u-net关于图像分割训练
时间: 2025-01-03 07:17:42 浏览: 40
### U-Net 图像分割训练教程
#### 3.1 数据准备与预处理
为了成功地训练U-Net模型,数据集的选择至关重要。通常情况下,图像分割的数据集由成对的输入图片及其对应的标签组成,其中标签是对原始图像中各个像素所属类别的标注[^2]。
```python
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
# 定义路径到图像文件夹和掩码文件夹
image_folder = 'path_to_images'
mask_folder = 'path_to_masks'
# 创建ImageDataGenerators来加载并增强训练数据
datagen_args = dict(rescale=1./255, validation_split=0.2)
image_datagen = ImageDataGenerator(**datagen_args)
mask_datagen = ImageDataGenerator(**datagen_args)
seed = 1
batch_size = 8
train_image_generator = image_datagen.flow_from_directory(
image_folder,
class_mode=None,
batch_size=batch_size,
target_size=(IMG_HEIGHT, IMG_WIDTH),
subset='training',
seed=seed)
train_mask_generator = mask_datagen.flow_from_directory(
mask_folder,
color_mode="grayscale",
class_mode=None,
batch_size=batch_size,
target_size=(IMG_HEIGHT, IMG_WIDTH),
subset='training',
seed=seed)
val_image_generator = image_datagen.flow_from_directory(
image_folder,
class_mode=None,
batch_size=batch_size,
target_size=(IMG_HEIGHT, IMG_WIDTH),
subset='validation',
seed=seed)
val_mask_generator = mask_datagen.flow_from_directory(
mask_folder,
color_mode="grayscale",
class_mode=None,
batch_size=batch_size,
target_size=(IMG_HEIGHT, IMG_WIDTH),
subset='validation',
seed=seed)
def combine_generators(image_gen, mask_gen):
while True:
yield(next(image_gen), next(mask_gen))
train_generator = combine_generators(train_image_generator, train_mask_generator)
valid_generator = combine_generators(val_image_generator, val_mask_generator)
```
#### 3.2 构建U-Net模型
U-Net是一种特殊的卷积神经网络(CNN),它通过跳跃连接(skip connections)将编码器部分获取的位置信息传递给解码器部分,从而提高了最终预测的质量[^3]。
```python
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate
def unet_model(input_shape=(None, None, 1)):
inputs = Input(shape=input_shape)
conv1 = Conv2D(64, 3, activation='relu', padding='same')(inputs)
conv1 = Conv2D(64, 3, activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
# 更多层...
up9 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv9), conv1], axis=-1)
conv10 = Conv2D(num_classes, 1, activation='softmax')(up9)
model = Model(inputs=[inputs], outputs=[conv10])
return model
```
#### 3.3 编译与训练模型
编译阶段指定了损失函数、优化算法以及其他评估指标;而训练则涉及迭代更新权重以最小化指定的目标函数。
```python
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(
train_generator,
steps_per_epoch=train_steps,
epochs=EPOCHS,
verbose=1,
callbacks=callbacks_list,
validation_data=valid_generator,
validation_steps=val_steps)
```
#### 3.4 模型评估与调优
完成初步训练之后,应该仔细检查验证集上的表现,并考虑调整超参数如学习率、批次大小等来进行进一步改进。此外还可以尝试不同的正则化技术防止过拟合现象的发生。
阅读全文
相关推荐


















