AttributeError: 'numpy.ndarray' object has no attribute 'copyTo'

时间: 2023-06-22 19:37:16 浏览: 492
抱歉,我的错误!`copyTo()`函数是属于OpenCV中的Mat对象的方法,而不是NumPy中的ndarray对象。那么如果想要将图像A内容复制到图像B中,可以使用`cv2.copy()`函数。 以下是修改后的代码示例: ```python import cv2 import numpy as np # 读取图像A img_a = cv2.imread('image_a.png') # 创建一个新的空白图像B img_b = np.zeros(img_a.shape, dtype=img_a.dtype) # 将图像A的内容复制到图像B中 cv2.copy(img_a, img_b) # 将图像B转换为灰度图像 gray_img_b = cv2.cvtColor(img_b, cv2.COLOR_BGR2GRAY) ``` 使用`cv2.copy()`函数,源图像和目标图像的大小、类型和通道数必须完全相同,否则会导致错误。
相关问题

im.load() if im.readonly: im._copy() # make it writeable blend = 0 if mode is None: mode = im.mode if mode != im.mode: if mode == "RGBA" and im.mode == "RGB": blend = 1 else: msg = "mode mismatch" raise ValueError(msg) if mode == "P": self.palette = im.palette else: self.palette = None self._image = im self.im = im.im self.draw = Image.core.draw(self.im, blend) self.mode = mode if mode in ("I", "F"): self.ink = self.draw.draw_ink(1) else: self.ink = self.draw.draw_ink(-1) if mode in ("1", "P", "I", "F"): # FIXME: fix Fill2 to properly support matte for I+F images self.fontmode = "1" else: self.fontmode = "L" # aliasing is okay for other modes self.fill = False西边是这段代码的错误,应该怎么修改 File "F:\ana\anaconda3\envs\torch\lib\site-packages\PIL\ImageDraw.py", line 62, in __init__ im.load() AttributeError: 'numpy.ndarray' object has no attribute 'load'

根据代码的错误提示,'numpy.ndarray'对象没有'load'属性,所以你需要将im对象更改为一个PIL图像对象,而不是一个numpy数组对象。 你可以使用PIL库中的`Image.fromarray()`方法将numpy数组转换为PIL图像对象,然后再进行加载和操作。修改后的代码如下所示: ```python from PIL import Image # 将numpy数组转换为PIL图像对象 im = Image.fromarray(im) im.load() if im.readonly: im._copy() # make it writeable blend = 0 if mode is None: mode = im.mode if mode != im.mode: if mode == "RGBA" and im.mode == "RGB": blend = 1 else: msg = "mode mismatch" raise ValueError(msg) if mode == "P": self.palette = im.palette else: self.palette = None self._image = im self.im = im.im self.draw = Image.core.draw(self.im, blend) self.mode = mode if mode in ("I", "F"): self.ink = self.draw.draw_ink(1) else: self.ink = self.draw.draw_ink(-1) if mode in ("1", "P", "I", "F"): # FIXME: fix Fill2 to properly support matte for I+F images self.fontmode = "1" else: self.fontmode = "L" # aliasing is okay for other modes self.fill = False ``` 这样,你就可以在加载numpy数组之前将其转换为PIL图像对象,然后在代码中继续使用它。

AttributeError: 'Image' object has no attribute 'to_hsv'

<think>嗯,用户遇到了Python中Pillow库的Image对象没有to_hsv方法的属性错误。我需要先确认Pillow是否确实没有这个方法。根据我的记忆,Pillow的Image模块确实没有直接提供to_hsv()方法,可能用户是混淆了其他库的方法,比如OpenCV。我需要检查Pillow的官方文档,确认是否有相关方法。 查阅Pillow的文档发现,Image模块确实没有to_hsv()方法。那用户可能想要将图像转换为HSV颜色空间,这时候应该如何实现呢?通常的做法是使用convert()方法,并指定模式为'HSV'。例如,image.convert('HSV')。不过需要注意,Pillow中的HSV模式可能与OpenCV或其他库的HSV表示有所不同,可能需要进一步的调整。 接下来,用户可能会遇到转换后的通道顺序问题。Pillow的HSV模式每个像素是一个三元组,但具体的通道顺序可能需要验证。此外,如果用户需要处理其他颜色空间,比如HSL,可能需要类似的方法,但同样需要检查文档确认支持的模式。 另外,用户提到的错误信息明确指出'Image'对象没有'to_hsv'属性,因此需要指导用户使用正确的方法来转换颜色空间,并提供示例代码。同时,提醒用户注意Pillow和其他库在颜色空间处理上的差异,避免混淆。 最后,生成相关问题时,需要考虑用户可能进一步的需求,比如其他颜色空间的转换、与OpenCV的互操作,以及常见的属性错误解决方法。确保覆盖用户可能遇到的后续问题,帮助他们更深入地理解和解决类似错误。</think>### Pillow库中Image对象转换为HSV颜色空间的替代方法 在Pillow库中,`Image`对象确实没有`to_hsv()`方法,但可以通过以下步骤实现HSV颜色空间转换: 1. **直接使用convert方法** 使用`convert('HSV')`模式转换图像: ```python from PIL import Image image = Image.open("input.jpg") hsv_image = image.convert('HSV') # 直接转换为HSV模式 ``` Pillow的HSV模式中,每个像素表示为`(H, S, V)`三元组,其中: - H(色相)范围:$0 \leq H < 360$(实际存储为$0 \leq H < 256$的缩放值) - S(饱和度)和V(明度)范围:$0 \leq S,V \leq 255$ 2. **与OpenCV的HSV差异** 如果需要与OpenCV兼容(例如H范围0-180),需手动调整: ```python import cv2 import numpy as np # Pillow转OpenCV格式 cv_image = np.array(image)[:, :, ::-1].copy() # RGB转BGR hsv_cv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV) ``` 3. **其他颜色空间支持** Pillow支持的颜色空间模式包括: ```python print(image.mode) # 查看当前模式 image.convert('L') # 灰度图 image.convert('CMYK') # 印刷四色模式 image.convert('YCbCr')# 亮度-色度分量 ``` ### 常见错误分析 - **属性错误根源**:尝试调用未定义方法(如`to_hsv`),通常因为混淆了不同库的API设计[^2] - **Pillow与OpenCV互操作**:需注意通道顺序差异(RGB vs BGR)和数据类型转换 ```python # 完整示例:Pillow转HSV并保存 from PIL import Image image = Image.open("input.jpg").convert("HSV") image.save("ou
阅读全文

相关推荐

import torch import torch.nn as nn import numpy as np import torch.nn.functional as F import matplotlib.pyplot as plt from torch.autograd import Variable x=torch.tensor(np.array([[i] for i in range(10)]),dtype=torch.float32) y=torch.tensor(np.array([[i**2] for i in range(10)]),dtype=torch.float32) #print(x,y) x,y=(Variable(x),Variable(y))#将tensor包装一个可求导的变量 net=torch.nn.Sequential( nn.Linear(1,10,dtype=torch.float32),#隐藏层线性输出 torch.nn.ReLU(),#激活函数 nn.Linear(10,20,dtype=torch.float32),#隐藏层线性输出 torch.nn.ReLU(),#激活函数 nn.Linear(20,1,dtype=torch.float32),#输出层线性输出 ) optimizer=torch.optim.SGD(net.parameters(),lr=0.05)#优化器(梯度下降) loss_func=torch.nn.MSELoss()#最小均方差 #神经网络训练过程 plt.ion() plt.show()#动态学习过程展示 for t in range(2000): prediction=torch.tensor(net(x)),#把数据输入神经网络,输出预测值 loss=loss_func(prediction, y)#计算二者误差,注意这两个数的顺序 optimizer.zero_grad()#清空上一步的更新参数值 loss.backward()#误差反向传播,计算新的更新参数值 optimizer.step()#将计算得到的更新值赋给net.parameters()D:\Anaconda\python.exe D:\py\text.py D:\py\text.py:26: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). prediction=torch.tensor(net(x)),#把数据输入神经网络,输出预测值 Traceback (most recent call last): File "D:\py\text.py", line 27, in <module> loss=loss_func(prediction, y)#计算二者误差,注意这两个数的顺序 File "D:\Anaconda\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "D:\Anaconda\lib\site-packages\torch\nn\modules\loss.py", line 536, in forward return F.mse_loss(input, target, reduction=self.reduction) File "D:\Anaconda\lib\site-packages\torch\nn\functional.py", line 3281, in mse_loss if not (target.size() == input.size()): AttributeError: 'tuple' object has no attribute 'size'

使用模型进行预测... WARNING:tensorflow:Model was constructed with shape (None, 3989, 10) for input KerasTensor(type_spec=TensorSpec(shape=(None, 3989, 10), dtype=tf.float32, name='dense_input'), name='dense_input', description="created by layer 'dense_input'"), but it was called on an input with incompatible shape (None, 10). 1/1 [==============================] - 0s 36ms/step --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[20], line 14 11 predicted = model.predict(unknown, verbose=1) 13 # 将预测结果保存到新的 CSV 文件中 ---> 14 result = pd.DataFrame(predicted, columns=['prediction']) 15 result.to_csv('predicted_result.csv', index=False) 16 print("输入的数据为: ") File ~\AppData\Roaming\Python\Python39\site-packages\pandas\core\frame.py:757, in DataFrame.__init__(self, data, index, columns, dtype, copy) 746 mgr = dict_to_mgr( 747 # error: Item "ndarray" of "Union[ndarray, Series, Index]" has no 748 # attribute "name" (...) 754 copy=_copy, 755 ) 756 else: --> 757 mgr = ndarray_to_mgr( 758 data, 759 index, 760 columns, 761 dtype=dtype, 762 copy=copy, 763 typ=manager, 764 ) 766 # For data is list-like, or Iterable (will consume into list) 767 elif is_list_like(data): File ~\AppData\Roaming\Python\Python39\site-packages\pandas\core\internals\construction.py:337, in ndarray_to_mgr(values, index, columns, dtype, copy, typ) 332 # _prep_ndarraylike ensures that values.ndim == 2 at this point 333 index, columns = _get_axes( 334 values.shape[0], values.shape[1], index=index, columns=columns 335 ) --> 337 _check_values_indices_shape_match(values, index, columns) 339 if typ == "array": 340 if issubclass(values.dtype.type, str): File ~\AppData\Roaming\Python\Python39\site-packages\pandas\core\internals\construction.py:408, in _check_values_indices_shape_match(values, index, columns) 406 passed = values.shape 407 implied = (len(index), len(columns)) --> 408 raise ValueError(f"Shape of passed values is {passed}, indices imply {implied}") ValueError: Shape of passed values is (1, 3), indices imply (1, 1)该怎么修改代码

你给我的代码我运行了以下部分:import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline # (三)特征工程 # 复制原始数据避免污染 df_processed = df.copy() # 1.删除不参与建模的列 df_processed.drop(columns=['student_id'], inplace=True) # 2.对需要反向编码的列进行处理(数值越小越优 -> 数值越大越优) reverse_cols = ['atth', 'attc', 'mid2'] df_processed[reverse_cols] = 5 - df_processed[reverse_cols] # 3.处理二值列(将sex从1/2转换为0/1) df_processed['sex'] = df_processed['sex'] - 1 # 4.定义特征和标签 X = df_processed.drop(columns=['ecgp']) y = df_processed['ecgp'] # 5.划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # (四)构建预处理管道 # 定义需要独热编码的分类列(排除已处理的二值列) categorical_cols = ['student_age', 'gh', 'ship', 'studyhours', 'readfren', 'readfres', 'attc', 'mid2', 'noteclass', 'listencla', 'cgp'] preprocessor = ColumnTransformer( transformers=[ ('cat', OneHotEncoder(handle_unknown='ignore'), categorical_cols) ], remainder='passthrough' # 保留已处理的二值列(sex, atth) ) # (五)逻辑回归建模 lr_pipe = Pipeline([ ('preprocessor', preprocessor), ('classifier', LogisticRegression(max_iter=1000)) ]) lr_pipe.fit(X_train, y_train) print(f"\n逻辑回归准确率:{lr_pipe.score(X_test, y_test):.2%}") # (六)决策树建模与可视化 dt_pipe = Pipeline([ ('preprocessor', preprocessor), ('classifier', DecisionTreeClassifier(max_depth=3)) ]) dt_pipe.fit(X_train, y_train) print(f"决策树准确率:{dt_pipe.score(X_test, y_test):.2%}") 在运行代码dt_pipe = Pipeline([ ('preprocessor', preprocessor), ('classifier', DecisionTreeClassifier(max_depth=3)) ]) dt_pipe.fit(X_train, y_train) print(f"决策树准确率:{dt_pipe.score(X_test, y_test):.2%}") 时报错Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\33584\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\pipeline.py", line 756, in score Xt = transform.transform(Xt) ^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\33584\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\utils\_set_output.py", line 157, in wrapped data_to_wrap = f(self, X, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\33584\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\compose\_column_transformer.py", line 805, in transform named_transformers = self.named_transformers_ ^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\33584\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\compose\_column_transformer.py", line 484, in named_transformers_ return Bunch(**{name: trans for name, trans, _ in self.transformers_}) ^^^^^^^^^^^^^^^^^^ AttributeError: 'ColumnTransformer' object has no attribute 'transformers_'. Did you mean: 'transformers'?

最新推荐

recommend-type

现代计算机技术在农业经济管理中的运用研究(1).docx

现代计算机技术在农业经济管理中的运用研究(1).docx
recommend-type

单片机实验开发板程序编写指南

单片机实验程序的知识点可以从单片机的概念、开发板的作用、实验的目的以及具体程序编写与调试方面进行详细阐述。 首先,单片机(Single-Chip Microcomputer),又称微控制器,是将中央处理单元(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入输出接口等主要计算机功能部件集成在一片芯片上的微小型计算机。它具备独立处理特定任务的能力,广泛应用于嵌入式系统中。单片机由于其成本低廉、体积小、功耗低、控制简单等特点,被广泛应用于家用电器、办公自动化、汽车电子、工业控制等众多领域。 接着,开发板(Development Board)是为了方便开发者使用单片机而设计的一种实验平台,通常集成了单片机、电源管理模块、外围接口电路、调试接口、编程接口等。开发板的主要作用是提供一个简洁的硬件环境,让开发者可以更容易地进行实验、测试和程序开发。在使用开发板进行单片机实验时,可以通过编程器将用户编写的程序烧录到单片机中,然后进行实际操作和测试。 实验的目的通常是为了验证某些特定的功能或者算法。在实验中,开发者可以使用单片机开发板来实现对输入信号的检测、处理和输出控制。例如,可以编写程序使单片机控制LED灯的亮灭,或者读取按键输入并根据按键的不同进行不同的控制。实验程序可以是一个简单的循环处理,也可以是复杂的算法实现,如数据通信、中断处理、定时器使用等。 在编写单片机实验程序时,首先需要了解所使用的单片机的指令集和硬件资源。以常用的8051单片机为例,需要熟悉其寄存器配置、特殊功能寄存器(SFR)的使用以及I/O口操作等。编写程序时,通常会使用C语言或者汇编语言。C语言因其可读性好、编写效率高而更受欢迎。开发者可以使用Keil uVision、IAR Embedded Workbench等集成开发环境(IDE)来编写、编译和调试代码。 在程序调试阶段,可以通过开发板上的调试接口,如JTAG、ISP等,将编译好的程序下载到单片机中。调试过程通常包括设置断点、单步执行、查看寄存器和内存内容等操作。通过调试可以发现并修正程序中的逻辑错误或硬件交互问题。 另外,为了保证程序的可靠性和稳定性,实验程序设计时还应考虑异常处理、资源管理以及功耗优化等因素。编写高效的单片机程序不仅仅是让程序按预期运行,还要考虑到程序运行的效率、资源消耗以及对异常情况的应对。 总之,基于开发板的单片机实验程序开发涉及到硬件理解、软件编程、程序调试等多个环节。开发者需要将理论知识与实际操作相结合,通过不断的学习和实践,掌握单片机编程和应用开发的关键技能。这不仅需要对单片机的基础知识有深入的了解,还需要对开发板的功能和特性有充分的认识,从而能够设计出高效、稳定和实用的单片机应用系统。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

ubuntu 检查下载源

<think>我们正在讨论Ubuntu系统中检查和配置下载源(软件源)的方法。用户的需求很明确:如何检查当前配置的下载源,以及如何修改它们。根据引用[1]和[2]中的信息,我们知道在Ubuntu中,软件源配置存储在`/etc/apt/sources.list`文件中以及`/etc/apt/sources.list.d/`目录下的额外文件中。修改源通常包括备份当前配置、编辑源列表文件、更新软件包列表等步骤。步骤分解:1.检查当前下载源:可以通过查看`sources.list`文件和`sources.list.d/`目录中的文件内容来实现。2.修改下载源:包括备份、编辑源列表(替换为新的镜像源地址
recommend-type

办公软件:下载使用指南与资源包

标题中提到的“offices办公软件”,指的是Office套件,这是一系列办公应用程序的集合,通常包括文字处理软件(如Microsoft Word)、电子表格软件(如Microsoft Excel)、演示文稿制作软件(如Microsoft PowerPoint),以及邮件管理软件等。该软件包旨在帮助用户提高工作效率,完成文档撰写、数据分析、演示制作等多种办公任务。 描述部分非常简单,提到“一个很好公办软件你一定很爱他快来下载吧加强团结”,表达了对软件的高度评价和期待用户下载使用,以促进工作中的团结协作。不过,这段描述中可能存在错别字或排版问题,正确的表达可能是“一款非常好的办公软件,你一定很爱它,快来下载吧,加强团结”。 标签部分为“dddd”,这显然不是一个有效的描述或分类标签,它可能是由于输入错误或者故意设置的占位符。 压缩包子文件的文件名称列表中包含了以下文件: - keygen.exe:这是一个序列号生成器的可执行文件,通常用于生成软件的注册码或激活码,使得用户能够在不支付授权费用的情况下使用某些付费软件。然而,这通常是违反软件许可协议的行为,也可能涉及到法律风险。 - 说明_Readme.html:这是一个HTML格式的说明文件,通常会包含该软件的安装指南、使用方法、版本信息、已知问题、版权声明和致谢等内容。阅读这个文件可以帮助用户正确安装和使用软件。 - OfficeSuite 4_50.sis:这是一个适用于Symbian操作系统的安装包文件,SIS是Symbian Install File的缩写。从文件名可以看出,这是一个名为“OfficeSuite”的软件的第50个版本,版本号为4.0。Symbian曾是智能手机操作系统之一,通常用于诺基亚等品牌的设备上,但随着智能手机市场的变化,现在已很少见,市场上主流的智能手机操作系统已转向Android和iOS。 - resource:这个名称很模糊,没有文件扩展名,因此无法确定具体是什么类型的资源。它可能是一个包含字体、图像或其他资源文件的文件夹,这些资源文件用于支持Office套件在不同设备或操作系统上的运行。 在使用这些文件时,特别是涉及到keygen.exe这类软件时,用户应谨慎行事。应避免使用未经授权的软件,不仅因为其可能违反法律,还可能对计算机系统造成安全风险。在下载和安装任何软件时,应确保来源的可靠性,并从官方渠道获取正版授权。此外,对于已经过时或不再受支持的软件,比如针对Symbian系统的OfficeSuite,用户可能需要寻找其他替代方案来满足当前的办公需求。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的
recommend-type

DSNPx是什么

<think>我们正在处理一个关于保险精算领域的问题,具体是定期寿险净保费计算。用户询问的是"DSNPx"的定义或含义,特别是在计算机领域的含义。根据提供的代码和上下文,我们可以分析如下:1.在代码中,变量名`NPxM`和`NPxF`分别代表男性(M)和女性(F)的净保费(NetPremium)。而前缀"DS"可能是"定期寿险"(DingQiShouXian)的缩写,因为函数名为`DingQi`,代表定期寿险。2.因此,`DSNPxM`和`DSNPxF`分别表示定期寿险(DS)的净保费(NP)对于男性(x年龄,M)和女性(x年龄,F)。3.在精算学中,净保费是指不考虑费用和利润的纯风险保费,根
recommend-type

MW6208E量产工具固件升级包介绍

标题中“MW6208E_8208.rar”表示一个压缩文件的名称,其中“rar”是一种文件压缩格式。标题表明,压缩包内含的文件是关于MW6208E和8208的量产工具。描述中提到“量产固件”,说明这是一个与固件相关的工作工具。 “量产工具”指的是用于批量生产和复制固件的软件程序,通常用于移动设备、存储设备或半导体芯片的批量生产过程中。固件(Firmware)是嵌入硬件设备中的一种软件形式,它为硬件设备提供基础操作与控制的代码。在量产阶段,固件是必须被植入设备中以确保设备能正常工作的关键组成部分。 MW6208E可能是某个产品型号或器件的型号标识,而8208可能表示该量产工具与其硬件的兼容型号或版本。量产工具通常提供给制造商或维修专业人士使用,使得他们能够快速、高效地将固件程序烧录到多个设备中。 文件名称列表中的“MW6208E_8200量产工具_1.0.5.0_20081201”说明了具体的文件内容和版本信息。具体地,文件名中包含以下知识点: 1. 文件名称中的“量产工具”代表了该软件的用途,即它是一个用于大规模复制固件到特定型号设备上的工具。 2. 版本号“1.0.5.0”标识了软件的当前版本。版本号通常由四个部分组成:主版本号、次版本号、修订号和编译号,这些数字提供了软件更新迭代的信息,便于用户和开发者追踪软件的更新历史和维护状态。 3. “20081201”很可能是该工具发布的日期,表明这是2008年12月1日发布的版本。了解发布日期对于选择合适版本的工具至关重要,因为不同日期的版本可能针对不同的硬件或固件版本进行了优化。 在IT行业中,固件量产工具的使用需要一定的专业知识,包括对目标硬件的了解、固件的管理以及软件工具的操作。在进行量产操作时,还需注意数据备份、设备兼容性、固件版本控制、升级过程中的稳定性与安全性等因素。 综上所述,提供的文件信息描述了一个特定于MW6208E和8208型号的固件量产工具。该工具是用于设备生产过程中批量烧录固件的重要软件资源,具有版本标识和发布日期,能够帮助专业人士快速有效地进行固件更新或初始化生产过程。对于从事该领域工作的技术人员或生产制造商而言,了解和掌握量产工具的使用是必要的技能之一。
recommend-type

【故障恢复策略】:RK3588与NVMe固态硬盘的容灾方案指南

# 1. RK3588处理器与NVMe固态硬盘的概述 ## 1.1 RK3588处理器简介 RK3588是Rockchip推出的一款高端处理器,具备强大的性能和多样的功能,集成了八核CPU和六核GPU,以及专用的AI处理单元,主要用于高端移动设备、边缘计算和
recommend-type

<dependency> <groupId>com.google.code.ksoap2</groupId> <artifactId>ksoap2-j2se-core</artifactId> <version>3.6.2</version> </dependency> <repositories> <repository> <id>central</id> <name>Maven Central</name> <url>https://repo.maven.apache.org/maven2</url> </repository> <repository> <id>aliyun</id> <name>Aliyun Maven</name> <url>https://maven.aliyun.com/repository/public</url> </repository> </repositories> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.11.0</version> <!-- 添加版本号 --> <!-- 原有配置保持不变 --> </plugin> 把上面的代码整合进下面的代码中 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>jdwlw</groupId> <artifactId>jdwlw</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>war</packaging> <name>maven Maven Webapp</name> <url>http://maven.apache.org</url> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> <!-- <dependency> <groupId>javax.servlet</groupId> <artifactId>javax.servlet-api</artifactId> <version>3.1.0</version> </dependency> --> <dependency> <groupId>javax.servlet</groupId> <artifactId>servlet-api</artifactId> <version>2.5</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-core</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-beans</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-aop</artifactId> <version>4.1.6.RELEASE</version> </dependency> <!-- https://mvnrepository.com/artifact/org.ksoap2/ksoap2 --> <dependency> <groupId>org.ksoap2</groupId> <artifactId>ksoap2</artifactId> <version>2.1.2</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-jdbc</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-web</artifactId> <version>4.1.6.RELEASE</version> </dependency> <!-- <dependency> <groupId>org.springframework</groupId> <artifactId>spring-orm</artifactId> <version>4.1.6.RELEASE</version> </dependency> --> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-orm</artifactId> <version>3.2.13.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context-support</artifactId> <version>3.2.2.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc-portlet</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-expression</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-aspects</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-websocket</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>quartz</groupId> <artifactId>quartz</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.ibatis</groupId> <artifactId>ibatis-sqlmap</artifactId> <version>2.3.4.726</version> </dependency> <!-- <dependency>--> <!-- <groupId>com.ibatis</groupId>--> <!-- <artifactId>ibatis2-sqlmap</artifactId>--> <!-- <version>2.1.7.597</version>--> <!-- </dependency>--> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.17</version> </dependency> <dependency> <groupId>commons-io</groupId> <artifactId>commons-io</artifactId> <version>2.4</version> </dependency> <dependency> <groupId>commons-logging</groupId> <artifactId>commons-logging</artifactId> <version>1.2</version> </dependency> <dependency> <groupId>commons-lang</groupId> <artifactId>commons-lang</artifactId> <version>2.6</version> </dependency> <dependency> <groupId>commons-dbcp</groupId> <artifactId>commons-dbcp</artifactId> <version>1.4</version> </dependency> <dependency> <groupId>commons-pool</groupId> <artifactId>commons-pool</artifactId> <version>1.6</version> </dependency> <dependency> <groupId>commons-fileupload</groupId> <artifactId>commons-fileupload</artifactId> <version>1.3.1</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.35</version> </dependency> <dependency> <groupId>com.belerweb</groupId> <artifactId>pinyin4j</artifactId> <version>2.5.0</version> </dependency> <dependency> <groupId>jstl</groupId> <artifactId>jstl</artifactId> <version>1.2</version> </dependency> <dependency> <groupId>com.google.code.gson</groupId> <artifactId>gson</artifactId> <version>2.5</version> </dependency> <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId>httpclient</artifactId> <version>4.4.1</version> </dependency> <dependency> <groupId>javax.mail</groupId> <artifactId>mail</artifactId> <version>1.5.0-b01</version> </dependency> <!-- 激光消息推送Starts --> <dependency> <groupId>cn.jpush.api</groupId> <artifactId>jpush-client</artifactId> <version>3.1.3</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>1.7.5</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>1.7.5</version> </dependency> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>17.0</version> </dependency> <dependency> <groupId>com.squareup.okhttp</groupId> <artifactId>mockwebserver</artifactId> <version>1.5.4</version> <scope>test</scope> </dependency> <!-- 激光消息推送END --> <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi</artifactId> <version>3.11</version> </dependency> <dependency> <groupId>net.sf.ehcache</groupId> <artifactId>ehcache</artifactId> <version>2.10.0</version> </dependency> <dependency> <groupId>javax.servlet.jsp</groupId> <artifactId>jsp-api</artifactId> <version>2.2</version> </dependency> <dependency> <groupId>com.lowagie</groupId> <artifactId>itext</artifactId> <version>2.1.7</version> </dependency> <!-- https://mvnrepository.com/artifact/commons-net/commons-net --> <dependency> <groupId>commons-net</groupId> <artifactId>commons-net</artifactId> <version>3.3</version> </dependency> <!-- https://mvnrepository.com/artifact/com.mchange/c3p0 --> <dependency> <groupId>com.mchange</groupId> <artifactId>c3p0</artifactId> <version>0.9.5.2</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.ws.commons.axiom/axiom-api --> <dependency> <groupId>org.apache.ws.commons.axiom</groupId> <artifactId>axiom-api</artifactId> <version>1.2.13</version> </dependency> <!-- https://mvnrepository.com/artifact/dom4j/dom4j --> <dependency> <groupId>dom4j</groupId> <artifactId>dom4j</artifactId> <version>1.6.1</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.axis/axis --> <dependency> <groupId>org.apache.axis</groupId> <artifactId>axis</artifactId> <version>1.4</version> </dependency> <!-- https://mvnrepository.com/artifact/javax.xml.rpc/javax.xml.rpc-api --> <dependency> <groupId>javax.xml.rpc</groupId> <artifactId>javax.xml.rpc-api</artifactId> <version>1.1.1</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.axis2/axis2 --> <dependency> <groupId>org.apache.axis2</groupId> <artifactId>axis2</artifactId> <version>1.7.6</version> <type>pom</type> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.axis2/axis2-adb --> <dependency> <groupId>org.apache.axis2</groupId> <artifactId>axis2-adb</artifactId> <version>1.7.6</version> </dependency> <!-- https://mvnrepository.com/artifact/soap/soap --> <dependency> <groupId>soap</groupId> <artifactId>soap</artifactId> <version>2.3</version> </dependency> <!-- https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient --> <dependency> <groupId>commons-httpclient</groupId> <artifactId>commons-httpclient</artifactId> <version>3.1</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>2.9.10.4</version> </dependency> <dependency> <groupId>org.eclipse.paho</groupId> <artifactId>org.eclipse.paho.client.mqttv3</artifactId> <version>1.2.0</version> </dependency> <dependency> <groupId>cn.hutool</groupId> <artifactId>hutool-all</artifactId> <version>5.7.2</version> </dependency> </dependencies> <build> <finalName>jdwlw</finalName> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.8</source> <target>1.8</target> <encoding>utf-8</encoding> <compilerArguments> <extdirs>${project.basedir}/src/main/webapp/WEB-INF/lib</extdirs> </compilerArguments> </configuration> </plugin> </plugins> <resources> <resource> <directory>src/main/resources</directory> <includes> <include>**/*.properties</include> <include>**/*.xml</include> </includes> <filtering>false</filtering> </resource> <resource> <directory>src/main/java</directory> <includes> <include>**/*.properties</include> <include>**/*.xml</include> </includes> <filtering>false</filtering> </resource> </resources> </build> </project>

<think>我们需要整合三个部分:1.将ksoap2依赖从`org.ksoap2:ksoap2:2.1.2`替换为`com.google.code.ksoap2:ksoap2-j2se-core:3.6.2`2.添加仓库配置(repositories)3.为maven-compiler-plugin添加版本号注意:原POM中已经有一个repositories配置,但为了清晰,我们将使用提供的两个仓库(central和aliyun)替换原有的repositories配置。步骤:1.在<properties>下面添加<repositories>节点,包含central和aliyun两个仓库。2.