double dqn伪代码
时间: 2025-05-11 11:19:55 浏览: 24
### Double DQN 算法伪代码
Deep Q-Network (DQN) 是一种结合深度学习和强化学习的方法,用于解决高维状态空间中的决策问题。Double DQN 对原始 DQN 进行改进,通过分离目标网络和在线网络来减少过估计问题[^1]。
以下是 Double DQN 的伪代码实现:
#### 初始化阶段
```python
# 初始化参数
Initialize replay memory M to capacity N
Initialize online network parameters θ with random weights
Initialize target network parameters θ' ← θ
Set learning rate α, discount factor γ, and exploration probability ε
```
#### 训练过程
```python
for episode in range(total_episodes):
Initialize state s
while not done:
With probability ε select a random action a
otherwise select a = argmax_a Q(s,a;θ)
Execute action a, observe reward r and next state s'
Store transition (s, a, r, s') in replay memory M
Sample random minibatch of transitions from M: {(si, ai, ri, si')}
Set yi = {
r_i if terminal,
r_i + γ * max_a' Q(si',a';θ') otherwise
}
Perform gradient descent step on loss function L(θ) = E[(yi - Q(si,ai;θ))^2]
Update target network periodically or softly by setting θ' ← τ*θ + (1-τ)*θ'
s ← s'
```
上述伪代码描述了 Double DQN 的核心机制:
1. 使用两个神经网络分别作为 **online network** 和 **target network**。
2. Target network 参数定期更新为 online network 参数的副本。
3. 在计算目标值 \( y \) 时,利用 target network 来评估动作价值函数的最大值,从而降低过估计偏差。
#### Python 实现片段
以下是一个简单的 Double DQN 更新逻辑示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class DDQNAgent:
def __init__(self, state_size, action_size):
self.online_net = nn.Sequential(
nn.Linear(state_size, 64),
nn.ReLU(),
nn.Linear(64, action_size)
)
self.target_net = nn.Sequential(
nn.Linear(state_size, 64),
nn.ReLU(),
nn.Linear(64, action_size)
)
self.optimizer = optim.Adam(self.online_net.parameters(), lr=0.001)
def update_target_network(self):
self.target_net.load_state_dict(self.online_net.state_dict())
def compute_loss(self, batch):
states, actions, rewards, next_states, dones = batch
current_q_values = self.online_net(states).gather(1, actions.unsqueeze(-1)).squeeze()
with torch.no_grad():
best_actions = self.online_net(next_states).argmax(dim=1)
next_q_values = self.target_net(next_states).gather(1, best_actions.unsqueeze(-1)).squeeze()
targets = rewards + gamma * next_q_values * (1 - dones)
loss = nn.MSELoss()(current_q_values, targets.detach())
return loss
def train_step(self, batch):
loss = self.compute_loss(batch)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
agent = DDQNAgent(state_size=..., action_size=...)
```
---
阅读全文
相关推荐















