buffered result = self.train() File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 529, in train raise e File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 515, in train result = Trainable.train(self) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trainable.py", line 226, in train result = self.step() File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py", line 157, in step evaluation_metrics = self._evaluate() File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 749, in _evaluate self._sync_weights_to_workers(worker_set=self.evaluation_workers) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 802, in _sync_weights_to_workers worker_set.foreach_worker(lambda w: w.restore(ray.get(weights))) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/evaluation/worker_set.py", line 164, in foreach_worker local_result = [func(self.local_worker())] File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py", line 802, in <lambda> worker_set.foreach_worker(lambda w: w.restore(ray.get(weights))) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/evaluation/rollout_worker.py", line 1014, in restore self.policy_map[pid].set_state(state) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/policy/torch_policy.py", line 515, in set_state s, device=self.device) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/utils/torch_ops.py", line 111, in convert_to_torch_tensor return tree.map_structure(mapping, x) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/tree/__init__.py", line 435, in map_structure [func(*args) for args in zip(*map(flatten, structures))]) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/tree/__init__.py", line 435, in [func(*args) for args in zip(*map(flatten, structures))]) File "/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/utils/torch_ops.py", line 105, in mapping tensor = torch.from_numpy(np.asarray(item)) TypeError: can't convert np.ndarray of type numpy.object_. The only supported types are: float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint8, and bool.

2025-04-02 09:53:44,008 ERROR trial_runner.py:616 – Trial CQL_ExpertGuidedEnv_5492d_00001: Error processing event. Traceback (most recent call last): File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trial_runner.py”, line 586, in _process_trial results = self.trial_executor.fetch_result(trial) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/ray_trial_executor.py”, line 609, in fetch_result result = ray.get(trial_future[0], timeout=DEFAULT_GET_TIMEOUT) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/_private/client_mode_hook.py”, line 47, in wrapper return func(*args, **kwargs) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/worker.py”, line 1456, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(TypeError): ray::CQL.train_buffered() (pid=5516, ip=10.200.84.15) File “python/ray/_raylet.pyx”, line 480, in ray._raylet.execute_task File “python/ray/_raylet.pyx”, line 432, in ray._raylet.execute_task.function_executor File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trainable.py”, line 167, in train_buffered result = self.train() File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py”, line 529, in train raise e File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py”, line 515, in train result = Trainable.train(self) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/tune/trainable.py”, line 226, in train result = self.step() File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer_template.py”, line 157, in step evaluation_metrics = self._evaluate() File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py”, line 749, in _evaluate self._sync_weights_to_workers(worker_set=self.evaluation_workers) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py”, line 802, in sync_weights_to_workers worker_set.foreach_worker(lambda w: w.restore(ray.get(weights))) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/evaluation/worker_set.py”, line 164, in foreach_worker local_result = [func(self.local_worker())] File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/agents/trainer.py”, line 802, in <lambda> worker_set.foreach_worker(lambda w: w.restore(ray.get(weights))) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/evaluation/rollout_worker.py”, line 1014, in restore self.policy_map[pid].set_state(state) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/policy/torch_policy.py”, line 515, in set_state s, device=self.device) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/utils/torch_ops.py”, line 111, in convert_to_torch_tensor return tree.map_structure(mapping, x) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/tree/init.py”, line 435, in map_structure [func(*args) for args in zip(*map(flatten, structures))]) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/tree/init.py”, line 435, in [func(*args) for args in zip(*map(flatten, structures))]) File “/home/dwh/anaconda3/envs/egpo_a/lib/python3.7/site-packages/ray/rllib/utils/torch_ops.py”, line 105, in mapping tensor = torch.from_numpy(np.asarray(item)) TypeError: can’t convert np.ndarray of type numpy.object. The only supported types are: float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint8, and bool.

(IS) nie@nie-G3-3590:~/IS-Fusion$ bash tools/train_demo.sh Traceback (most recent call last): File "tools/train.py", line 17, in <module> from mmdet3d.apis import train_model File "/home/nie/anaconda3/envs/IS/lib/python3.8/site-packages/mmdet3d/apis/__init__.py", line 2, in <module> from .inference import (convert_SyncBN, inference_detector, File "/home/nie/anaconda3/envs/IS/lib/python3.8/site-packages/mmdet3d/apis/inference.py", line 12, in <module> from mmdet3d.core import (Box3DMode, CameraInstance3DBoxes, Coord3DMode, File "/home/nie/anaconda3/envs/IS/lib/python3.8/site-packages/mmdet3d/core/__init__.py", line 2, in <module> from .anchor import * # noqa: F401, F403 File "/home/nie/anaconda3/envs/IS/lib/python3.8/site-packages/mmdet3d/core/anchor/__init__.py", line 2, in <module> from mmdet.core.anchor import build_prior_generator File "/home/nie/anaconda3/envs/IS/lib/python3.8/site-packages/mmdet/core/__init__.py", line 3, in <module> from .bbox import * # noqa: F401, F403 File "/home/nie/anaconda3/envs/IS/lib/python3.8/site-packages/mmdet/core/bbox/__init__.py", line 8, in <module> from .samplers import (BaseSampler, CombinedSampler, File "/home/nie/anaconda3/envs/IS/lib/python3.8/site-packages/mmdet/core/bbox/samplers/__init__.py", line 12, in <module> from .score_hlr_sampler import ScoreHLRSampler File "/home/nie/anaconda3/envs/IS/lib/python3.8/site-packages/mmdet/core/bbox/samplers/score_hlr_sampler.py", line 3, in <module> from mmcv.ops import nms_match File "/home/nie/anaconda3/envs/IS/lib/python3.8/site-packages/mmcv/ops/__init__.py", line 2, in <module> from .active_rotated_filter import active_rotated_filter File "/home/nie/anaconda3/envs/IS/lib/python3.8/site-packages/mmcv/ops/active_rotated_filter.py", line 10, in <module> ext_module = ext_loader.load_ext( File "/home/nie/anaconda3/envs/IS/lib/python3.8/site-packages/mmcv/utils/ext_loader.py", line 13, in load_ext ext = importli

FAILED: /home/zb/PointAugmenting/det3d/models/img_backbones/DCNv2/build/temp.linux-x86_64-3.8/home/zb/PointAugmenting/det3d/models/img_backbones/DCNv2/src/cpu/dcn_v2_cpu.o c++ -MMD -MF /home/zb/PointAugmenting/det3d/models/img_backbones/DCNv2/build/temp.linux-x86_64-3.8/home/zb/PointAugmenting/det3d/models/img_backbones/DCNv2/src/cpu/dcn_v2_cpu.o.d -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/zb/anaconda3/envs/mmdet3d/include -fPIC -O2 -isystem /home/zb/anaconda3/envs/mmdet3d/include -fPIC -DWITH_CUDA -I/home/zb/PointAugmenting/det3d/models/img_backbones/DCNv2/src -I/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/torch/include -I/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -I/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/torch/include/TH -I/home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/zb/anaconda3/envs/mmdet3d/include/python3.8 -c -c /home/zb/PointAugmenting/det3d/models/img_backbones/DCNv2/src/cpu/dcn_v2_cpu.cpp -o /home/zb/PointAugmenting/det3d/models/img_backbones/DCNv2/build/temp.linux-x86_64-3.8/home/zb/PointAugmenting/det3d/models/img_backbones/DCNv2/src/cpu/dcn_v2_cpu.o -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=_ext -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++14 In file included from /home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/torch/include/ATen/Parallel.h:140:0, from /home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/torch/include/TH/THTensorApply.h:4, from /home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/torch/include/TH/THTensor.h:5, from /home/zb/anaconda3/envs/mmdet3d/lib/python3.8/site-packages/torch/include/TH/TH.h:13, from /home/zb/PointAugmenting/det3d/models/i

Traceback (most recent call last): File "run_re2.py", line 81, in <module> parameters = Parameters(parser) # Inject the cla arguments in the parameters object File "/home/zhangmengjie/PID/Python/ERL-Re2-main/parameters.py", line 117, in __init__ self.wandb = wandb.init(project="TSR",name=self.name) File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_init.py", line 1173, in init raise e File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_init.py", line 1150, in init wi.setup(kwargs) File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_init.py", line 172, in setup self._wl = wandb_setup.setup(settings=setup_settings) File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_setup.py", line 327, in setup ret = _setup(settings=settings) File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_setup.py", line 320, in _setup wl = _WandbSetup(settings=settings) File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_setup.py", line 303, in __init__ _WandbSetup._instance = _WandbSetup__WandbSetup(settings=settings, pid=pid) File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_setup.py", line 108, in __init__ self._settings = self._settings_setup(settings, self._early_logger) File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_setup.py", line 128, in _settings_setup s._apply_env_vars(self._environ, _logger=early_logger) File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_settings.py", line 1597, in _apply_env_vars self.update(env, source=Source.ENV) File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_settings.py", line 1453, in update self.__dict__[key].update(settings.pop(key), source=source) File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_settings.py", line 425, in update self._value = self._validate(self._preprocess(value)) File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_settings.py", line 386, in _validate if not v(value): File "/home/zhangmengjie/anaconda3/envs/torch1/lib/python3.7/site-packages/wandb/sdk/wandb_settings.py", line 898, in _validate_mode raise UsageError(f"Settings field mode: {value!r} not in {choices}") wandb.errors.UsageError: Settings field mode: '' not in {'dryrun', 'online', 'disabled', 'run', 'offline'}

大家在看

recommend-type

公开公开公开公开-openprotocol_specification 2.7

LY-WCS-2012-01-06-01 V 1.0 公开公开公开公开 产品名称:产品名称:产品名称:产品名称: WCS 系统简介系统简介系统简介系统简介-公开版公开版公开版公开版 共共共共 13 页页页页 WCSWCSWCSWCS 系统简介系统简介系统简介系统简介 ((((客户交流用客户交流用客户交流用客户交流用)))) 文文文文 档档档档 作作作作 者:者:者:者: 王 超 日期:日期:日期:日期:2012/01/06 开发开发开发开发/测试经理:测试经理:测试经理:测试经理: 程 达 日期:日期:日期:日期:2012/01/06 项项项项 目目目目 经经经经 理:理:理:理: 程 达 日期:日期:日期:日期:2012/01/06 文文文文 档档档档 编编编编 号:号:号:号: ___________ ___ LY-WCS-2012-01-06-01______________ 上海朗因智能科技有限公司上海朗因智能科技有限公司上海朗因智能科技有限公司上海朗因智能科技有限公司 版权所有版权所有版权所有版权所有 不得复制不得复制不得复制不得复制
recommend-type

中国联通OSS系统总体框架

中国联通OSS系统总体框架。中国联通OSS系统总体框架。
recommend-type

基于 ADS9110的隔离式数据采集 (DAQ) 系统方案(待编辑)-电路方案

描述 该“可实现最大 SNR 和采样率的 18 位 2Msps 隔离式数据采集参考设计”演示了如何应对隔离式数据采集系统设计中的典型性能限制挑战: 通过将数字隔离器引入的传播延迟降至最低,使采样率达到最大 通过有效地减轻数字隔离器引入的 ADC 采样时钟抖动,使高频交流信号链性能 (SNR) 达到最大 特性 18 位、2Msps、1 通道、差分输入、隔离式数据采集 (DAQ) 系统 利用 ADS9110 的 multiSPI:trade_mark: 数字接口实现 2MSPS 采样率,同时保持低 SPI 数据速率 源同步 SPI 数据传输模式,可将隔离器传播延迟降至最低并提高采样率 可降低隔离器引入的抖动的技术,能够将 SNR 提高 12dB(100kHz Fin,2MSPS) 经测试的设计包含理论和计算、组件选择、PCB 设计和测量结果 原理图 附件文档: 方案相关器件: ISO1541:低功耗、双向 I2C 隔离器 ISO7840:高性能 5.7kVRMS 增强型四通道数字隔离器 ISO7842:高性能 5.7kVRMS 增强型四通道数字隔离器
recommend-type

自动化图书管理系统 v7.0

自动化图书馆管理系统包含了目前图书馆管理业务的每个环节,能同时管理图书和期刊,能打印条码、书标,并制作借书证,最大藏书量在300万册以上。系统采用CNMARC标准及中图法第四版分类,具有Web检索与发布功能,条码扫描,支持一卡通,支持触摸屏。系统包括系统管理、读者管理、编目、流通、统计、查询等功能。能够在一个界面下实现图书、音像、期刊的管理,设置假期、设置暂离锁(提高安全性)、暂停某些读者的借阅权、导入导出读者、交换MARC数据、升级辅助编目库等。安装本系统前请先安装SQL 2000SQL 下载地址 http://pan.baidu.com/s/145vkr安装过程如有问题可咨询: TEL 13851381727  QQ 306404635
recommend-type

MOXA UPort1110drvUSB转串口驱动

MOXA UPort1110drvUSB转串口驱动,解决没有com口的烦恼

最新推荐

recommend-type

数据挖掘概述.ppt

数据挖掘概述.ppt
recommend-type

500强企业管理表格模板大全

在当今商业环境中,管理表格作为企业运营和管理的重要工具,是确保组织高效运作的关键。世界500强企业在管理层面的成功,很大程度上得益于它们的规范化和精细化管理。本文件介绍的“世界500强企业管理表格经典”,是一份集合了多种管理表格模板的资源,能够帮助管理者们更有效地进行企业规划、执行和监控。 首先,“管理表格”这个概念在企业中通常指的是用于记录、分析、决策和沟通的各种文档和图表。这些表格不仅仅局限于纸质形式,更多地是以电子形式存在,如Excel、Word、PDF等文件格式。它们帮助企业管理者收集和整理数据,以及可视化信息,从而做出更加精准的决策。管理表格可以应用于多个领域,例如人力资源管理、财务预算、项目管理、销售统计等。 标题中提及的“世界500强”,即指那些在全球范围内运营且在《财富》杂志每年公布的全球500强企业排行榜上出现的大型公司。这些企业通常具备较为成熟和先进的管理理念,其管理表格往往经过长时间的实践检验,并且能够有效地提高工作效率和决策质量。 描述中提到的“规范化”是企业管理中的一个核心概念。规范化指的是制定明确的标准和流程,以确保各项管理活动的一致性和可预测性。管理表格的使用能够帮助实现管理规范化,使得管理工作有据可依、有章可循,减少因个人经验和随意性带来的风险和不确定性。规范化管理不仅提高了企业的透明度,还有利于培养员工的规则意识,加强团队之间的协调与合作。 “经典”一词在这里强调的是,这些管理表格模板是经过实践验证,能够适用于大多数管理场景的基本模式。由于它们的普适性和高效性,这些表格模板被广泛应用于不同行业和不同规模的企业之中。一个典型的例子是SWOT分析表,它可以帮助企业识别内部的优势(Strengths)、弱点(Weaknesses)以及外部的机会(Opportunities)和威胁(Threats)。SWOT分析表就是一个在世界500强企业中普遍使用的管理表格。 标签中的“表格模板”则是对上述管理工具的具体描述。这些模板通常是预先设计好的,能够帮助企业管理者快速开始工作,无需从零开始制作新的表格。它们包含了一些必备的字段和格式,用户可以根据自己的具体需求对模板进行调整和填充。 文件名称列表中的“index.html”可能是压缩包内的一个网页文件,用于展示管理表格的索引或介绍。如果这是一个在线资源,它将允许用户通过网页界面访问和下载各种表格模板。而“menu”可能是一个导航文件,用来帮助用户在多个表格模板之间进行选择。“data”文件夹可能包含了实际的表格模板文件,它们可能以Excel、Word等格式存在。 总的来说,管理表格是企业成功管理不可或缺的工具。通过使用世界500强企业所采纳的管理表格模板,其他企业可以借鉴这些顶级企业的管理经验,帮助自己在管理实践中达到更高的效率和质量。通过规范化和模板化的管理表格,企业可以确保其管理活动的一致性和标准化,这对于保持竞争力和实现长期发展至关重要。
recommend-type

YOLOv8目标检测算法深度剖析:从零开始构建高效检测系统(10大秘诀)

# 1. YOLOv8目标检测算法概述 ## 1.1 YOLOv8的简介与定位 YOLOv8(You Only Look Once version 8)作为一种前沿的目标检测算法,是由YOLO系列算法演化而来。该算法特别强调快速与准确的平衡,它被设计用于实时图像识别
recommend-type

mclmcrrt9_8.dll下载

<think>我们正在处理用户关于"mclmcrrt9_8.dll"文件的下载请求。根据引用内容,这个文件是MATLAB运行时库的一部分,通常与特定版本的MATLABRuntime相关联。用户需求:下载mclmcrrt9_8.dll的官方版本。分析:1.根据引用[2]和[3],mclmcrrt9_0_1.dll和mclmcrrt9_13.dll都是MATLABRuntime的文件,版本号对应MATLAB的版本(如9_0对应R2016a,9_13对应2022b)。2.因此,mclmcrrt9_8.dll应该对应于某个特定版本的MATLAB(可能是R2016b?因为9.8版本通常对应MATLABR
recommend-type

林锐博士C++编程指南与心得:初学者快速提能

首先,这份文件的核心在于学习和提高C++编程能力,特别是针对初学者。在这个过程中,需要掌握的不仅仅是编程语法和基本结构,更多的是理解和运用这些知识来解决实际问题。下面将详细解释一些重要的知识点。 ### 1. 学习C++基础知识 - **基本数据类型**: 在C++中,需要熟悉整型、浮点型、字符型等数据类型,以及它们的使用和相互转换。 - **变量与常量**: 学习如何声明变量和常量,并理解它们在程序中的作用。 - **控制结构**: 包括条件语句(if-else)、循环语句(for、while、do-while),它们是构成程序逻辑的关键。 - **函数**: 理解函数定义、声明、调用和参数传递机制,是组织代码的重要手段。 - **数组和指针**: 学习如何使用数组存储数据,以及指针的声明、初始化和运算,这是C++中的高级话题。 ### 2. 林锐博士的《高质量的C++编程指南》 林锐博士的著作《高质量的C++编程指南》是C++学习者的重要参考资料。这本书主要覆盖了以下内容: - **编码规范**: 包括命名规则、注释习惯、文件结构等,这些都是编写可读性和可维护性代码的基础。 - **设计模式**: 在C++中合理使用设计模式可以提高代码的复用性和可维护性。 - **性能优化**: 学习如何编写效率更高、资源占用更少的代码。 - **错误处理**: 包括异常处理和错误检测机制,这对于提高程序的鲁棒性至关重要。 - **资源管理**: 学习如何在C++中管理资源,避免内存泄漏等常见错误。 ### 3. 答题与测试 - **C++C试题**: 通过阅读并回答相关试题,可以帮助读者巩固所学知识,并且学会如何将理论应用到实际问题中。 - **答案与评分标准**: 提供答案和评分标准,使读者能够自我评估学习成果,了解哪些方面需要进一步加强。 ### 4. 心得体会与实践 - **实践**: 理论知识需要通过大量编程实践来加深理解,动手编写代码,解决问题,是学习编程的重要方式。 - **阅读源码**: 阅读其他人的高质量代码,可以学习到许多编程技巧和最佳实践。 - **学习社区**: 参与C++相关社区,比如Stack Overflow、C++论坛等,可以帮助解答疑惑,交流心得。 ### 5. 拓展知识 - **C++标准库**: 学习C++标准模板库(STL),包括vector、map、list、algorithm等常用组件,是构建复杂数据结构和算法的基础。 - **面向对象编程**: C++是一种面向对象的编程语言,理解类、对象、继承、多态等概念对于写出优雅的C++代码至关重要。 - **跨平台编程**: 了解不同操作系统(如Windows、Linux)上的C++编程差异,学习如何编写跨平台的应用程序。 - **现代C++特性**: 学习C++11、C++14、C++17甚至C++20中的新特性,如智能指针、lambda表达式、自动类型推导等,可以提高开发效率和代码质量。 ### 总结 学习C++是一个系统工程,需要从基础语法开始,逐步深入到设计思想、性能优化、跨平台编程等领域。通过不断的学习和实践,初学者可以逐步成长为一个具有高代码质量意识的C++程序员。而通过阅读经典指南书籍,参与测试与评估,以及反思和总结实践经验,读者将更加扎实地掌握C++编程技术。此外,还需注意编程社区的交流和现代C++的发展趋势,这些都对于保持编程技能的前沿性和实用性是必不可少的。
recommend-type

线性代数方程组求解全攻略:直接法vs迭代法,一文搞懂

# 摘要 线性代数方程组求解是数学和工程领域中的基础而重要的问题。本文首先介绍了线性方程组求解的基础知识,然后详细阐述了直接法和迭代法两种主要的求解策略。直接法包括高斯消元法和LU分解方法,本文探讨了其理论基础、实践应用以及算法优化。迭代法则聚焦于雅可比和高斯-赛德尔方法,分析了其原理、实践应用和收敛性。通过比较分析,本文讨论了两种方法在
recommend-type

怎么下载mysql8.0.33版本

<think>我们正在处理用户关于下载并安装MySQL8.0.33版本的问题。根据引用[1]和引用[2],我们可以提供两种方法:一种是使用RPM包在CentOS上安装,另一种是使用ZIP包在Windows上安装。另外,引用[3]提到了安装过程中需要注意Python环境,但根据MySQL官方文档,Python并不是必须的,除非使用某些特定功能(如MySQLShell的Python模式)。因此,我们主要关注下载和安装步骤。用户没有明确操作系统,因此我们将分别介绍Windows和CentOS(Linux)下的安装方法。步骤概述:1.下载MySQL8.0.332.安装(根据系统不同步骤不同)3.初始化
recommend-type

C#学籍管理系统开发完成,信管专业的福音

标题中提到的“C#设计的学籍系统”涉及到几个重要的知识点。首先是“C#”,这是微软公司开发的一种面向对象的、运行在.NET框架上的高级编程语言。C#语言广泛用于开发Windows应用程序、游戏开发、分布式组件和客户端服务器应用程序等。在该标题中,它被用于构建一个学籍系统,这意味着系统的核心逻辑和功能是通过C#语言实现的。 其次是“学籍系统”,这通常是指用于管理学生个人信息、成绩、课程和学籍状态等数据的软件应用系统。学籍系统能够帮助教育机构高效地维护和更新学生档案,实现学生信息的电子化管理。它通常包括学生信息管理、成绩管理、课程安排、毕业资格审核等功能。 从描述中我们可以得知,这个学籍系统是“专门为信管打造”的。这里的“信管”很可能是对“信息管理”或者“信息系统管理”专业的简称。信息管理是一个跨学科领域,涉及信息技术在收集、存储、保护、处理、传输和安全地管理和开发信息资源方面的应用。这个系统可能是针对该专业学生的实际需求来定制开发的,包括一些特有的功能或者界面设计,以便更好地满足专业学习和实践操作的需要。 描述中还提到“请大家积极下载”,这可能意味着该学籍系统是一个开源项目,或者至少是一个允许公众访问的软件资源。由于开发者提出了“如有不足之处请大家多多包涵”,我们可以推断这个系统可能还处于测试或早期使用阶段,因此可能还不是完全成熟的版本,或者可能需要使用者反馈意见以便进行后续改进。 标签中的“C#的啊,大家注意,嘻嘻哈哈”表达了开发者轻松的态度和对C#语言的特定提及。这个标签可能是在一个非正式的交流环境中发布的,所以用词带有一定的随意性。尽管如此,它还是说明了该学籍系统是基于C#语言开发的,并提醒用户对这一点给予关注。 关于压缩包子文件的文件名称列表中,“学生成绩管理系统”直接指出了这个软件系统的主要功能之一,即管理学生的成绩。这通常包括录入成绩、查询成绩、统计分析成绩、成绩报告等功能。一个优秀的学生成绩管理系统可以让教师和学校管理人员更加高效地处理学生的成绩数据,同时也能让学生本人了解自己的学业进展。 综合以上信息,我们可以提炼出以下知识点: 1. C#语言:是一种面向对象的编程语言,适用于.NET框架,用于开发各种类型的应用程序。 2. 学籍系统:是管理学生基本信息、成绩、课程和学籍状态的软件应用系统,目的是实现学生信息的电子化管理。 3. 信息系统管理专业:该系统可能是针对信息系统管理专业的学生或教师的需求设计和开发的。 4. 开源项目或公众访问资源:鼓励用户下载使用,并接受用户的反馈和建议。 5. 学生成绩管理系统:是学籍系统的一个重要组成部分,专注于管理学生的成绩数据。 在开发一个C#设计的学籍系统时,开发者需要考虑的因素很多,比如系统的用户界面设计、数据库设计、数据安全、网络通信等。此外,系统还应该有良好的扩展性和易用性,以便未来可以根据用户反馈和新需求进行升级和优化。
recommend-type

特征值与特征向量速成课:理论精讲与7种高效算法

# 摘要 本文系统地介绍了特征值与特征向量的基本概念、理论深度剖析、高效特征值算法以及这些数学工具在实际问题中的应用。首先从定义与性质出发,详细解释了特征值与特征向量的
recommend-type

嵌入式Linux读写硬盘数据错误CF2 13473a 13433a 1342b2 13473a解决方案

<think>嗯,用户这次提出的问题很专业,是关于嵌入式Linux系统硬盘读写错误的解决方案。从错误代码CF2、13473a等来看,这应该是特定硬盘控制器或文件系统的错误码,需要结合硬件和系统环境分析。用户可能正在调试一个嵌入式设备,遇到了硬盘读写不稳定问题。这类错误通常涉及硬件连接、驱动兼容性、文件系统损坏等多个层面。用户提供的错误码格式看起来像十六进制值,可能是控制器寄存器状态或SCSI检测码。考虑到嵌入式系统的特殊性,需要从底层开始排查。首先应该检查物理连接,因为振动或接触不良在嵌入式环境中很常见。然后是驱动兼容性,嵌入式Linux常使用定制内核,驱动版本匹配很重要。另外,用户没有说明文