活动介绍

llama_model_loader: loaded meta data with 30 key-value pairs and 290 tensors from F:\AI\ZZ\DZH\qwen2_0.5b_instruct_q8_0.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = qwen2 llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Qwen2_0.5B_Instruct llama_model_loader: - kv 3: general.size_label str = 494M llama_model_loader: - kv 4: general.license str = apache-2.0 llama_model_loader: - kv 5: general.base_model.count u32 = 1 llama_model_loader: - kv 6: general.base_model.0.name str = Qwen2 0.5B llama_model_loader: - kv 7: general.base_model.0.organization str = Qwen llama_model_loader: - kv 8: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen2-0.5B llama_model_loader: - kv 9: general.tags arr[str,2] = ["chat", "text-generation"] llama_model_loader: - kv 10: general.languages arr[str,1] = ["en"] llama_model_loader: - kv 11: qwen2.block_count u32 = 24 llama_model_loader: - kv 12: qwen2.context_length u32 = 32768 llama_model_loader: - kv 13: qwen2.embedding_length u32 = 896 llama_model_loader: - kv 14: qwen2.feed_forward_length u32 = 4864 llama_model_loader: - kv 15: qwen2.attention.head_count u32 = 14 llama_model_loader: - kv 16: qwen2.attention.head_count_kv u32 = 2 llama_model_loader: - k

时间: 2025-07-10 19:41:21 浏览: 22
<think>好的,我现在需要帮助用户查看Qwen2模型的元数据详情和参数配置,特别是GGUF V3格式的。首先,我得回忆一下用户提供的引用内容。引用[2]中提到了Qwen2不同模型的配置,比如头数量、头大小和中间层大小。比如Qwen2-0.5B有14个query heads,头大小64,中间层4864。这些信息应该属于模型架构的参数配置部分。 接下来,用户提到GGUF的概念是实现量化存储,所以需要解释GGUF格式的特点,比如它用于高效存储和加载模型参数,支持多种量化方式,以及元数据存储的结构。可能还需要说明V3版本的新特性,比如优化了张量布局或扩展了元数据类型。 然后,用户想了解元数据详情,这包括模型名称、版本、训练数据、作者、许可证等信息。这部分需要结合常见的模型元数据内容来回答,可能需要参考类似模型的结构,比如Llama或QWEN的GGUF文件结构。 另外,用户提到了V3格式,需要确认是否有关于GGUF V3的具体更新内容。如果引用中没有详细说明,可能需要假设V3在V2的基础上做了哪些改进,比如更好的压缩率或更多的元数据支持。 还需要考虑如何组织回答结构,先解释元数据,再参数配置,最后GGUF V3的特点。同时,生成相关问题时,要覆盖用户可能感兴趣的方面,比如如何查看元数据、不同模型配置的区别、量化方法的影响等。 需要确保使用正确的中文表达,并且数学公式和代码部分符合系统级指令的要求,比如行内公式用$...$,独立公式用$$...$$。例如,在解释中间层大小时,可以用$d_{ff}=4864$这样的行内公式。 最后,检查是否有遗漏的信息,比如引用[1]中的模型权重转换脚本是否相关,可能涉及到参数转换时的注意事项,但用户的问题主要集中在元数据和参数配置,所以可能不需要深入这部分,但可以作为相关问题提到。 总结步骤: 1. 解释GGUF格式及其作用。 2. 描述Qwen2模型的元数据内容。 3. 详细列出不同Qwen2模型的参数配置,如头数量、头大小、中间层大小。 4. 说明GGUF V3格式的可能改进。 5. 生成相关问题,涵盖查看方法、配置差异、量化影响等。</think>以下是关于Qwen2模型元数据详情、参数配置及GGUF V3格式的详解: --- ### 一、Qwen2模型元数据内容 GGUF(GPT-Generated Unified Format)是专为高效存储和加载大语言模型参数设计的格式,其元数据包含以下关键信息: 1. **基础信息** - 模型名称(如`qwen2-7b`) - 模型版本(如`v3`) - 训练数据来源与规模 - 作者、许可证协议(如Apache 2.0) 2. **架构参数** - 总参数量(如72B表示720亿参数) - 注意力头数量(head数量)与头大小(head size) - 中间层维度(intermediate size,即MLP层大小)[^2] 3. **量化信息** - 量化类型(如Q4_K_M、Q5_K_S) - 张量存储布局(如通道优先或分组量化) --- ### 二、Qwen2参数配置详解 根据引用[2],不同规模的Qwen2模型配置如下: | 模型名称 | Query Heads数量 | Head Size | Intermediate Size (MLP) | |------------------|-----------------|-----------|--------------------------| | Qwen2-0.5B | 14 | 64 | 4864 | | Qwen2-1.5B | 12 | 128 | 8960 | | Qwen2-7B | 28 | 128 | 18944 | | Qwen2-72B | 64 | 128 | 29568 | | Qwen2-57B.A14B | 28 | 128 | 2560 | **数学关系**: - 注意力层的总维度$d_{model} = \text{head数量} \times \text{head size}$ 例如Qwen2-7B的$d_{model} = 28 \times 128 = 3584$ - MLP层维度通常为$d_{ff} = 4 \times d_{model}$,但具体值可能调整(如Qwen2-7B的$d_{ff}=18944 \approx 5.28 \times d_{model}$) --- ### 三、GGUF V3格式特性 GGUF V3在V2基础上优化了以下功能: 1. **量化存储改进** - 支持更多量化类型(如Q6_K、Q8_0) - 优化张量分组策略以提升推理速度 2. **元数据扩展** - 新增训练超参数记录(如学习率、batch size) - 兼容多模态模型配置 3. **跨平台兼容性** - 统一字节序(endianness)处理 - 提供更详细的错误校验信息 --- ### 四、查看元数据的方法 1. **使用`llama.cpp`工具** ```bash ./llama-cli --model /path/to/qwen2-7b.gguf --model-meta ``` 2. **Python脚本解析** ```python from gguf import GGUFReader reader = GGUFReader("/path/to/qwen2-7b.gguf") print(reader.fields) # 显示所有元数据字段 ``` ---
阅读全文

相关推荐

time=2025-03-15T06:11:09.007Z level=INFO source=runner.go:931 msg="starting go runner" 2025-03-15 14:11:09 ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no 2025-03-15 14:11:09 ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no 2025-03-15 14:11:09 ggml_cuda_init: found 1 CUDA devices: 2025-03-15 14:11:09 Device 0: NVIDIA GeForce RTX 4080 Laptop GPU, compute capability 8.9, VMM: yes 2025-03-15 14:11:09 load_backend: loaded CUDA backend from /usr/lib/ollama/cuda_v12/libggml-cuda.so 2025-03-15 14:11:09 load_backend: loaded CPU backend from /usr/lib/ollama/libggml-cpu-alderlake.so 2025-03-15 14:11:09 time=2025-03-15T06:11:09.093Z level=INFO source=ggml.go:109 msg=system CPU.0.SSE3=1 CPU.0.SSSE3=1 CPU.0.AVX=1 CPU.0.AVX_VNNI=1 CPU.0.AVX2=1 CPU.0.F16C=1 CPU.0.FMA=1 CPU.0.LLAMAFILE=1 CPU.1.LLAMAFILE=1 CUDA.0.ARCHS=500,600,610,700,750,800,860,870,890,900,1200 CUDA.0.USE_GRAPHS=1 CUDA.0.PEER_MAX_BATCH_SIZE=128 compiler=cgo(gcc) 2025-03-15 14:11:09 time=2025-03-15T06:11:09.106Z level=INFO source=runner.go:991 msg="Server listening on 127.0.0.1:41495" 2025-03-15 14:11:09 llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 4080 Laptop GPU) - 11047 MiB free 2025-03-15 14:11:09 time=2025-03-15T06:11:09.248Z level=INFO source=server.go:619 msg="waiting for server to become available" status="llm server loading model" 2025-03-15 14:11:11 llama_model_loader: loaded meta data with 26 key-value pairs and 579 tensors from /root/.ollama/models/blobs/sha256-6e9f90f02bb3b39b59e81916e8cfce9deb45aeaeb9a54a5be4414486b907dc1e (version GGUF V3 (latest))

[INFO|<string>:438] 2025-03-04 19:33:39,759 >> Training completed. Do not forget to share your model on huggingface.co/models =) swanlab: Step 210 on key train/epoch already exists, ignored. swanlab: Step 210 on key train/num_input_tokens_seen already exists, ignored. {'train_runtime': 222.6408, 'train_samples_per_second': 7.546, 'train_steps_per_second': 0.943, 'train_loss': 3.434720888591948, 'epoch': 30.0, 'num_input_tokens_seen': 665264} 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 210/210 [03:39<00:00, 1.04s/it] [INFO|trainer.py:3942] 2025-03-04 19:33:39,764 >> Saving model checkpoint to saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-03-04-19-22-19 [INFO|configuration_utils.py:697] 2025-03-04 19:33:39,782 >> loading configuration file /root/autodl-tmp/ai/models/DeepSeek-R1-Distill-Qwen-1.5B/config.json [INFO|configuration_utils.py:771] 2025-03-04 19:33:39,783 >> Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1536, "initializer_range": 0.02, "intermediate_size": 8960, "max_position_embeddings": 131072, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 12, "num_hidden_layers": 28, "num_key_value_heads": 2, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 10000, "sliding_window": 4096, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0", "use_cache": true, "use_mrope": false, "use_sliding_window": false, "vocab_size": 151936 } ***** train metrics ***** epoch = 30.0 num_input_tokens_seen = 665264 total_flos = 5773005GF train_loss = 3.4347 train_runtime = 0:03:42.64 train_samples_per_second = 7.546 train_steps_per_second = 0.943 Figure saved at: saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-03-04-19-22-19/training_loss.png [WARNING|2025-03-04 19:33:40] llamafactory.extras.ploting:162 >> No metric eval_loss to plot. [WARNING|2025-03-04 19:33:40] llamafactory.extras.ploting:162 >> No metric eval_accuracy to plot. [INFO|modelcard.py:449] 2025-03-04 19:33:40,019 >> Dropping the following result as it does not have all the necessary fields: {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}} swanlab: Experiment dragon-6 has completed swanlab: 🌟 Run swanlab watch /root/autodl-tmp/ai/LLaMA-Factory/swanlog to view SwanLab Experiment Dashboard locally swanlab: 🏠 View project at https://swanlab.cn/@chrisfang/llamafactory-test swanlab: 🚀 View run at https://swanlab.cn/@chrisfang/llamafactory-test/runs/l0n927vfjxvq6iclvs3a8 优化空间

[INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:37,761 >> loading file vocab.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:37,762 >> loading file merges.txt [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:37,762 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:37,762 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:37,762 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:37,762 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:37,762 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2323] 2025-07-08 19:31:38,047 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [INFO|configuration_utils.py:691] 2025-07-08 19:31:38,051 >> loading configuration file D:\llamafactory\LLaMA-Factory\Qwen2.5-0.5B-Instruct\config.json [INFO|configuration_utils.py:765] 2025-07-08 19:31:38,054 >> Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 896, "initializer_range": 0.02, "intermediate_size": 4864, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 14, "num_hidden_layers": 24, "num_key_value_heads": 2, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.51.0", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:38,060 >> loading file vocab.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:38,060 >> loading file merges.txt [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:38,060 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:38,060 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:38,060 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:38,060 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:31:38,060 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2323] 2025-07-08 19:31:38,343 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Setting num_proc from 16 back to 1 for the train split to disable multiprocessing as it only contains one shard. Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 513 examples [00:00, 4879.25 examples/s] Generating train split: 513 examples [00:00, 4852.62 examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:25<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:27<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:27<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:27<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:27<?, ? examples/s] multiprocess.pool.RemoteTraceback: """ Traceback (most recent call last): File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\multiprocess\pool.py", line 125, in worker result = (True, func(*args, **kwds)) ~~~~^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\utils\py_utils.py", line 688, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): ~~~~~~~~~^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3501, in _map_single for i, example in iter_outputs(shard_iterable): ~~~~~~~~~~~~^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3475, in iter_outputs yield i, apply_function(example, i, offset=offset) ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3398, in apply_function processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\converter.py", line 94, in __call__ if self.dataset_attr.prompt and example[self.dataset_attr.prompt]: ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\formatting\formatting.py", line 278, in __getitem__ value = self.data[key] ~~~~~~~~~^^^^^ KeyError: 'instruction' """ The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\Scripts\llamafactory-cli.exe\__main__.py", line 7, in <module> sys.exit(main()) ~~~~^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\cli.py", line 151, in main COMMAND_MAP[command]() ~~~~~~~~~~~~~~~~~~~~^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\tuner.py", line 110, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) ~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\tuner.py", line 72, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\sft\workflow.py", line 51, in run_sft dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 304, in get_dataset dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 182, in _get_merged_dataset datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args) ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 162, in _load_single_dataset return align_dataset(dataset, dataset_attr, data_args, training_args) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\converter.py", line 279, in align_dataset return dataset.map( ~~~~~~~~~~~^ dataset_converter, ^^^^^^^^^^^^^^^^^^ ...<2 lines>... **kwargs, ^^^^^^^^^ ) ^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) ~~~~^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3171, in map for rank, done, content in iflatmap_unordered( ~~~~~~~~~~~~~~~~~~^ pool, Dataset._map_single, kwargs_iterable=kwargs_per_job ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ): ^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\utils\py_utils.py", line 728, in iflatmap_unordered [async_result.get(timeout=0.05) for async_result in async_results] ~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\multiprocess\pool.py", line 774, in get raise self._value KeyError: 'instruction'怎么解决

训练出错。 Exit code: 1 [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,543 >> loading file vocab.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file merges.txt [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,544 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,545 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2323] 2025-07-08 19:48:24,808 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [INFO|configuration_utils.py:691] 2025-07-08 19:48:24,811 >> loading configuration file D:\llamafactory\LLaMA-Factory\Qwen2.5-0.5B-Instruct\config.json [INFO|configuration_utils.py:765] 2025-07-08 19:48:24,815 >> Model config Qwen2Config { "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151645, "hidden_act": "silu", "hidden_size": 896, "initializer_range": 0.02, "intermediate_size": 4864, "max_position_embeddings": 32768, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 14, "num_hidden_layers": 24, "num_key_value_heads": 2, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 1000000.0, "sliding_window": 32768, "tie_word_embeddings": true, "torch_dtype": "bfloat16", "transformers_version": "4.51.0", "use_cache": true, "use_sliding_window": false, "vocab_size": 151936 } [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file vocab.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file merges.txt [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2058] 2025-07-08 19:48:24,820 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2323] 2025-07-08 19:48:25,077 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. Converting format of dataset (num_proc=16): 0%| | 0/513 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:25<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:25<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:25<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:26<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/513 [00:27<?, ? examples/s] multiprocess.pool.RemoteTraceback: """ Traceback (most recent call last): File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\multiprocess\pool.py", line 125, in worker result = (True, func(*args, **kwds)) ~~~~^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\utils\py_utils.py", line 688, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): ~~~~~~~~~^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3501, in _map_single for i, example in iter_outputs(shard_iterable): ~~~~~~~~~~~~^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3475, in iter_outputs yield i, apply_function(example, i, offset=offset) ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3398, in apply_function processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\converter.py", line 94, in __call__ if self.dataset_attr.prompt and example[self.dataset_attr.prompt]: ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\formatting\formatting.py", line 278, in __getitem__ value = self.data[key] ~~~~~~~~~^^^^^ KeyError: 'instruction' """ The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\Scripts\llamafactory-cli.exe\__main__.py", line 7, in <module> sys.exit(main()) ~~~~^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\cli.py", line 151, in main COMMAND_MAP[command]() ~~~~~~~~~~~~~~~~~~~~^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\tuner.py", line 110, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) ~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\tuner.py", line 72, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\train\sft\workflow.py", line 51, in run_sft dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 304, in get_dataset dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 182, in _get_merged_dataset datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args) ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\loader.py", line 162, in _load_single_dataset return align_dataset(dataset, dataset_attr, data_args, training_args) File "D:\llamafactory\LLaMA-Factory\src\llamafactory\data\converter.py", line 279, in align_dataset return dataset.map( ~~~~~~~~~~~^ dataset_converter, ^^^^^^^^^^^^^^^^^^ ...<2 lines>... **kwargs, ^^^^^^^^^ ) ^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) ~~~~^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\arrow_dataset.py", line 3171, in map for rank, done, content in iflatmap_unordered( ~~~~~~~~~~~~~~~~~~^ pool, Dataset._map_single, kwargs_iterable=kwargs_per_job ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ): ^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\datasets\utils\py_utils.py", line 728, in iflatmap_unordered [async_result.get(timeout=0.05) for async_result in async_results] ~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^ File "C:\Users\李俊聪\AppData\Roaming\Python\Python313\site-packages\multiprocess\pool.py", line 774, in get raise self._value KeyError: 'instruction'怎么解决

[INFO|modeling_utils.py:2241] 2025-07-15 10:13:01,778 >> Instantiating Qwen2_5_VisionTransformerPretrainedModel model under default dtype torch.bfloat16. [INFO|modeling_utils.py:2241] 2025-07-15 10:13:01,789 >> Instantiating Qwen2_5_VLTextModel model under default dtype torch.bfloat16. Traceback (most recent call last): File "F:\anaconda\envs\qwen\lib\site-packages\gradio\queueing.py", line 715, in process_events response = await route_utils.call_process_api( File "F:\anaconda\envs\qwen\lib\site-packages\gradio\route_utils.py", line 322, in call_process_api output = await app.get_blocks().process_api( File "F:\anaconda\envs\qwen\lib\site-packages\gradio\blocks.py", line 2191, in process_api result = await self.call_function( File "F:\anaconda\envs\qwen\lib\site-packages\gradio\blocks.py", line 1714, in call_function prediction = await utils.async_iteration(iterator) File "F:\anaconda\envs\qwen\lib\site-packages\gradio\utils.py", line 739, in async_iteration return await anext(iterator) File "F:\anaconda\envs\qwen\lib\site-packages\gradio\utils.py", line 733, in __anext__ return await anyio.to_thread.run_sync( File "F:\anaconda\envs\qwen\lib\site-packages\anyio\to_thread.py", line 56, in run_sync return await get_async_backend().run_sync_in_worker_thread( File "F:\anaconda\envs\qwen\lib\site-packages\anyio\_backends\_asyncio.py", line 2470, in run_sync_in_worker_thread return await future File "F:\anaconda\envs\qwen\lib\site-packages\anyio\_backends\_asyncio.py", line 967, in run result = context.run(func, *args) File "F:\anaconda\envs\qwen\lib\site-packages\gradio\utils.py", line 716, in run_sync_iterator_async return next(iterator) File "F:\anaconda\envs\qwen\lib\site-packages\gradio\utils.py", line 877, in gen_wrapper response = next(iterator) File "F:\qwen\LLaMA-Factory\src\llamafactory\webui\chatter.py", line 158, in load_model super().__init__(args) File "F:\qwen\LLaMA-Factory\src\llamafactory\chat\chat_model.py", line 53, in __init__ self.engine: BaseEngine = HuggingfaceEngine(model_args, data_args, finetuning_args, generating_args) File "F:\qwen\LLaMA-Factory\src\llamafactory\chat\hf_engine.py", line 59, in __init__ self.model = load_model( File "F:\qwen\LLaMA-Factory\src\llamafactory\model\loader.py", line 173, in load_model model = load_class.from_pretrained(**init_kwargs) File "F:\anaconda\envs\qwen\lib\site-packages\transformers\models\auto\auto_factory.py", line 571, in from_pretrained return model_class.from_pretrained( File "F:\anaconda\envs\qwen\lib\site-packages\transformers\modeling_utils.py", line 309, in _wrapper return func(*args, **kwargs) File "F:\anaconda\envs\qwen\lib\site-packages\transformers\modeling_utils.py", line 4508, in from_pretrained model = cls(config, *model_args, **model_kwargs) File "F:\anaconda\envs\qwen\lib\site-packages\transformers\models\qwen2_5_vl\modeling_qwen2_5_vl.py", line 1799, in __init__ self.model = Qwen2_5_VLModel(config) File "F:\anaconda\envs\qwen\lib\site-packages\transformers\models\qwen2_5_vl\modeling_qwen2_5_vl.py", line 1393, in __init__ self.language_model = Qwen2_5_VLTextModel._from_config(config.text_config) File "F:\anaconda\envs\qwen\lib\site-packages\transformers\modeling_utils.py", line 309, in _wrapper return func(*args, **kwargs) File "F:\anaconda\envs\qwen\lib\site-packages\transformers\modeling_utils.py", line 2077, in _from_config model = cls(config, **kwargs) File "F:\anaconda\envs\qwen\lib\site-packages\transformers\models\qwen2_5_vl\modeling_qwen2_5_vl.py", line 1101, in __init__ self.post_init() File "F:\anaconda\envs\qwen\lib\site-packages\transformers\modeling_utils.py", line 1969, in post_init if v not in ALL_PARALLEL_STYLES: TypeError: argument of type 'NoneType' is not iterable

[INFO|2025-03-04 15:01:37] configuration_utils.py:771 >> Model config LlamaConfig { "architectures": [ "LlamaForCausalLM" ], "attention_bias": false, "attention_dropout": 0.0, "bos_token_id": 128000, "eos_token_id": 128009, "head_dim": 128, "hidden_act": "silu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 14336, "max_position_embeddings": 8192, "mlp_bias": false, "model_type": "llama", "num_attention_heads": 32, "num_hidden_layers": 32, "num_key_value_heads": 8, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": null, "rope_theta": 500000.0, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0", "use_cache": true, "vocab_size": 128256 } [INFO|2025-03-04 15:01:37] tokenization_utils_base.py:2500 >> tokenizer config file saved in saves/Llama-3-8B-Instruct/lora/train_2025-03-04-14-57-37/tokenizer_config.json [INFO|2025-03-04 15:01:37] tokenization_utils_base.py:2509 >> Special tokens file saved in saves/Llama-3-8B-Instruct/lora/train_2025-03-04-14-57-37/special_tokens_map.json [WARNING|2025-03-04 15:01:37] logging.py:162 >> No metric loss to plot. [WARNING|2025-03-04 15:01:37] logging.py:162 >> No metric eval_loss to plot. [WARNING|2025-03-04 15:01:37] logging.py:162 >> No metric eval_accuracy to plot. [INFO|2025-03-04 15:01:37] trainer.py:4258 >> ***** Running Evaluation ***** [INFO|2025-03-04 15:01:37] trainer.py:4260 >> Num examples = 8 [INFO|2025-03-04 15:01:37] trainer.py:4263 >> Batch size = 2 [INFO|2025-03-04 15:01:38] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields: {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}

/home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0703 16:30:36.069853 3914856 torch/distributed/run.py:766] ***************************************** /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,321 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,322 >> loading file chat_template.jinja /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources /home/wiseatc/.local/lib/python3.11/site-packages/jieba/_compat.py:18: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81. import pkg_resources [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:43,904 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. [INFO|configuration_utils.py:697] 2025-07-03 16:30:43,913 >> loading configuration file /mnt/data1/models/1.5B/config.json [INFO|configuration_utils.py:771] 2025-07-03 16:30:43,919 >> Model config Qwen2Config { "_name_or_path": "/mnt/data1/models/1.5B", "architectures": [ "Qwen2ForCausalLM" ], "attention_dropout": 0.0, "bos_token_id": 151643, "eos_token_id": 151643, "hidden_act": "silu", "hidden_size": 1536, "initializer_range": 0.02, "intermediate_size": 8960, "max_position_embeddings": 131072, "max_window_layers": 21, "model_type": "qwen2", "num_attention_heads": 12, "num_hidden_layers": 28, "num_key_value_heads": 2, "rms_norm_eps": 1e-06, "rope_scaling": null, "rope_theta": 10000, "sliding_window": 4096, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.49.0", "use_cache": true, "use_mrope": false, "use_sliding_window": false, "vocab_size": 151936 } [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.model [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2048] 2025-07-03 16:30:43,920 >> loading file chat_template.jinja [INFO|tokenization_utils_base.py:2313] 2025-07-03 16:30:44,493 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank1]:[W703 16:30:45.102845887 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank2]:[W703 16:30:45.126706430 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank3]:[W703 16:30:45.136836682 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. Setting num_proc from 16 back to 1 for the train split to disable multiprocessing as it only contains one shard. Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 120 examples [00:00, 6525.39 examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] Converting format of dataset (num_proc=16): 0%| | 0/120 [00:00<?, ? examples/s] /usr/local/lib/python3.11/dist-packages/torch/distributed/distributed_c10d.py:4631: UserWarning: No device id is provided via init_process_group or barrier . Using the current device set by the user. warnings.warn( # warn only once [rank0]:[W703 16:31:05.679961201 ProcessGroupNCCL.cpp:4718] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. [rank0]: multiprocess.pool.RemoteTraceback: [rank0]: """ [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 125, in worker [rank0]: result = (True, func(*args, **kwds)) [rank0]: ^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 688, in _write_generator_to_queue [rank0]: for i, result in enumerate(func(**kwargs)): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3501, in _map_single [rank0]: for i, example in iter_outputs(shard_iterable): [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3475, in iter_outputs [rank0]: yield i, apply_function(example, i, offset=offset) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3398, in apply_function [rank0]: processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 94, in __call__ [rank0]: if self.dataset_attr.prompt and example[self.dataset_attr.prompt]: [rank0]: ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/formatting/formatting.py", line 278, in __getitem__ [rank0]: value = self.data[key] [rank0]: ~~~~~~~~~^^^^^ [rank0]: KeyError: 'instruction' [rank0]: """ [rank0]: The above exception was the direct cause of the following exception: [rank0]: Traceback (most recent call last): [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> [rank0]: launch() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch [rank0]: run_exp() [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 110, in run_exp [rank0]: _training_function(config={"args": args, "callbacks": callbacks}) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/tuner.py", line 72, in _training_function [rank0]: run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 51, in run_sft [rank0]: dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 304, in get_dataset [rank0]: dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 182, in _get_merged_dataset [rank0]: datasets[dataset_name] = _load_single_dataset(dataset_attr, model_args, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/loader.py", line 162, in _load_single_dataset [rank0]: return align_dataset(dataset, dataset_attr, data_args, training_args) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/LLaMA-Factory/src/llamafactory/data/converter.py", line 279, in align_dataset [rank0]: return dataset.map( [rank0]: ^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 557, in wrapper [rank0]: out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3171, in map [rank0]: for rank, done, content in iflatmap_unordered( [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in iflatmap_unordered [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 728, in [rank0]: [async_result.get(timeout=0.05) for async_result in async_results] [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank0]: File "/home/wiseatc/.local/lib/python3.11/site-packages/multiprocess/pool.py", line 774, in get [rank0]: raise self._value [rank0]: KeyError: 'instruction' [rank0]:[W703 16:31:06.912491219 ProcessGroupNCCL.cpp:1479] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator()) W0703 16:31:07.960560 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914916 closing signal SIGTERM W0703 16:31:07.961188 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914917 closing signal SIGTERM W0703 16:31:07.961536 3914856 torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3914918 closing signal SIGTERM E0703 16:31:08.371267 3914856 torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3914915) of binary: /usr/bin/python3.11 Traceback (most recent call last): File "/usr/local/bin/torchrun", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 892, in main run(args) File "/usr/local/lib/python3.11/dist-packages/torch/distributed/run.py", line 883, in run elastic_launch( File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 139, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/torch/distributed/launcher/api.py", line 270, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ /home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2025-07-03_16:31:07 host : wiseatc-Super-Server rank : 0 (local_rank: 0) exitcode : 1 (pid: 3914915) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ Traceback (most recent call last): File "/home/wiseatc/.local/bin/llamafactory-cli", line 8, in <module> sys.exit(main()) ^^^^^^ File "/home/wiseatc/LLaMA-Factory/src/llamafactory/cli.py", line 130, in main process = subprocess.run( ^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/subprocess.py", line 569, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['torchrun', '--nnodes', '1', '--node_rank', '0', '--nproc_per_node', '4', '--master_addr', '127.0.0.1', '--master_port', '41919', '/home/wiseatc/LLaMA-Factory/src/llamafactory/launcher.py', 'saves/DeepSeek-R1-1.5B-Distill/lora/train_2025-07-03-16-29-46/training_args.yaml']' returned non-zero exit status 1.

最新推荐

recommend-type

PLC控制变频器:三菱与汇川PLC通过485通讯板实现变频器正反转及调速控制

内容概要:本文介绍了如何利用三菱和汇川PLC通过485通讯板实现变频器的正转、反转及调速控制。主要内容涵盖硬件配置、软件编程、具体控制逻辑及上机测试。文中详细描述了各个步骤的操作方法和注意事项,包括关键寄存器的设置及其含义。程序中有详细的中文注释,便于理解和维护。最终通过上机测试验证系统的稳定性和可靠性。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和变频器控制的专业人士。 使用场景及目标:适用于需要对电机进行精确控制的工业应用场景,如生产线、机械设备等。目标是提高控制系统灵活性和效率,确保系统稳定可靠。 其他说明:本文不仅提供理论指导,还附带实际操作经验,有助于读者更好地掌握相关技术和应用。
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强
recommend-type

MATLAB整段注释快捷键

<think>首先,用户的问题是:“MATLAB整段注释快捷键”,意思是“MATLAB整段注释快捷键”。我需要用中文回答。 根据规则: - 回答必须用中文。 - 回答完问题后,必须在末尾输出“§§相关问题§§”,然后提出3-5个相关问题。 - “§§相关问题§§”必须完整输出在第一行,禁止换行分散。 - 相关问题必须基于用户的问题和我的回答。 现在,回忆MATLAB的快捷键:在MATLAB中,整段注释通常使用快捷键Ctrl + R来注释选中的代码行,使用Ctrl + T来取消注释。用户问的是“整段注释”,所以我应该确认快捷键。 在MATLAB中: - 注释选中的行:Ctrl + R -
recommend-type

Eclipse Jad反编译插件:提升.class文件查看便捷性

反编译插件for Eclipse是一个专门设计用于在Eclipse集成开发环境中进行Java反编译的工具。通过此类插件,开发者可以在不直接访问源代码的情况下查看Java编译后的.class文件的源代码,这在开发、维护和学习使用Java技术的过程中具有重要的作用。 首先,我们需要了解Eclipse是一个跨平台的开源集成开发环境,主要用来开发Java应用程序,但也支持其他诸如C、C++、PHP等多种语言的开发。Eclipse通过安装不同的插件来扩展其功能。这些插件可以由社区开发或者官方提供,而jadclipse就是这样一个社区开发的插件,它利用jad.exe这个第三方命令行工具来实现反编译功能。 jad.exe是一个反编译Java字节码的命令行工具,它可以将Java编译后的.class文件还原成一个接近原始Java源代码的格式。这个工具非常受欢迎,原因在于其反编译速度快,并且能够生成相对清晰的Java代码。由于它是一个独立的命令行工具,直接使用命令行可以提供较强的灵活性,但是对于一些不熟悉命令行操作的用户来说,集成到Eclipse开发环境中将会极大提高开发效率。 使用jadclipse插件可以很方便地在Eclipse中打开任何.class文件,并且将反编译的结果显示在编辑器中。用户可以在查看反编译的源代码的同时,进行阅读、调试和学习。这样不仅可以帮助开发者快速理解第三方库的工作机制,还能在遇到.class文件丢失源代码时进行紧急修复工作。 对于Eclipse用户来说,安装jadclipse插件相当简单。一般步骤包括: 1. 下载并解压jadclipse插件的压缩包。 2. 在Eclipse中打开“Help”菜单,选择“Install New Software”。 3. 点击“Add”按钮,输入插件更新地址(通常是jadclipse的更新站点URL)。 4. 选择相应的插件(通常名为“JadClipse”),然后进行安装。 5. 安装完成后重启Eclipse,插件开始工作。 一旦插件安装好之后,用户只需在Eclipse中双击.class文件,或者右键点击文件并选择“Open With Jadclipse”,就能看到对应的Java源代码。如果出现反编译不准确或失败的情况,用户还可以直接在Eclipse中配置jad.exe的路径,或者调整jadclipse的高级设置来优化反编译效果。 需要指出的是,使用反编译工具虽然方便,但要注意反编译行为可能涉及到版权问题。在大多数国家和地区,反编译软件代码属于合法行为,但仅限于学习、研究、安全测试或兼容性开发等目的。如果用户意图通过反编译获取商业机密或进行非法复制,则可能违反相关法律法规。 总的来说,反编译插件for Eclipse是一个强大的工具,它极大地简化了Java反编译流程,提高了开发效率,使得开发者在没有源代码的情况下也能有效地维护和学习Java程序。但开发者在使用此类工具时应遵守法律与道德规范,避免不当使用。
recommend-type

【进阶Python绘图】:掌握matplotlib坐标轴刻度间隔的高级技巧,让你的图表脱颖而出

# 摘要 本文系统地探讨了matplotlib库中坐标轴刻度间隔的定制与优化技术。首先概述了matplotlib坐标轴刻度间隔的基本概念及其在图表中的重要性,接
recommend-type

降帧是什么意思

<think>首先,用户的问题是:“我想了解降帧的含义 请问降帧是什么意思”。我需要用中文回答,并确保回答结构清晰,帮助用户逐步解决问题。 关键点是“降帧”。在视频处理、动画或游戏上下文中,“降帧”通常指的是帧率下降或丢帧(frame drop)。结合系统提供的引用,我可以看到相关概念。 回顾提供的引用: - 引用[1]:讨论了帧率和丢帧分析,提到应用丢帧导致帧率下降,造成卡顿。例如,在60Hz刷新率下,每帧需要在16.7ms内完成,否则可能丢帧。 - 引用[2]:提到掉帧(Frame Drop),与CPU和GPU相关。CPU或GPU处理不及时会导致帧无法按时渲染。 - 引用[3]: