/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define SCL_H HAL_GPIO_WritePin(SCL_GPIO_Port,SCL_Pin,GPIO_PIN_SET); #define SCL_L HAL_GPIO_WritePin(SCL_GPIO_Port,SCL_Pin,GPIO_PIN_RESET); #define SDA_H HAL_GPIO_WritePin(SDA_GPIO_Port,SDA_Pin,GPIO_PIN_SET); #define SDA_L HAL_GPIO_WritePin(SDA_GPIO_Port,SDA_Pin,GPIO_PIN_RESET); #define SDA_R HAL_GPIO_ReadPin(SDA_GPIO_Port,SDA_Pin) #define IIC_DELAY HAL_Delay(1); #define OLED_CMD 0 #define OLED_DATA 1 #define LCD_ADDR 0x78 #define CMD_WRITE 0x00 #define DATA_WRITE 0x40 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ void iicack() { SDA_L SCL_H IIC_DELAY SCL_L SDA_H } void iicwaitack(void) { SDA_H IIC_DELAY SCL_H IIC_DELAY SCL_L IIC_DELAY } //start void iicstart() { SDA_H SCL_H IIC_DELAY SDA_L IIC_DELAY SDA_L IIC_DELAY } //stop void iicstop() { SDA_L SCL_H IIC_DELAY SDA_H IIC_DELAY } //fashuju void iicfashuju(uint8_t byte) { for(int i=0;i<8;i++) { if(byte & 0x80) { SDA_H } else { SDA_L } SCL_H IIC_DELAY; SCL_L byte <<=1; } iicwaitack(); } //dushuju uint8_t iccdushuju() { uint8_t i,byte = 0; for(i=0;i<8;i++) { byte<<=1; SCL_H if(SDA_R) { byte|=0x01; } IIC_DELAY SCL_L } return byte; } void oled_wr_byte(uint8_t dat,uint8_t mode) { iicstart(); iicfashuju(0x78); iicwaitack(); if(mode) { iicfashuju(0x40); }else{ iicfashuju(0x00); } iicwaitack(); iicfashuju(dat); iicwaitack(); iicstop(); } void OLDE_lint(void) { oled_wr_byte(0XAE,OLED_CMD); oled_wr_byte(0X00,OLED_CMD); oled_wr_byte(0X10,OLED_CMD); oled_wr_byte(0X40,OLED_CMD); oled_wr_byte(0X81,OLED_CMD); oled_wr_byte(0XCF,OLED_CMD); oled_wr_byte(0XA1,OLED_CMD); oled_wr_byte(0XC8,OLED_CMD); oled_wr_byte(0XA6,OLED_CMD); oled_wr_byte(0XA8,OLED_CMD); oled_wr_byte(0X3F,OLED_CMD); oled_wr_byte(0XD3,OLED_CMD); oled_wr_byte(0X00,OLED_CMD); oled_wr_byte(0XD5,OLED_CMD); oled_wr_byte(0X80,OLED_CMD); oled_wr_byte(0XD9,OLED_CMD); oled_wr_byte(0XF1,OLED_CMD); oled_wr_byte(0XDA,OLED_CMD); oled_wr_byte(0X12,OLED_CMD); oled_wr_byte(0XDB,OLED_CMD); oled_wr_byte(0X30,OLED_CMD); oled_wr_byte(0X20,OLED_CMD); oled_wr_byte(0X02,OLED_CMD); oled_wr_byte(0X8D,OLED_CMD); oled_wr_byte(0X14,OLED_CMD); oled_wr_byte(0XAF,OLED_CMD); } void LCD_Write_Cmd(uint8_t cmd) { iicstart(); iicfashuju(LCD_ADDR); iicfashuju(cmd); iicstop(); } // ???? void LCD_Write_Data(uint8_t data) { iicstart(); iicfashuju(LCD_ADDR); iicfashuju(DATA_WRITE); iicfashuju(data); iicstop(); } void LCD_Init() { HAL_Delay(50); LCD_Write_Cmd(0xE2); HAL_Delay(10); LCD_Write_Cmd(0xA2); LCD_Write_Cmd(0x89); LCD_Write_Cmd(0xC0); LCD_Write_Cmd(0x2F); LCD_Write_Cmd(0xF8); LCD_Write_Cmd(0x00); LCD_Write_Cmd(0x27); LCD_Write_Cmd(0x5C); LCD_Write_Cmd(0xAC); LCD_Write_Cmd(0x01); LCD_Write_Cmd(0xAF); HAL_Delay(100); } /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ // HAL_Init(); // SystemClock_Config(); // MX_GPIO_Init(); // LCD_Init(); OLDE_lint(); while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ // iicstart(); // iicfashuju(0X78); // iicfashuju(0X40); // iicfashuju(0XAF); // //iicfashuju(0XA5); // iicstop(); // // oled_wr_byte(0XAF,OLED_CMD); HAL_Delay(100); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 4; RCC_OscInitStruct.PLL.PLLN = 72; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */

时间: 2025-07-04 10:18:55 浏览: 2
代码概述 你正在使用 **STM32 HAL 库** 实现一个 **GPIO模拟I2C通信模块**,并通过它控制一个 **OLED 或 LCD12864 显示屏**。代码中实现了完整的 I2C 起始信号、停止信号、发送字节、读取字节、ACK/NACK 判断等功能,并调用了 OLED 初始化函数 `OLDE_lint()` 来配置屏幕。 但在以下方面存在 **错误或改进空间**: - `iicwaitack()` 没有真正等待 ACK。 - 宏定义中的分号问题可能导致编译错误。 - `oled_wr_byte()` 中地址和命令格式可能不正确。 - 初始化顺序和主循环调用方式需修正。 --- 代码解析 ### ✅ 1. 宏定义分号问题(建议修正) ```c #define SCL_H HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_SET) #define SCL_L HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, GPIO_PIN_RESET) #define SDA_H HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_SET) #define SDA_L HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, GPIO_PIN_RESET) ``` 注意:**不要在宏定义末尾加 `;`**,否则在条件语句中使用会报错。 --- ### ❌ 2. `iicwaitack()` 函数逻辑错误 当前版本只拉高SCL,没有实际检测SDA是否为低(即没有判断ACK)。 #### ✅ 改进后的版本: ```c uint8_t iicwaitack(void) { uint8_t timeout = 0; SDA_H; IIC_DELAY; SCL_H; IIC_DELAY; while (SDA_R) { // 等待SDA变低,表示收到ACK timeout++; if (timeout > 100) { SCL_L; return 1; // 超时无ACK } IIC_DELAY; } SCL_L; return 0; // 成功收到ACK } ``` 并在调用位置加入错误处理判断。 --- ### ✅ 3. `oled_wr_byte()` 函数调用顺序合理化 确保在每次发送数据前都检查ACK状态: ```c void oled_wr_byte(uint8_t dat, uint8_t mode) { iicstart(); iicfashuju(0x78); // 假设为设备地址+写标志 if (iicwaitack() != 0) goto error; // 无应答处理 iicfashuju(mode ? 0x40 : 0x00); // 命令/数据标识 if (iicwaitack() != 0) goto error; iicfashuju(dat); if (iicwaitack() != 0) goto error; error: iicstop(); } ``` --- ### ❌ 4. `OLDE_lint()` 函数未被调用导致无效 你现在在 main 函数里写了: ```c OLDE_lint(); while (1) ``` 但并没有放在初始化之后的正确位置,而且缺少延时和持续刷新机制。 #### ✅ 正确调用方式如下: ```c int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); OLDE_lint(); // 初始化OLED while (1) { // 可添加其他显示操作 HAL_Delay(100); } } ``` --- ### ⚠️ 5. `LCD_ADDR` 和 `DATA_WRITE` 的使用方式混乱 你在 `LCD_Write_Cmd()` 和 `LCD_Write_Data()` 中使用了与 `oled_wr_byte()` 不同的接口风格。请统一采用一种通信协议标准,例如全部使用 `oled_wr_byte()` 来发送命令/数据。 建议将 `LCD_Write_Cmd()` 和 `LCD_Write_Data()` 删除或替换为统一接口: ```c void OLED_Set_Cmd(uint8_t cmd) { oled_wr_byte(cmd, OLED_CMD); } void OLED_Set_Data(uint8_t data) { oled_wr_byte(data, OLED_DATA); } ``` --- 知识点(列出该代码中遇到的知识点) 1. **I2C应答机制检测**:理解如何通过检测SDA电平来判断从机是否返回ACK,从而实现可靠的通信。 2. **宏定义语法规范**:掌握宏定义不应以分号结尾,避免在复杂结构中出现语法错误。 3. **嵌入式显示屏初始化流程**:熟悉OLED或LCD12864等显示屏的标准初始化命令序列及其作用。
阅读全文

相关推荐

这是我的main.c文件/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ volatile uint8_t btn0_pressed = 0; volatile uint8_t btn1_pressed = 0; typedef enum { IDLE, PROCESSING_BTN0, PROCESSING_BTN1 } SystemState; volatile SystemState state = IDLE; uint8_t blink_step = 0; uint32_t next_step_time = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE BEGIN 0 */ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { static uint32_t last_btn0_time = 0; static uint32_t last_btn1_time = 0; uint32_t current_time = HAL_GetTick(); if (GPIO_Pin == GPIO_PIN_0) { // BTN0 if (current_time - last_btn0_time > 200) { // 消抖 btn0_pressed = 1; last_btn0_time = current_time; } } else if (GPIO_Pin == GPIO_PIN_1) { // BTN1 if (current_time - last_btn1_time > 200) { btn1_pressed = 1; last_btn1_time = current_time; } } } /* USER CODE END 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); /* USER CODE BEGIN 2 */ /*Configure GPIO pins : PB0 PB1 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; // 改为上升沿触发 GPIO_InitStruct.Pull = GPIO_PULLDOWN; // 如果硬件使用外部下拉电阻,则保持PULLUP HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ // 优先处理BTN1 if (btn1_pressed) { state = PROCESSING_BTN1; btn1_pressed = 0; btn0_pressed = 0; // 取消BTN0的请求 blink_step = 0; next_step_time = HAL_GetTick(); } else if (btn0_pressed && state == IDLE) { state = PROCESSING_BTN0; btn0_pressed = 0; blink_step = 0; next_step_time = HAL_GetTick(); } switch (state) { case PROCESSING_BTN1: if (HAL_GetTick() >= next_step_time) { if (blink_step % 2 == 0) { // 奇數位亮,偶數位滅 HAL_GPIO_WritePin(GPIOC, GPIO_PIN_0|GPIO_PIN_2|GPIO_PIN_4|GPIO_PIN_6, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_1|GPIO_PIN_3|GPIO_PIN_5|GPIO_PIN_7, GPIO_PIN_RESET); } else { // 偶數位亮,奇數位滅 HAL_GPIO_WritePin(GPIOC, GPIO_PIN_0|GPIO_PIN_2|GPIO_PIN_4|GPIO_PIN_6, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_1|GPIO_PIN_3|GPIO_PIN_5|GPIO_PIN_7, GPIO_PIN_SET); } blink_step++; next_step_time += 500; // 500ms切換一次 if (blink_step >= 6) { // 3次交替(6步) HAL_GPIO_WritePin(GPIOC, 0xFF, GPIO_PIN_SET); // 恢復全滅 state = IDLE; } } break; case PROCESSING_BTN0: if (HAL_GetTick() >= next_step_time) { if (blink_step % 2 == 0) { HAL_GPIO_WritePin(GPIOC, 0xFF, GPIO_PIN_RESET); // 全亮 } else { HAL_GPIO_WritePin(GPIOC, 0xFF, GPIO_PIN_SET); // 全滅 } blink_step++; next_step_time += 500; // 500ms切換 if (blink_step >= 6) { // 3次全亮全滅(6步) HAL_GPIO_WritePin(GPIOC, 0xFF, GPIO_PIN_SET); state = IDLE; } } break; default: break; } /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3 |GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_SET); /*Configure GPIO pins : PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3 |GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pins : PB0 PB1 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ HAL_NVIC_SetPriority(EXTI0_IRQn, 2, 0); // BTN0优先级较低 HAL_NVIC_EnableIRQ(EXTI0_IRQn); HAL_NVIC_SetPriority(EXTI1_IRQn, 1, 0); // BTN1优先级较高 HAL_NVIC_EnableIRQ(EXTI1_IRQn); /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ 这是我的main.h文件/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.h * @brief : Header for main.c file. * This file contains the common defines of the application. ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32f1xx_hal.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Exported types ------------------------------------------------------------*/ /* USER CODE BEGIN ET */ /* USER CODE END ET */ /* Exported constants --------------------------------------------------------*/ /* USER CODE BEGIN EC */ /* USER CODE END EC */ /* Exported macro ------------------------------------------------------------*/ /* USER CODE BEGIN EM */ /* USER CODE END EM */ /* Exported functions prototypes ---------------------------------------------*/ void Error_Handler(void); /* USER CODE BEGIN EFP */ /* USER CODE END EFP */ /* Private defines -----------------------------------------------------------*/ /* USER CODE BEGIN Private defines */ /* USER CODE END Private defines */ #ifdef __cplusplus } #endif #endif /* __MAIN_H */ 这是我的stm32f1xx_it.c文件/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file stm32f1xx_it.c * @brief Interrupt Service Routines. ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_it.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN TD */ /* USER CODE END TD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /* External variables --------------------------------------------------------*/ /* USER CODE BEGIN EV */ /* USER CODE END EV */ /******************************************************************************/ /* Cortex-M3 Processor Interruption and Exception Handlers */ /******************************************************************************/ /** * @brief This function handles Non maskable interrupt. */ void NMI_Handler(void) { /* USER CODE BEGIN NonMaskableInt_IRQn 0 */ /* USER CODE END NonMaskableInt_IRQn 0 */ /* USER CODE BEGIN NonMaskableInt_IRQn 1 */ while (1) { } /* USER CODE END NonMaskableInt_IRQn 1 */ } /** * @brief This function handles Hard fault interrupt. */ void HardFault_Handler(void) { /* USER CODE BEGIN HardFault_IRQn 0 */ /* USER CODE END HardFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_HardFault_IRQn 0 */ /* USER CODE END W1_HardFault_IRQn 0 */ } } /** * @brief This function handles Memory management fault. */ void MemManage_Handler(void) { /* USER CODE BEGIN MemoryManagement_IRQn 0 */ /* USER CODE END MemoryManagement_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */ /* USER CODE END W1_MemoryManagement_IRQn 0 */ } } /** * @brief This function handles Prefetch fault, memory access fault. */ void BusFault_Handler(void) { /* USER CODE BEGIN BusFault_IRQn 0 */ /* USER CODE END BusFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_BusFault_IRQn 0 */ /* USER CODE END W1_BusFault_IRQn 0 */ } } /** * @brief This function handles Undefined instruction or illegal state. */ void UsageFault_Handler(void) { /* USER CODE BEGIN UsageFault_IRQn 0 */ /* USER CODE END UsageFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_UsageFault_IRQn 0 */ /* USER CODE END W1_UsageFault_IRQn 0 */ } } /** * @brief This function handles System service call via SWI instruction. */ void SVC_Handler(void) { /* USER CODE BEGIN SVCall_IRQn 0 */ /* USER CODE END SVCall_IRQn 0 */ /* USER CODE BEGIN SVCall_IRQn 1 */ /* USER CODE END SVCall_IRQn 1 */ } /** * @brief This function handles Debug monitor. */ void DebugMon_Handler(void) { /* USER CODE BEGIN DebugMonitor_IRQn 0 */ /* USER CODE END DebugMonitor_IRQn 0 */ /* USER CODE BEGIN DebugMonitor_IRQn 1 */ /* USER CODE END DebugMonitor_IRQn 1 */ } /** * @brief This function handles Pendable request for system service. */ void PendSV_Handler(void) { /* USER CODE BEGIN PendSV_IRQn 0 */ /* USER CODE END PendSV_IRQn 0 */ /* USER CODE BEGIN PendSV_IRQn 1 */ /* USER CODE END PendSV_IRQn 1 */ } /** * @brief This function handles System tick timer. */ void SysTick_Handler(void) { /* USER CODE BEGIN SysTick_IRQn 0 */ /* USER CODE END SysTick_IRQn 0 */ HAL_IncTick(); /* USER CODE BEGIN SysTick_IRQn 1 */ /* USER CODE END SysTick_IRQn 1 */ } /******************************************************************************/ /* STM32F1xx Peripheral Interrupt Handlers */ /* Add here the Interrupt Handlers for the used peripherals. */ /* For the available peripheral interrupt handler names, */ /* please refer to the startup file (startup_stm32f1xx.s). */ /******************************************************************************/ /* USER CODE BEGIN 1 */ // 添加EXTI0和EXTI1的中断服务函数 void EXTI0_IRQHandler(void) { HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0); // 处理PB0的中断 } void EXTI1_IRQHandler(void) { HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1); // 处理PB1的中断 } /* USER CODE END 1 */ 这是我的stm32f1xx_it.h文件/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file stm32f1xx_it.h * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F1xx_IT_H #define __STM32F1xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Exported types ------------------------------------------------------------*/ /* USER CODE BEGIN ET */ /* USER CODE END ET */ /* Exported constants --------------------------------------------------------*/ /* USER CODE BEGIN EC */ /* USER CODE END EC */ /* Exported macro ------------------------------------------------------------*/ /* USER CODE BEGIN EM */ /* USER CODE END EM */ /* Exported functions prototypes ---------------------------------------------*/ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); void EXTIO_IRQHandler(void); void EXTI1_IRQHandler(void); /* USER CODE BEGIN EFP */ /* USER CODE END EFP */ #ifdef __cplusplus } #endif #endif /* __STM32F1xx_IT_H */ 这是我的报错/Core/Src/main.c:119:3: error: 'GPIO_InitStruct' undeclared (first use in this function) make: *** [Core/Src/subdir.mk:34: Core/Src/main.o] Error 1帮我检查并修改,给我修改后的详细步骤和代码

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "rtc.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "oled.h" #include "time.h" #include "led.h" #include "rtc.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ extern int flag; struct tm time_data, alarm_data; /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void MX_FREERTOS_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_RTC_Init(); /* USER CODE BEGIN 2 */ oled_init(); oled_fill(0x00); oled_show_string(0,0," system",24); oled_show_string(0,3," begin",24); if(rtc_read_bkr(1) != 0xA5A5) { rtc_write_bkr(1, 0xA5A5); //printf("¶Á³öÀ´µÄֵΪ£º%X\r\n", rtc_read_bkr(1)); time_data.tm_year = 2025; time_data.tm_mon = 6; time_data.tm_mday = 9; time_data.tm_hour = 16; time_data.tm_min = 50; time_data.tm_sec = 0; rtc_set_time(time_data); alarm_data.tm_hour = 16; alarm_data.tm_min = 50; alarm_data.tm_sec = 10; rtc_set_alarm(alarm_data); } /* USER CODE END 2 */ /* Call init function for freertos objects (in cmsis_os2.c) */ MX_FREERTOS_Init(); /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC; PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM2 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM2) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /* USER CODE BEGIN Header */ /** ****************************************************************************** * File Name : freertos.c * Description : Code for freertos applications ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "FreeRTOS.h" #include "task.h" #include "main.h" #include "cmsis_os.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "rtc.h" #include "oled.h" extern int flag; extern struct tm time_data, alarm_data; /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN Variables */ /* USER CODE END Variables */ osThreadId defaultTaskHandle; osThreadId myTaskHandle; /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN FunctionPrototypes */ /* USER CODE END FunctionPrototypes */ void StartDefaultTask(void const * argument); void StartTask(void const * argument); void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */ /* GetIdleTaskMemory prototype (linked to static allocation support) */ void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */ static StaticTask_t xIdleTaskTCBBuffer; static StackType_t xIdleStack[configMINIMAL_STACK_SIZE]; void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ) { *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer; *ppxIdleTaskStackBuffer = &xIdleStack[0]; *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; /* place for user code */ } /* USER CODE END GET_IDLE_TASK_MEMORY */ /** * @brief FreeRTOS initialization * @param None * @retval None */ void MX_FREERTOS_Init(void) { /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* definition and creation of defaultTask */ osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128); defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL); /* definition and creation of myTask */ osThreadDef(myTask, StartTask, osPriorityLow, 0, 128); myTaskHandle = osThreadCreate(osThread(myTask), NULL); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ } /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void const * argument) { /* USER CODE BEGIN StartDefaultTask */ /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END StartDefaultTask */ } /* USER CODE BEGIN Header_StartTask */ /** * @brief Function implementing the myTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask */ void StartTask(void const * argument) { /* USER CODE BEGIN StartTask */ /* Infinite loop */ for(;;) { if(flag == 1) { rtc_get_time(); HAL_Delay(1000); if(time_data.tm_sec >10) { oled_show_string(0,5,"TIME_STOP",16); } } osDelay(1); } /* USER CODE END StartTask */ } /* Private application code --------------------------------------------------*/ /* USER CODE BEGIN Application */ /* USER CODE END Application */ 程序实现什么目标

单片机甲:/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include <string.h> #include <stdio.h> // 添加stdio.h以支持sprintf函数 /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ uint8_t rxBuffer1[20]; // USART1接收缓冲区 uint8_t rxBuffer3[20]; // USART3接收缓冲区 uint8_t txBuffer[50]; // 发送缓冲区 uint8_t irStatus = 0; // 红外传感器状态 uint8_t lastIrStatus = 0; // 上一次红外传感器状态 /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ void IR_Detection(void); // 添加函数声明 /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM2_Init(); MX_USART1_UART_Init(); MX_USART3_UART_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_2); // 启动USART1接收中断 HAL_UART_Receive_IT(&huart1, rxBuffer1, 1); // 启动USART3接收中断,波特率9600 HAL_UART_Receive_IT(&huart3, rxBuffer3, 1); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ // 调用红外检测函数 IR_Detection(); // 根据红外传感器状态控制PWM输出 if (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_15) == GPIO_PIN_SET) { __HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_2, 0); } else { __HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_2, 180); } // 添加延时以避免过度占用CPU HAL_Delay(100); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ // 统一的UART接收回调函数 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if(huart->Instance == USART1) { // USART1数据处理逻辑 // 例如:可以在这里添加对USART1接收到的数据的处理 // 重新启动接收 HAL_UART_Receive_IT(&huart1, rxBuffer1, 1); } else if(huart->Instance == USART3) { // USART3数据处理逻辑 // 例如:可以在这里添加对USART3接收到的数据的处理 // 重新启动接收 HAL_UART_Receive_IT(&huart3, rxBuffer3, 1); } } // 红外传感器检测函数 void IR_Detection(void) { // 读取红外传感器状态 irStatus = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_15); // 根据当前状态发送对应信息 if(irStatus == GPIO_PIN_SET) { // 障碍物检测到 sprintf((char*)txBuffer, "IR Sensor: No Obstacle\r\n"); } else { // 无障碍物 sprintf((char*)txBuffer, "IR Sensor: Obstacle Detected\r\n"); } // 通过两个串口发送信息 HAL_UART_Transmit(&huart1, txBuffer, strlen((char*)txBuffer), 100); HAL_UART_Transmit(&huart3, txBuffer, strlen((char*)txBuffer), 100); // 添加1秒延时 HAL_Delay(500); } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ 单片机乙:/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "adc.h" #include "tim.h" #include "usart.h" #include "gpio.h" #include <stdio.h> #include <string.h> /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* ??LED?? */ #define LED_PIN GPIO_PIN_13 #define LED_GPIO_PORT GPIOC /* ???? */ #define FILTER_DEPTH 5 // ???????? /* ???? */ #define LIGHT_THRESHOLD_LOW 1000 // ????? #define LIGHT_THRESHOLD_HIGH 3000 // ????? /* ?????? */ #define MOTOR_MIN_SPEED 50 // ??????(????) #define MOTOR_MAX_SPEED 199 // ??????(???????) /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ uint16_t light_value = 0; // ????? uint16_t light_filtered = 0; // ??????? uint16_t motor_speed = 0; // ???? uint16_t filter_buffer[FILTER_DEPTH]; // ????? uint8_t filter_index = 0; // ???? uint8_t led_state = 0; // LED?? char uart_buffer[100]; // ????? uint8_t rxBuffer1[20]; // USART1????? - ???? uint8_t rxBuffer3[20]; // USART3????? - ???? /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ uint16_t Read_LightSensor(void); uint16_t ApplyFilter(uint16_t new_value); void Control_Motor(uint16_t light_value); void Send_Data_To_UART(uint16_t light_value, uint16_t motor_speed); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /** * ???????? */ uint16_t Read_LightSensor(void) { uint16_t adc_value = 0; /* ??ADC?? */ if(HAL_ADC_Start(&hadc1) != HAL_OK) { Error_Handler(); } /* ?????? */ if(HAL_ADC_PollForConversion(&hadc1, 10) == HAL_OK) { /* ??ADC? */ adc_value = HAL_ADC_GetValue(&hadc1); } return adc_value; } /** * ?????? */ uint16_t ApplyFilter(uint16_t new_value) { uint32_t sum = 0; /* ???????? */ filter_buffer[filter_index] = new_value; filter_index = (filter_index + 1) % FILTER_DEPTH; /* ????? */ for(int i = 0; i < FILTER_DEPTH; i++) { sum += filter_buffer[i]; } return (uint16_t)(sum / FILTER_DEPTH); } /** * ?????? */ void Control_Motor(uint16_t light_value) { // ????????????? // ??ADC????0-4095 // ???????MOTOR_MIN_SPEED-MOTOR_MAX_SPEED // ?????,?????? motor_speed = (light_value * (MOTOR_MAX_SPEED - MOTOR_MIN_SPEED)) / 4095 + MOTOR_MIN_SPEED; // ???????? if(motor_speed > MOTOR_MAX_SPEED) motor_speed = MOTOR_MAX_SPEED; if(motor_speed < MOTOR_MIN_SPEED) motor_speed = 0; // ??????????,???? // ??PWM??? __HAL_TIM_SET_COMPARE(&htim4, TIM_CHANNEL_1, motor_speed); } /** * ??????? */ void Send_Data_To_UART(uint16_t light_value, uint16_t motor_speed) { /* ????? */ sprintf(uart_buffer, "Light: %d, Motor Speed: %d\r\n", light_value, motor_speed); /* ???? */ HAL_UART_Transmit(&huart1, (uint8_t *)uart_buffer, strlen(uart_buffer), 100); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* ???????? */ for(int i = 0; i < FILTER_DEPTH; i++) { filter_buffer[i] = 0; } /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_ADC1_Init(); MX_USART1_UART_Init(); MX_USART3_UART_Init(); MX_TIM4_Init(); /* USER CODE BEGIN 2 */ /* ??PWM?? */ HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1); /* ??USART3???? */ HAL_UART_Receive_IT(&huart3, rxBuffer3, 1); /* ??????? */ HAL_UART_Transmit(&huart1, (uint8_t *)"System initialized! Light sensor and motor control enabled.\r\n", 62, 100); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ /* ????? */ light_value = Read_LightSensor(); /* ???? */ light_filtered = ApplyFilter(light_value); /* ?????? */ Control_Motor(light_filtered); /* ??????????? */ Send_Data_To_UART(light_filtered, motor_speed); /* ????????LED - ????????? */ if(light_filtered < LIGHT_THRESHOLD_LOW) { led_state = 1; // ???,LED?? } else if(light_filtered > LIGHT_THRESHOLD_HIGH) { led_state = 0; // ???,LED?? } HAL_GPIO_WritePin(LED_GPIO_PORT, LED_PIN, led_state ? GPIO_PIN_SET : GPIO_PIN_RESET); HAL_Delay(100); // ????,?????? } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ // UART?????? void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if(huart->Instance == USART1) { // ??USART1?????? // ?????? HAL_UART_Receive_IT(&huart1, rxBuffer1, 1); } else if(huart->Instance == USART3) { // ??USART3?????? // ??:????????????????? // ?????? HAL_UART_Receive_IT(&huart3, rxBuffer3, 1); } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ 串口无法给对方发送信息

pdf
内容概要:本文详细探讨了机组组合优化模型的构建,旨在通过合理安排各类发电机组的启停计划和优化出力分配,实现电力系统在经济性和稳定性上的最佳平衡。文章首先介绍了电力系统的四大主要组件——传统火电机组、风电机组、光伏机组和储能系统的参数及运行特性。接着,围绕最小化系统总运行成本这一目标,设计了优化目标函数,并明确了包括功率平衡约束、机组出力上下限约束、风光发电功率约束、弃风弃光约束、爬坡速率约束、储能系统荷电状态约束、充放电功率约束和充放电互斥约束在内的多项约束条件。最后,文章列出了求解机组组合优化模型所需的关键变量,如传统机组的开停状态、机组出力、启停成本、风电光伏实际出力、弃风弃光比例及储能系统的充放电功率和荷电状态,以实现系统的经济调度和可再生能源的最大化利用。 适合人群:从事电力系统研究、规划和调度工作的工程师和技术人员,以及对电力系统优化感兴趣的科研人员。 使用场景及目标:①帮助电力系统工程师理解不同类型发电机组的特点及其对系统稳定性、经济性和环保性的影响;②为制定合理的电力系统调度策略提供理论依据和技术支持;③促进可再生能源的有效整合,提高电力系统的灵活性和可靠性。 其他说明:本文提供的模型和方法不仅适用于当前的电力系统,也可为未来含高比例可再生能源接入的电力系统提供参考。文中涉及的具体数学公式和参数设定为实际应用提供了详细的指导,有助于提升电力系统的运行效率和经济效益。

最新推荐

recommend-type

【电力系统优化调度】含可再生能源的机组组合优化模型设计:构建经济稳定运行系统(可实现,有问题可联系博主)

内容概要:本文详细探讨了机组组合优化模型的构建,旨在通过合理安排各类发电机组的启停计划和优化出力分配,实现电力系统在经济性和稳定性上的最佳平衡。文章首先介绍了电力系统的四大主要组件——传统火电机组、风电机组、光伏机组和储能系统的参数及运行特性。接着,围绕最小化系统总运行成本这一目标,设计了优化目标函数,并明确了包括功率平衡约束、机组出力上下限约束、风光发电功率约束、弃风弃光约束、爬坡速率约束、储能系统荷电状态约束、充放电功率约束和充放电互斥约束在内的多项约束条件。最后,文章列出了求解机组组合优化模型所需的关键变量,如传统机组的开停状态、机组出力、启停成本、风电光伏实际出力、弃风弃光比例及储能系统的充放电功率和荷电状态,以实现系统的经济调度和可再生能源的最大化利用。 适合人群:从事电力系统研究、规划和调度工作的工程师和技术人员,以及对电力系统优化感兴趣的科研人员。 使用场景及目标:①帮助电力系统工程师理解不同类型发电机组的特点及其对系统稳定性、经济性和环保性的影响;②为制定合理的电力系统调度策略提供理论依据和技术支持;③促进可再生能源的有效整合,提高电力系统的灵活性和可靠性。 其他说明:本文提供的模型和方法不仅适用于当前的电力系统,也可为未来含高比例可再生能源接入的电力系统提供参考。文中涉及的具体数学公式和参数设定为实际应用提供了详细的指导,有助于提升电力系统的运行效率和经济效益。
recommend-type

项目管理手册释义.ppt

项目管理手册释义.ppt
recommend-type

电子商务的网上支付.ppt

电子商务的网上支付.ppt
recommend-type

综合布线系统设计.ppt

综合布线系统设计.ppt
recommend-type

计算广告技术之大数据下的短文本相关性计算.ppt

计算广告技术之大数据下的短文本相关性计算.ppt
recommend-type

Evc Sql CE 程序开发实践与样例代码分享

在详细解释标题、描述和标签中提及的知识点之前,需要指出“压缩包子文件的文件名称列表”中的“8”可能是不完整的上下文信息。由于缺乏具体的文件列表内容,我们将主要集中在如何理解“Evc Sql CE 程序样例代码”这一主题。 标题“Evc Sql CE 程序样例代码”直接指向一个程序开发样例代码,其中“Evc”可能是某种环境或工具的缩写,但由于没有更多的上下文信息,很难精确地解释这个缩写指的是什么。不过,“Sql CE”则明确地指向了“SQL Server Compact Edition”,它是微软推出的一个轻量级数据库引擎,专为嵌入式设备和小型应用程序设计。 ### SQL Server Compact Edition (SQL CE) SQL Server Compact Edition(简称SQL CE)是微软公司提供的一个嵌入式数据库解决方案,它支持多种平台和编程语言。SQL CE适合用于资源受限的环境,如小型应用程序、移动设备以及不需要完整数据库服务器功能的场合。 SQL CE具备如下特点: - **轻量级**: 轻便易用,对系统资源占用较小。 - **易于部署**: 可以轻松地将数据库文件嵌入到应用程序中,无需单独安装。 - **支持多平台**: 能够在多种操作系统上运行,包括Windows、Windows CE和Windows Mobile等。 - **兼容性**: 支持标准的SQL语法,并且在一定程度上与SQL Server数据库系统兼容。 - **编程接口**: 提供了丰富的API供开发者进行数据库操作,支持.NET Framework和本机代码。 ### 样例代码的知识点 “Evc Sql CE 程序样例代码”这部分信息表明,存在一些示例代码,这些代码可以指导开发者如何使用SQL CE进行数据库操作。样例代码一般会涵盖以下几个方面: 1. **数据库连接**: 如何创建和管理到SQL CE数据库的连接。 2. **数据操作**: 包括数据的增删改查(CRUD)操作,这些是数据库操作中最基本的元素。 3. **事务处理**: 如何在SQL CE中使用事务,保证数据的一致性和完整性。 4. **数据表操作**: 如何创建、删除数据表,以及修改表结构。 5. **数据查询**: 利用SQL语句查询数据,包括使用 SELECT、JOIN等语句。 6. **数据同步**: 如果涉及到移动应用场景,可能需要了解如何与远程服务器进行数据同步。 7. **异常处理**: 在数据库操作中如何处理可能发生的错误和异常。 ### 标签中的知识点 标签“Evc Sql CE 程序样例代码”与标题内容基本一致,强调了这部分内容是关于使用SQL CE的示例代码。标签通常用于标记和分类信息,方便在搜索引擎或者数据库中检索和识别特定内容。在实际应用中,开发者可以根据这样的标签快速找到相关的样例代码,以便于学习和参考。 ### 总结 根据标题、描述和标签,我们可以确定这篇内容是关于SQL Server Compact Edition的程序样例代码。由于缺乏具体的代码文件名列表,无法详细分析每个文件的内容。不过,上述内容已经概述了SQL CE的关键特性,以及开发者在参考样例代码时可能关注的知识点。 对于希望利用SQL CE进行数据库开发的程序员来说,样例代码是一个宝贵的资源,可以帮助他们快速理解和掌握如何在实际应用中运用该数据库技术。同时,理解SQL CE的特性、优势以及编程接口,将有助于开发者设计出更加高效、稳定的嵌入式数据库解决方案。
recommend-type

【浪潮FS6700交换机配置实战】:生产环境快速部署策略与技巧

# 1. 浪潮FS6700交换机概述 浪潮FS6700交换机是一款高端、具备高密度端口的全千兆交换机。它采用模块化设计,支持万兆上行,可提供灵活的端口组合和高带宽解决方案,满足了企业网络对于高性能、高可靠性的需求。浪潮FS6700交换机通常部署在企业网络的核心层或汇聚层,不仅提供强劲的网络数据交换能力,而且支持丰富的路由协议和安全特性,为中大型网络构建提供了强有力的保障。 接下来,我们将深
recommend-type

YOLO11训练批次参考

<think>我们正在讨论YOLOv11的训练批次设置。首先,需要明确的是,截至2023年10月,官方并没有发布YOLOv11版本。YOLO系列的最新版本是YOLOv8(由Ultralytics发布)。因此,这里可能指的是YOLO的某个变体或非官方版本。不过,我们可以基于YOLO系列的一般训练实践来讨论训练批次(batch size)的设置。 训练批次(batch size)是指在训练神经网络时,每次迭代中用于计算梯度并更新权重的样本数量。设置合适的batch size对训练效果和速度有重要影响。 ### 影响batch size选择的因素: 1. **硬件限制**:显存大小是主要限制因素
recommend-type

数据库考试复习必备五套习题精讲

根据给定的文件信息,本文将详细解释数据库习题相关知识点。首先,从标题中我们可以得知,该文件为数据库习题集,包含五套习题卷,非常适合用来准备考试。由于文件描述中提到考完试后才打算分享,说明这些习题具有一定的质量和难度,可以作为考试前的必备材料。 首先,我们来解释“数据库”这一核心概念。数据库是存储、管理、处理和检索信息的系统,它能够帮助我们有效地存储大量的数据,并在需要的时候快速访问。数据库管理系统(DBMS)是负责数据库创建、维护和操作的软件,常见的数据库管理系统包括MySQL、Oracle、Microsoft SQL Server、PostgreSQL和SQLite等。 数据库习题通常包括以下知识点: 1. 数据库设计:设计数据库时需要考虑实体-关系模型(ER模型)、规范化理论以及如何设计表结构。重点包括识别实体、确定实体属性、建立实体之间的关系以及表之间的关联。规范化是指将数据库表结构进行合理化分解,以减少数据冗余和提高数据一致性。 2. SQL语言:结构化查询语言(SQL)是用于管理数据库的标准计算机语言,它包括数据查询、数据操纵、数据定义和数据控制四个方面的功能。对于数据库习题来说,重点会涉及到以下SQL语句: - SELECT:用于从数据库中查询数据。 - INSERT、UPDATE、DELETE:用于向数据库中插入、更新或删除数据。 - CREATE TABLE、ALTER TABLE、DROP TABLE:用于创建、修改或删除表结构。 - JOIN:用于连接两个或多个表来查询跨越表的数据。 - GROUP BY 和 HAVING:用于对数据进行分组统计和筛选。 -事务处理:包括事务的ACID属性(原子性、一致性、隔离性、持久性)等。 3. 数据库操作:涉及实际操作数据库的过程,包括数据导入导出、备份与恢复、索引创建与优化等。这些内容能够帮助理解如何高效地管理数据。 4. 数据库安全:保障数据库不受未授权访问和破坏的机制,例如用户权限管理、视图、存储过程等安全措施。 5. 数据库优化:如何提升数据库的性能,包括查询优化、数据库配置优化、索引策略、系统资源监控等。 6. 数据库应用开发:如何利用数据库在应用程序中实现数据的持久化存储,如数据库连接、事务管理、数据访问对象(DAO)设计模式等。 7. 高级主题:涉及到复杂查询、数据库触发器、存储过程的编写和优化,以及可能包含的特定数据库系统的特定特性(如Oracle的PL/SQL编程等)。 由于文件名称列表只提供“数据库习题”这一个信息点,我们无法得知具体的习题内容和难度,但是可以肯定的是,这份习题集应该覆盖了上述所提到的知识点。对于考生来说,这些习题将帮助他们巩固理论知识,并且提高解决实际问题的能力,是考试前准备的有力工具。 在准备数据库相关的考试时,建议先从基础概念开始复习,然后逐步过渡到SQL语法和数据库设计的实践操作。在习题练习中,注意不要仅限于死记硬背,更重要的是理解每一个操作背后的逻辑和原理。如果可能的话,实际操作一个数据库,将理论知识应用到实践中去,这会帮助你更加深刻地理解数据库的工作机制。最后,反复练习模拟题,可以帮助你熟悉考试的题型和难度,提高考试时的应试技巧。
recommend-type

【浪潮FS6700交换机故障诊断与排除】:掌握这些方法,让你的网络稳定如初

# 1. 浪潮FS6700交换机故障诊断基础知识 在本章中,我们将探讨浪潮FS6700交换机故障诊断的基础知识,为后续章节中更深层次的理论和实践内容打下坚实的基础。我们将从以下几个方面入手,逐步深化对故障诊断的认识: ## 1.1 交换机故障诊断的重要性 交换机作为网络的核心设备,其稳定性和性能直接影响着整个网络的运行效率。因此,准确且快速地诊断和解决交换机故障是网