transformer
时间: 2024-01-13 08:20:10 浏览: 151
Transformer是一种用于自然语言处理和机器翻译等任务的深度学习模型。它是由Google提出的,并在2017年的论文《Attention Is All You Need》中首次介绍。Transformer模型的核心思想是使用自注意力机制来捕捉输入序列中的上下文信息,而不需要使用循环神经网络(RNN)或卷积神经网络(CNN)。
Transformer模型由编码器和解码器组成。编码器负责将输入序列转换为一系列高维向量表示,解码器则根据编码器的输出和之前的预测来生成目标序列。编码器和解码器都由多个相同的层堆叠而成,每个层都包含一个多头自注意力机制和一个前馈神经网络。
Transformer模型的优点包括:
- 并行计算:由于自注意力机制的特性,Transformer模型可以并行计算,加快训练和推理的速度。
- 长距离依赖建模:自注意力机制可以捕捉输入序列中的长距离依赖关系,使得模型能够更好地理解上下文信息。
- 可解释性:由于自注意力机制的可视化性质,Transformer模型可以更好地解释模型的预测结果。
Transformer模型的缺点包括:
- 对输入序列长度的限制:由于自注意力机制的计算复杂度较高,Transformer模型对输入序列的长度有一定的限制。
- 对位置信息的处理:Transformer模型没有显式地处理输入序列的位置信息,需要通过添加位置编码来引入位置信息。
阅读全文
相关推荐











