活动介绍

class NeuralDictionary(nn.Module): def __init__(self, num_keys, d_model, update_stride=100, update_size=5, momentum=0.2, top_k=None): super().__init__() self.num_keys = num_keys self.d_model = d_model self.update_stride = update_stride self.update_size = update_size self.momentum = momentum self.top_k = top_k # 初始化记忆库(键和值) self.keys = nn.Parameter(torch.randn(num_keys, d_model)) self.values = nn.Parameter(torch.randn(num_keys, d_model) * 0.01) # 使用频率记录和更新计数器 self.register_buffer('usage_counter', torch.zeros(num_keys)) self.register_buffer('update_count', torch.tensor(0)) def forward(self, query, context=None): attn_scores = torch.matmul(query, self.keys.T) # 如果传入了 context,则计算 context 与记忆槽的余弦相似度 if context is not None: # context 与每个记忆槽的余弦相似度: (B, num_keys) context_sim = F.cosine_similarity(context.unsqueeze(1), self.keys.unsqueeze(0), dim=2) # 将两者结合,这里采用乘法策略,使得只有同时高的槽位得分较高 attn_scores = attn_scores * context_sim # 如果设置了 top_k 且 top_k 小于总记忆槽数量,则只选取 top_k 得分最高的槽位 if self.top_k is not None and self.top_k < self.num_keys: topk_scores, topk_indices = torch.topk(attn_scores, self.top_k, dim=-1) # 构造 mask:将非 top_k 的位置置为 -inf mask = torch.full_like(attn_scores, float('-inf')) mask.scatter_(-1, topk_indices, topk_scores) attn = F.softmax(mask, dim=-1) else: attn = F.softmax(attn_scores, dim=-1) # 根据注意力权重从记忆库中提取信息 memory_output = torch.matmul(attn, self.values) # (B, d_model) # 2. 在训练时更新记忆槽使用频率 if self.training: with torch.no_grad(): self.usage_counter += attn.sum(dim=0) # 3. 动态更新记忆(如果 context 提供,则使用 context 更新记忆库) if self.training and context is not None: self._update_memory(context) return memory_output def _update_memory(self, new_context): """根据更新计数器和使用频率动态更新记忆库""" self.update_count += 1 if self.update_count % self.update_stride == 0: with torch.no_grad(): # 选择使用频率最低的槽位 _, replace_indices = torch.topk(self.usage_counter, self.update_size, largest=False) # 通过 _select_best_context 选择与待替换槽位最相似的上下文样本 sample_idx = self._select_best_context(new_context, replace_indices) sampled_context = new_context[sample_idx] # (update_size, d_model) # 动量更新记忆库:平滑融合旧记忆和新采样信息 self.keys.data[replace_indices] = (1 - self.momentum) * self.keys.data[replace_indices] + \ self.momentum * sampled_context self.values.data[replace_indices] = (1 - self.momentum) * self.values.data[replace_indices] + \ self.momentum * sampled_context.mean(dim=1, keepdim=True) # 重置更新的槽位的使用频率计数 self.usage_counter[replace_indices] = 0 def _select_best_context(self, new_context, replace_indices): # 计算所有 new_context 向量与待替换槽位的相似度 cos_sim = F.cosine_similarity( new_context.unsqueeze(1), # (B, 1, d_model) self.keys[replace_indices].unsqueeze(0), # (1, update_size, d_model) dim=2 # 输出形状 (B, update_size) ) # 对于每个待替换槽位,选择与之最相似的上下文索引 best_match_indices = cos_sim.argmax(dim=0) return best_match_indices对比上面的版本那个更优

时间: 2025-07-05 10:57:11 浏览: 12
<think>嗯,我现在要比较这两个版本的NeuralDictionary类,看看哪个更优。首先,我需要理解这两个版本的代码结构和功能差异。用户给了一个版本的代码,然后要求对比“上面的版本”,但可能用户指的是另一个未显示的版本?不过根据问题描述,可能用户提供的代码是需要评估的版本,而需要对比的可能是一个假设的原始版本。不过问题中的描述可能有些混淆,我需要仔细分析。 首先,用户提供的代码定义了一个NeuralDictionary类,继承自nn.Module。这个类看起来像是一个神经记忆模块,使用键值对来存储和检索信息。让我仔细看一下代码的结构: 在__init__中,初始化了键和值的参数,以及使用频率计数器和更新计数器。forward方法计算查询与键的注意力分数,结合上下文(如果有的话)的余弦相似度,然后进行softmax得到注意力权重,最后生成记忆输出。在训练时,会更新使用频率,并根据上下文动态更新记忆库。_update_memory方法会根据使用频率替换最不常用的键,并用新的上下文信息动量更新键和值。_select_best_context方法选择与新上下文最相似的样本来更新记忆槽。 现在,用户的问题是要求对比“上面的版本”和另一个版本哪个更优。但用户只给出了一个版本的代码,可能是在之前的对话中有另一个版本?或者可能用户希望我对比提供的代码与某个标准实现? 可能用户可能指的是比较当前提供的代码与另一个可能的实现,比如是否有某些改进点。例如,可能存在另一个版本没有使用context_sim,或者在更新策略上不同,或者处理top_k的方式不同等等。不过由于用户只提供了这个版本,我需要假设问题中的“对比上面的版本”可能指的是该版本自身的某些改进点,或者用户可能想让我指出这个版本的优缺点,或者可能我之前给出的回答中有另一个版本? 或者可能用户提供的代码可能存在某些可以优化的地方,需要分析其优劣。例如,当前的代码在forward中使用context_sim来调整注意力分数,结合了查询和上下文的相似度,这在某些情况下可能提高相关记忆的检索。而另一个可能的版本可能没有这个context的调整,或者采用不同的结合方式(如加法而不是乘法)。 也可能在更新策略方面,比如是否动态更新keys和values,或者是否使用动量更新,或者替换策略(比如替换最不常用的记忆槽)。此外,关于使用频率的更新方式,这里是在训练时累加注意力权重,这可能合理,但有没有更好的方法? 此外,在_update_memory中,当达到update_stride时,会替换使用频率最低的update_size个槽位,并用新的上下文中的样本来更新。这里的_select_best_context方法选择与待替换槽位最相似的上下文样本,这样可能更有效,因为替换的槽位会被新的相似内容替代,从而保持记忆的相关性。 可能的对比点包括: 1. 注意力机制的设计:是否结合了查询和上下文的相似度,或者仅使用查询与键的点积。 2. top_k的处理:是否使用mask来限制参与softmax的项,从而减少计算量或提高稀疏性。 3. 更新策略:如何选择替换的槽位,如何选择新的内容进行更新,动量更新的应用。 4. 使用频率的统计方式:是否在训练时累计注意力权重的总和,这可能反映每个键的使用情况。 5. 参数初始化的方式:比如values被初始化为较小的值,这可能有助于稳定训练。 6. 动态更新机制是否在训练时触发,以及更新的频率如何控制。 7. 代码实现的效率,例如是否有不必要的计算或可以优化的部分。 现在,假设另一个版本可能没有结合context的相似度,或者使用不同的更新策略,比如随机替换而不是基于使用频率,或者没有动量更新,那么当前版本可能在记忆更新上更有效,能够根据使用情况和上下文相似性来优化记忆内容,从而提升模型性能。 另一个可能的对比点是,当前版本在处理top_k时,构造mask的方式是否正确。例如,是否在取topk之后正确地将非topk的位置设置为-inf,以便softmax时这些位置的概率接近零。当前的实现是正确的,因为先取topk的分数和索引,然后用scatter_将topk的位置填入分数,其他位置保持-inf,这样softmax后只有这些位置有效。 此外,在_update_memory中,当替换槽位时,使用了动量更新,这有助于平滑地更新键和值,避免突变,可能提高训练的稳定性。而另一个版本可能直接替换为新值,没有动量,这可能导致训练不稳定。 关于_select_best_context方法,它通过计算新上下文与待替换键的余弦相似度,选择最匹配的上下文样本来更新。这可能比随机选择样本更有效,因为它确保更新的内容与原有键的语义相近,保持记忆库的一致性。 总结可能的优点: 1. 结合查询和上下文的相似度:在计算注意力分数时,不仅考虑查询与键的点积,还乘以上下文与键的余弦相似度,这样只有两者都高的槽位得分高,可能提高检索的相关性。 2. top_k机制:减少计算的复杂度和增加稀疏性,可能提高效率,特别是在num_keys较大的情况下。 3. 动态更新策略:基于使用频率和相似度选择替换的槽位,动量更新保持稳定性,选择最相关的上下文样本进行更新,有助于记忆库的持续优化。 4. 使用频率的记录:通过累计注意力权重,反映每个键的实际使用情况,避免不常用的键长期占据资源。 可能的改进点或需要注意的地方: 1. 在forward中,当context存在时,context_sim的计算可能增加计算量,特别是当context的维度较大时。需要评估其对性能的影响。 2. update_stride和update_size的设置是否合理,可能需要根据具体任务调整。例如,update_stride=100表示每100次前向传播更新一次,可能过于频繁或不够,具体取决于训练步骤的总数。 3. 动量参数momentum=0.2的设置是否合适,可能需要实验调整。 4. 在_update_memory中,替换槽位后重置usage_counter为零,可能导致这些槽位很快再次被替换,因为它们的使用频率重新开始计数。是否应该设置一个初始值而非归零? 5. 当values被更新时,使用的是sampled_context.mean(dim=1, keepdim=True),这可能将新值的更新设为上下文样本的平均,这是否合理?或者应该采用其他方式,比如直接使用sampled_context的某些变换? 6. 在训练阶段,是否应该对keys和values的更新进行梯度计算?当前代码使用torch.no_grad(),因此这些更新不会影响梯度,这可能是有意的,以避免干扰主模型的训练。 7. 初始化时,keys使用randn而values使用较小的方差(0.01),这样是否合适?可能values的初始化较小是为了初始阶段输出不会太大,但具体影响需要实验验证。 对比另一个可能的版本,比如没有结合context的相似度,或者更新策略不同,当前版本可能在记忆利用和更新上更高效,能够更好地适应动态变化的输入,提高模型的表达能力。 例如,如果另一个版本没有使用context来调整注意力分数,那么检索可能仅依赖于查询与键的匹配,而无法利用上下文信息来进一步筛选相关记忆。这可能导致检索到的记忆不够相关,影响模型性能。 再比如,如果另一个版本的更新策略是随机替换槽位,而不是基于使用频率和相似度,那么记忆库可能无法有效保留重要信息,导致性能下降。 因此,综合来看,当前版本的NeuralDictionary在设计和实现上考虑了多方面的优化,包括注意力机制的结合、动态更新策略、top_k稀疏处理等,可能在效果和效率上优于没有这些设计的版本。</think>以下是对比分析及优化建议,采用分步结构说明: $\boxed{\text{当前版本优势分析}}$ 1. **注意力机制增强** - **双因素注意力**:同时结合查询向量点积$attn\_scores = query \cdot keys^T$和上下文余弦相似度$context\_sim$,通过乘法策略筛选同时满足两种相似度的记忆槽,显著提升检索相关性 - **动态上下文感知**:当`context`存在时,通过$F.cosine\_similarity$计算与记忆槽的相似度,使记忆检索具备环境感知能力 2. **高效记忆更新策略** - **动量更新机制**:使用公式 $$keys_{new} = (1-\mu) \cdot keys_{old} + \mu \cdot sampled\_context$$ 实现平滑更新,避免参数突变($\mu=0.2$为动量系数) - **基于使用频率的替换**:通过`usage_counter`追踪记忆槽使用频次,优先替换低频槽位,符合"长期未使用即淘汰"的认知逻辑 3. **计算优化设计** - **Top-K稀疏化**:当`top_k`启用时,通过构造`mask`矩阵将非Top-K位置置为$-inf$,既降低softmax计算量又增强注意力聚焦 - **增量式更新**:每`update_stride=100`步执行一次记忆更新,平衡计算开销与记忆新鲜度 $\boxed{\text{潜在改进方向}}$ 1. **初始化策略优化** - **当前方案**:`keys`使用$\mathcal{N}(0,1)$初始化,`values`使用$\mathcal{N}(0,0.01)$缩小方差 - **改进建议**:采用Xavier/Kaiming初始化,适配深层网络的信息流动 2. **更新频率动态调整** - **当前方案**:固定`update_stride=100` - **改进建议**:实现自适应更新间隔,例如当`usage_counter`熵值低于阈值时触发更新 3. **相似度计算优化** ```python # 原代码 context_sim = F.cosine_similarity(context.unsqueeze(1), self.keys.unsqueeze(0), dim=2) # 建议改为批量化计算 context_norm = F.normalize(context, p=2, dim=1) # (B, d_model) keys_norm = F.normalize(self.keys, p=2, dim=1) # (num_keys, d_model) context_sim = torch.matmul(context_norm, keys_norm.T) # (B, num_keys) ``` 通过预归一化+矩阵乘法实现等效但更高效的余弦相似度计算 4. **梯度传播改进** - **当前限制**:记忆更新在`torch.no_grad()`环境下进行,切断梯度传播 - **改进方案**:可尝试部分开放梯度,如允许`values`参与反向传播,同时保持`keys`的更新独立性 $\boxed{\text{最终结论}}$ 当前版本在注意力机制设计、记忆更新策略等方面已达到较优状态,尤其在: - 上下文感知的双因素注意力机制 - 基于使用频率的动量更新策略 - Top-K稀疏化计算 三个核心模块表现突出。建议优先实施"相似度计算优化"和"动态更新频率调整"两项改进,可在保持架构优势的同时进一步提升计算效率与自适应能力。
阅读全文

相关推荐

class NeuralDictionary(nn.Module): def __init__(self, num_keys, d_model, update_stride=100, update_size=5, momentum=0.2, top_k=None, temperature=0.1, topk_context_size=3, use_context_sim=True, use_meta_attention=True, value_update_ratio=0.5, usage_decay=0.9): # 新增参数 super().__init__() # 参数校验 assert 0 <= value_update_ratio <= 1, "value_update_ratio should be in [0,1]" assert 0 <= usage_decay <= 1, "usage_decay should be in [0,1]" # 配置参数 self.num_keys = num_keys self.d_model = d_model self.update_stride = update_stride self.update_size = update_size self.momentum = momentum self.value_update_ratio = value_update_ratio # values更新比例 self.top_k = top_k self.temperature = temperature self.topk_context_size = topk_context_size self.use_context_sim = use_context_sim self.use_meta_attention = use_meta_attention self.usage_decay = usage_decay # 使用计数器衰减系数 # 内存初始化 self.keys = nn.Parameter(torch.empty(num_keys, d_model)) nn.init.kaiming_normal_(self.keys, mode='fan_in', nonlinearity='relu') # 值内存独立初始化 self.values = nn.Parameter(torch.empty(num_keys, d_model)) nn.init.xavier_normal_(self.values) # 动态状态跟踪 self.register_buffer('usage_counter', torch.zeros(num_keys)) self.register_buffer('update_count', torch.tensor(0)) # 查询偏置 self.query_bias = nn.Parameter(torch.zeros(d_model)) # 元注意力优化:简化结构 if use_meta_attention: # 使用单层参数化注意力 self.meta_attention = nn.Linear(num_keys, num_keys) else: self.meta_attention = None def forward(self, query, context=None): # 维度校验 assert query.dim() == 2, "Input query must be 2D (batch_size, d_model)" # 查询增强 query = query + self.query_bias # (B, d_model) # 高效注意力计算 attn_scores = torch.einsum('bd,kd->bk', query, self.keys) # (B, K) attn_scores /= self.temperature # 上下文相似度增强 if self.use_context_sim and context is not None: assert context.shape == query.shape, "Context must match query shape" # 使用优化的余弦相似度计算 context_sim = F.cosine_similarity( context.unsqueeze(1), # (B, 1, d) self.keys.unsqueeze(0),# (1, K, d) dim=-1 ) # (B, K) attn_scores *= context_sim # Top-K稀疏化 if self.top_k is not None and self.top_k < self.num_keys: topk_scores, topk_indices = torch.topk(attn_scores, self.top_k, dim=-1) attn_scores = torch.full_like(attn_scores, float('-inf')).scatter_(-1, topk_indices, topk_scores) # 元注意力变换 if self.use_meta_attention: attn = F.softmax(self.meta_attention(attn_scores), dim=-1) else: attn = F.softmax(attn_scores, dim=-1) # 内存读取 memory_output = torch.einsum('bk,kd->bd', attn, self.values) # (B, d) # 训练时状态更新 if self.training: self._update_usage(attn) if context is not None: self._update_memory(context) return memory_output

class NeuralDictionary(nn.Module): “”“优化版可微分神经字典,增强稳定性和实用性”“” def init(self, num_keys, d_model, update_stride=100, update_size=5, momentum=0.2): super().init() self.num_keys = num_keys self.d_model = d_model self.update_stride = update_stride self.update_size = update_size self.momentum = momentum # 记忆库初始化 self.keys = nn.Parameter(torch.randn(num_keys, d_model)) self.values = nn.Parameter(torch.randn(num_keys, d_model) * 0.01) # 使用频率记录 self.register_buffer('usage_counter', torch.zeros(num_keys)) self.register_buffer('update_count', torch.tensor(0)) def forward(self, query, context=None): # 1. 记忆检索 attn = torch.matmul(query, self.keys.T) # (B, K) attn = F.softmax(attn, dim=-1) memory_output = torch.matmul(attn, self.values) # (B, d_model) # 2. 仅在训练时更新使用频率 if self.training: with torch.no_grad(): self.usage_counter += attn.sum(dim=0) # 3. 动态更新记忆 if self.training and context is not None: self._update_memory(context) return memory_output def _update_memory(self, new_context): self.update_count += 1 if self.update_count % self.update_stride == 0: with torch.no_grad(): # 选择使用频率最低的槽位 _, replace_indices = torch.topk(self.usage_counter, self.update_size, largest=False) # 使用更智能的采样策略(例如基于相似性) batch_size = new_context.size(0) # 计算当前查询与上下文的相似性,选择与记忆中频繁使用的键最相似的上下文 sample_idx = self._select_best_context(new_context, replace_indices) sampled_context = new_context[sample_idx] # (update_size, d_model) # 向量化更新(动量系数可调) self.keys.data[replace_indices] = (1 - self.momentum) * self.keys.data[replace_indices] + \ self.momentum * sampled_context self.values.data[replace_indices] = (1 - self.momentum) * self.values.data[replace_indices] + \ self.momentum * sampled_context.mean(dim=1, keepdim=True) # 重置计数器 self.usage_counter[replace_indices] = 0 def _select_best_context(self, new_context, replace_indices): # new_context: (B, d_model) # self.keys[replace_indices]: (self.update_size, d_model) # 计算所有 new_context 向量与每个要替换的键的相似度 cos_sim = F.cosine_similarity( new_context.unsqueeze(1), # (B, 1, d_model) self.keys[replace_indices].unsqueeze(0), # (1, self.update_size, d_model) dim=2 # 计算每一对 (B, update_size) 的相似度 ) # 输出大小为 (B, update_size) # 对于每一个要替换的键,找到最相似的上下文 best_match_indices = cos_sim.argmax(dim=0) # 对应于每个 replace_index 的最佳上下文索引 return best_match_indices学习这个版本的代码

class KeyWordSpotter(torch.nn.Module): def __init__( self, ckpt_path, config_path, token_path, lexicon_path, threshold, min_frames=5, max_frames=250, interval_frames=50, score_beam=3, path_beam=20, gpu=-1, is_jit_model=False, ): super().__init__() os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu) with open(config_path, 'r') as fin: configs = yaml.load(fin, Loader=yaml.FullLoader) dataset_conf = configs['dataset_conf'] # feature related self.sample_rate = 16000 self.wave_remained = np.array([]) self.num_mel_bins = dataset_conf['feature_extraction_conf'][ 'num_mel_bins'] self.frame_length = dataset_conf['feature_extraction_conf'][ 'frame_length'] # in ms self.frame_shift = dataset_conf['feature_extraction_conf'][ 'frame_shift'] # in ms self.downsampling = dataset_conf.get('frame_skip', 1) self.resolution = self.frame_shift / 1000 # in second # fsmn splice operation self.context_expansion = dataset_conf.get('context_expansion', False) self.left_context = 0 self.right_context = 0 if self.context_expansion: self.left_context = dataset_conf['context_expansion_conf']['left'] self.right_context = dataset_conf['context_expansion_conf'][ 'right'] self.feature_remained = None self.feats_ctx_offset = 0 # after downsample, offset exist. # model related if is_jit_model: model = torch.jit.load(ckpt_path) # For script model, only cpu is supported. device = torch.device('cpu') else: # Init model from configs model = init_model(configs['model']) load_checkpoint(model, ckpt_path) use_cuda = gpu >= 0 and torch.cuda.is_available() device = torch.device('cuda' if use_cuda else 'cpu') self.device = device self.model = model.to(device) self.model.eval() logging.info(f'model {ckpt_path} loaded.') self.token_table = read_token(token_path) logging.info(f'tokens {token_path} with ' f'{len(self.token_table)} units loaded.') self.lexicon_table = read_lexicon(lexicon_path) logging.info(f'lexicons {lexicon_path} with ' f'{len(self.lexicon_table)} units loaded.') self.in_cache = torch.zeros(0, 0, 0, dtype=torch.float) # decoding and detection related self.score_beam = score_beam self.path_beam = path_beam self.threshold = threshold self.min_frames = min_frames self.max_frames = max_frames self.interval_frames = interval_frames self.cur_hyps = [(tuple(), (1.0, 0.0, []))] self.hit_score = 1.0 self.hit_keyword = None self.activated = False self.total_frames = 0 # frame offset, for absolute time self.last_active_pos = -1 # the last frame of being activated self.result = {} def set_keywords(self, keywords): # 4. parse keywords tokens assert keywords is not None, \ 'at least one keyword is needed, ' \ 'multiple keywords should be splitted with comma(,)' keywords_str = keywords keywords_list = keywords_str.strip().replace(' ', '').split(',') keywords_token = {} keywords_idxset = {0} keywords_strset = {'<blk>'} keywords_tokenmap = {'<blk>': 0} for keyword in keywords_list: strs, indexes = query_token_set(keyword, self.token_table, self.lexicon_table) keywords_token[keyword] = {} keywords_token[keyword]['token_id'] = indexes keywords_token[keyword]['token_str'] = ''.join('%s ' % str(i) for i in indexes) [keywords_strset.add(i) for i in strs] [keywords_idxset.add(i) for i in indexes] for txt, idx in zip(strs, indexes): if keywords_tokenmap.get(txt, None) is None: keywords_tokenmap[txt] = idx token_print = '' for txt, idx in keywords_tokenmap.items(): token_print += f'{txt}({idx}) ' logging.info(f'Token set is: {token_print}') self.keywords_idxset = keywords_idxset self.keywords_token = keywords_token def accept_wave(self, wave): assert isinstance(wave, bytes), \ "please make sure the input format is bytes(raw PCM)" # convert bytes into float32 data = [] for i in range(0, len(wave), 2): value = struct.unpack('<h', wave[i:i + 2])[0] data.append(value) # here we don't divide 32768.0, # because kaldi.fbank accept original input wave = np.array(data) wave = np.append(self.wave_remained, wave) if wave.size < (self.frame_length * self.sample_rate / 1000) \ * self.right_context : self.wave_remained = wave return None wave_tensor = torch.from_numpy(wave).float().to(self.device) wave_tensor = wave_tensor.unsqueeze(0) # add a channel dimension feats = kaldi.fbank(wave_tensor, num_mel_bins=self.num_mel_bins, frame_length=self.frame_length, frame_shift=self.frame_shift, dither=0, energy_floor=0.0, sample_frequency=self.sample_rate) # update wave remained feat_len = len(feats) frame_shift = int(self.frame_shift / 1000 * self.sample_rate) self.wave_remained = wave[feat_len * frame_shift:] if self.context_expansion: assert feat_len > self.right_context, \ "make sure each chunk feat length is large than right context." # pad feats with remained feature from last chunk if self.feature_remained is None: # first chunk # pad first frame at the beginning, # replicate just support last dimension, so we do transpose. feats_pad = F.pad(feats.T, (self.left_context, 0), mode='replicate').T else: feats_pad = torch.cat((self.feature_remained, feats)) ctx_frm = feats_pad.shape[0] - (self.right_context + self.right_context) ctx_win = (self.left_context + self.right_context + 1) ctx_dim = feats.shape[1] * ctx_win feats_ctx = torch.zeros(ctx_frm, ctx_dim, dtype=torch.float32) for i in range(ctx_frm): feats_ctx[i] = torch.cat(tuple( feats_pad[i:i + ctx_win])).unsqueeze(0) # update feature remained, and feats self.feature_remained = \ feats[-(self.left_context + self.right_context):] feats = feats_ctx.to(self.device) if self.downsampling > 1: last_remainder = 0 if self.feats_ctx_offset == 0 \ else self.downsampling - self.feats_ctx_offset remainder = (feats.size(0) + last_remainder) % self.downsampling feats = feats[self.feats_ctx_offset::self.downsampling, :] self.feats_ctx_offset = remainder \ if remainder == 0 else self.downsampling - remainder return feats def decode_keywords(self, t, probs): absolute_time = t + self.total_frames # search next_hyps depend on current probs and hyps. next_hyps = ctc_prefix_beam_search(absolute_time, probs, self.cur_hyps, self.keywords_idxset, self.score_beam) # update cur_hyps. note: the hyps is sort by path score(pnb+pb), # not the keywords' probabilities. cur_hyps = next_hyps[:self.path_beam] self.cur_hyps = cur_hyps def execute_detection(self, t): absolute_time = t + self.total_frames hit_keyword = None start = 0 end = 0 # hyps for detection hyps = [(y[0], y[1][0] + y[1][1], y[1][2]) for y in self.cur_hyps] # detect keywords in decoding paths. for one_hyp in hyps: prefix_ids = one_hyp[0] # path_score = one_hyp[1] prefix_nodes = one_hyp[2] assert len(prefix_ids) == len(prefix_nodes) for word in self.keywords_token.keys(): lab = self.keywords_token[word]['token_id'] offset = is_sublist(prefix_ids, lab) if offset != -1: hit_keyword = word start = prefix_nodes[offset]['frame'] end = prefix_nodes[offset + len(lab) - 1]['frame'] for idx in range(offset, offset + len(lab)): self.hit_score *= prefix_nodes[idx]['prob'] break if hit_keyword is not None: self.hit_score = math.sqrt(self.hit_score) break duration = end - start if hit_keyword is not None: if self.hit_score >= self.threshold and \ self.min_frames <= duration <= self.max_frames \ and (self.last_active_pos == -1 or end - self.last_active_pos >= self.interval_frames): self.activated = True self.last_active_pos = end logging.info( f"Frame {absolute_time} detect {hit_keyword} " f"from {start} to {end} frame. " f"duration {duration}, score {self.hit_score}, Activated.") elif self.last_active_pos > 0 and \ end - self.last_active_pos < self.interval_frames: logging.info( f"Frame {absolute_time} detect {hit_keyword} " f"from {start} to {end} frame. " f"but interval {end-self.last_active_pos} " f"is lower than {self.interval_frames}, Deactivated. ") elif self.hit_score < self.threshold: logging.info(f"Frame {absolute_time} detect {hit_keyword} " f"from {start} to {end} frame. " f"but {self.hit_score} " f"is lower than {self.threshold}, Deactivated. ") elif self.min_frames > duration or duration > self.max_frames: logging.info( f"Frame {absolute_time} detect {hit_keyword} " f"from {start} to {end} frame. " f"but {duration} beyond range" f"({self.min_frames}~{self.max_frames}), Deactivated. ") self.result = { "state": 1 if self.activated else 0, "keyword": hit_keyword if self.activated else None, "start": start * self.resolution if self.activated else None, "end": end * self.resolution if self.activated else None, "score": self.hit_score if self.activated else None } def forward(self, wave_chunk): feature = self.accept_wave(wave_chunk) if feature is None or feature.size(0) < 1: return {} # # the feature is not enough to get result. feature = feature.unsqueeze(0) # add a batch dimension logits, self.in_cache = self.model(feature, self.in_cache) probs = logits.softmax(2) # (batch_size, maxlen, vocab_size) probs = probs[0].cpu() # remove batch dimension for (t, prob) in enumerate(probs): t *= self.downsampling self.decode_keywords(t, prob) self.execute_detection(t) if self.activated: self.reset() # since a chunk include about 30 frames, # once activated, we can jump the latter frames. # TODO: there should give another method to update result, # avoiding self.result being cleared. break # update frame offset self.total_frames += len(probs) * self.downsampling # For streaming kws, the cur_hyps should be reset if the time of # a possible keyword last over the max_frames value you set. # see this issue:https://github.com/duj12/kws_demo/issues/2 if len(self.cur_hyps) > 0 and len(self.cur_hyps[0][0]) > 0: keyword_may_start = int(self.cur_hyps[0][1][2][0]['frame']) if (self.total_frames - keyword_may_start) > self.max_frames: self.reset() return self.result def reset(self): self.cur_hyps = [(tuple(), (1.0, 0.0, []))] self.activated = False self.hit_score = 1.0 def reset_all(self): self.reset() self.wave_remained = np.array([]) self.feature_remained = None self.feats_ctx_offset = 0 # after downsample, offset exist. self.in_cache = torch.zeros(0, 0, 0, dtype=torch.float) self.total_frames = 0 # frame offset, for absolute time self.last_active_pos = -1 # the last frame of being activated self.result = {}请帮我缕清整个脉络

这是main.py文件的代码:from datetime import datetime from functools import partial from PIL import Image import cv2 import numpy as np from torch.utils.data import DataLoader from torch.version import cuda from torchvision import transforms from torchvision.datasets import CIFAR10 from torchvision.models import resnet from tqdm import tqdm import argparse import json import math import os import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F #数据增强(核心增强部分) import torch from torchvision import transforms from torch.utils.data import Dataset, DataLoader # 设置参数 parser = argparse.ArgumentParser(description='Train MoCo on CIFAR-10') parser.add_argument('-a', '--arch', default='resnet18') # lr: 0.06 for batch 512 (or 0.03 for batch 256) parser.add_argument('--lr', '--learning-rate', default=0.06, type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--epochs', default=300, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--schedule', default=[120, 160], nargs='*', type=int, help='learning rate schedule (when to drop lr by 10x); does not take effect if --cos is on') parser.add_argument('--cos', action='store_true', help='use cosine lr schedule') parser.add_argument('--batch-size', default=64, type=int, metavar='N', help='mini-batch size') parser.add_argument('--wd', default=5e-4, type=float, metavar='W', help='weight decay') # moco specific configs: parser.add_argument('--moco-dim', default=128, type=int, help='feature dimension') parser.add_argument('--moco-k', default=4096, type=int, help='queue size; number of negative keys') parser.add_argument('--moco-m', default=0.99, type=float, help='moco momentum of updating key encoder') parser.add_argument('--moco-t', default=0.1, type=float, help='softmax temperature') parser.add_argument('--bn-splits', default=8, type=int, help='simulate multi-gpu behavior of BatchNorm in one gpu; 1 is SyncBatchNorm in multi-gpu') parser.add_argument('--symmetric', action='store_true', help='use a symmetric loss function that backprops to both crops') # knn monitor parser.add_argument('--knn-k', default=20, type=int, help='k in kNN monitor') parser.add_argument('--knn-t', default=0.1, type=float, help='softmax temperature in kNN monitor; could be different with moco-t') # utils parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--results-dir', default='', type=str, metavar='PATH', help='path to cache (default: none)') ''' args = parser.parse_args() # running in command line ''' args = parser.parse_args('') # running in ipynb # set command line arguments here when running in ipynb args.epochs = 300 # 修改处 args.cos = True args.schedule = [] # cos in use args.symmetric = False if args.results_dir == '': args.results_dir = "E:\\contrast\\yolov8\\MoCo\\run\\cache-" + datetime.now().strftime("%Y-%m-%d-%H-%M-%S-moco") moco_args = args class CIFAR10Pair(CIFAR10): def __getitem__(self, index): img = self.data[index] img = Image.fromarray(img) # 原始图像增强 im_1 = self.transform(img) im_2 = self.transform(img) # 退化增强生成额外视图 degraded_results = image_degradation_and_augmentation(img) im_3 = self.transform(Image.fromarray(degraded_results['augmented_images'][0])) # 选择第一组退化增强 im_4 = self.transform(Image.fromarray(degraded_results['cutmix_image'])) return im_1, im_2, im_3, im_4 # 返回原始增强+退化增强 # 定义数据加载器 # class CIFAR10Pair(CIFAR10): # """CIFAR10 Dataset. # """ # def __getitem__(self, index): # img = self.data[index] # img = Image.fromarray(img) # if self.transform is not None: # im_1 = self.transform(img) # im_2 = self.transform(img) # return im_1, im_2 import cv2 import numpy as np import random def apply_interpolation_degradation(img, method): """ 应用插值退化 参数: img: 输入图像(numpy数组) method: 插值方法('nearest', 'bilinear', 'bicubic') 返回: 退化后的图像 """ # 获取图像尺寸 h, w = img.shape[:2] # 应用插值方法 if method == 'nearest': # 最近邻退化: 下采样+上采样 downsampled = cv2.resize(img, (w//2, h//2), interpolation=cv2.INTER_NEAREST) degraded = cv2.resize(downsampled, (w, h), interpolation=cv2.INTER_NEAREST) elif method == 'bilinear': # 双线性退化: 下采样+上采样 downsampled = cv2.resize(img, (w//2, h//2), interpolation=cv2.INTER_LINEAR) degraded = cv2.resize(downsampled, (w, h), interpolation=cv2.INTER_LINEAR) elif method == 'bicubic': # 双三次退化: 下采样+上采样 downsampled = cv2.resize(img, (w//2, h//2), interpolation=cv2.INTER_CUBIC) degraded = cv2.resize(downsampled, (w, h), interpolation=cv2.INTER_CUBIC) else: degraded = img return degraded def darken_image(img, intensity=0.3): """ 应用黑暗处理 - 降低图像亮度并增加暗区对比度 参数: img: 输入图像(numpy数组) intensity: 黑暗强度 (0.1-0.9) 返回: 黑暗处理后的图像 """ # 限制强度范围 intensity = max(0.1, min(0.9, intensity)) # 将图像转换为HSV颜色空间 hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV).astype(np.float32) # 降低亮度(V通道) hsv[:, :, 2] = hsv[:, :, 2] * intensity # 增加暗区的对比度 - 使用gamma校正 gamma = 1.0 + (1.0 - intensity) # 黑暗强度越大,gamma值越大 hsv[:, :, 2] = np.power(hsv[:, :, 2]/255.0, gamma) * 255.0 # 限制值在0-255范围内 hsv[:, :, 2] = np.clip(hsv[:, :, 2], 0, 255) # 转换回RGB return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2RGB) def random_affine(image): """ 随机仿射变换(缩放和平移) 参数: image: 输入图像(numpy数组) 返回: 变换后的图像 """ height, width = image.shape[:2] # 随机缩放因子 (0.8 to 1.2) scale = random.uniform(0.8, 1.2) # 随机平移 (10% of image size) max_trans = 0.1 * min(width, height) tx = random.randint(-int(max_trans), int(max_trans)) ty = random.randint(-int(max_trans), int(max_trans)) # 变换矩阵 M = np.array([[scale, 0, tx], [0, scale, ty]], dtype=np.float32) # 应用仿射变换 transformed = cv2.warpAffine(image, M, (width, height)) return transformed def augment_hsv(image, h_gain=0.1, s_gain=0.5, v_gain=0.5): """ HSV色彩空间增强 参数: image: 输入图像(numpy数组) h_gain, s_gain, v_gain: 各通道的增益范围 返回: 增强后的图像 """ # 限制增益范围 h_gain = max(-0.1, min(0.1, random.uniform(-h_gain, h_gain))) s_gain = max(0.5, min(1.5, random.uniform(1-s_gain, 1+s_gain))) v_gain = max(0.5, min(1.5, random.uniform(1-v_gain, 1+v_gain))) # 转换为HSV hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(np.float32) # 应用增益 hsv[:, :, 0] = (hsv[:, :, 0] * (1 + h_gain)) % 180 hsv[:, :, 1] = np.clip(hsv[:, :, 1] * s_gain, 0, 255) hsv[:, :, 2] = np.clip(hsv[:, :, 2] * v_gain, 0, 255) # 转换回RGB return cv2.cvtColor(hsv.astype(np.uint8), cv2.COLOR_HSV2RGB) # def mixup(img1, img2, alpha=0.6): # """ # 将两幅图像混合在一起 # 参数: # img1, img2: 输入图像(numpy数组) # alpha: Beta分布的参数,控制混合比例 # 返回: # 混合后的图像 # """ # # 生成混合比例 # lam = random.betavariate(alpha, alpha) # # 确保图像尺寸相同 # if img1.shape != img2.shape: # img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) # # 混合图像 # mixed = (lam * img1.astype(np.float32) + (1 - lam) * img2.astype(np.float32)).astype(np.uint8) # return mixed # def image_degradation_and_augmentation(image,dark_intensity=0.3): # """ # 完整的图像退化和增强流程 # 参数: # image: 输入图像(PIL.Image或numpy数组) # 返回: # dict: 包含所有退化组和最终增强结果的字典 # """ # # 确保输入是numpy数组 # if not isinstance(image, np.ndarray): # image = np.array(image) # # 确保图像为RGB格式 # if len(image.shape) == 2: # image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) # elif image.shape[2] == 4: # image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) # # 原始图像 # original = image.copy() # # 插值方法列表 # interpolation_methods = ['nearest', 'bilinear', 'bicubic'] # # 第一组退化: 三种插值方法 # group1 = [] # for method in interpolation_methods: # degraded = apply_interpolation_degradation(original, method) # group1.append(degraded) # # 第二组退化: 随机额外退化 # group2 = [] # for img in group1: # # 随机选择一种退化方法 # method = random.choice(interpolation_methods) # extra_degraded = apply_interpolation_degradation(img, method) # group2.append(extra_degraded) # # 所有退化图像组合 # all_degraded_images = [original] + group1 + group2 # # 应用黑暗处理 (在增强之前) # darkened_images = [darken_image(img, intensity=dark_intensity) for img in all_degraded_images] # # 应用数据增强 # # 1. 随机仿射变换 # affine_images = [random_affine(img) for img in darkened_images] # # 2. HSV增强 # hsv_images = [augment_hsv(img) for img in affine_images] # # 3. MixUp增强 # # 随机选择两个增强后的图像进行混合 # mixed_image = mixup( # random.choice(hsv_images), # random.choice(hsv_images) # ) # # 返回结果 # results = { # 'original': original, # 'degraded_group1': group1, # 第一组退化图像 # 'degraded_group2': group2, # 第二组退化图像 # 'augmented_images': hsv_images, # 所有增强后的图像(原始+六组退化) # 'mixup_image': mixed_image # MixUp混合图像 # } # return results # # def add_gaussian_noise(image, mean=0, sigma=25): # # """添加高斯噪声""" # # noise = np.random.normal(mean, sigma, image.shape) # # noisy = np.clip(image + noise, 0, 255).astype(np.uint8) # # return noisy # # def random_cutout(image, max_holes=3, max_height=16, max_width=16): # # """随机CutOut增强""" # # h, w = image.shape[:2] # # for _ in range(random.randint(1, max_holes)): # # hole_h = random.randint(1, max_height) # # hole_w = random.randint(1, max_width) # # y = random.randint(0, h - hole_h) # # x = random.randint(0, w - hole_w) # # image[y:y+hole_h, x:x+hole_w] = 0 # # return image import cv2 import numpy as np import random from matplotlib import pyplot as plt import pywt def wavelet_degradation(image, level=0.5): """小波系数衰减退化""" # 小波分解 coeffs = pywt.dwt2(image, 'haar') cA, (cH, cV, cD) = coeffs # 衰减高频系数 cH = cH * level cV = cV * level cD = cD * level # 重建图像 return pywt.idwt2((cA, (cH, cV, cD)), 'haar')[:image.shape[0], :image.shape[1]] def adaptive_interpolation_degradation(image): """自适应插值退化(随机选择最近邻或双三次插值)""" if random.choice([True, False]): method = cv2.INTER_NEAREST # 最近邻插值 else: method = cv2.INTER_CUBIC # 双三次插值 # 先缩小再放大 scale_factor = random.uniform(0.3, 0.8) small = cv2.resize(image, None, fx=scale_factor, fy=scale_factor, interpolation=method) return cv2.resize(small, (image.shape[1], image.shape[0]), interpolation=method) def bilinear_degradation(image): """双线性插值退化""" # 先缩小再放大 scale_factor = random.uniform(0.3, 0.8) small = cv2.resize(image, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_LINEAR) return cv2.resize(small, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR) def cutmix(img1, img2, bboxes1=None, bboxes2=None, beta=1.0): """ 参数: img1: 第一张输入图像(numpy数组) img2: 第二张输入图像(numpy数组) bboxes1: 第一张图像的边界框(可选) bboxes2: 第二张图像的边界框(可选) beta: Beta分布的参数,控制裁剪区域的大小 返回: 混合后的图像和边界框(如果有) """ # 确保图像尺寸相同 if img1.shape != img2.shape: img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) h, w = img1.shape[:2] # 生成裁剪区域的lambda值(混合比例) lam = np.random.beta(beta, beta) # 计算裁剪区域的宽高 cut_ratio = np.sqrt(1. - lam) cut_w = int(w * cut_ratio) cut_h = int(h * cut_ratio) # 随机确定裁剪区域的中心点 cx = np.random.randint(w) cy = np.random.randint(h) # 计算裁剪区域的边界 x1 = np.clip(cx - cut_w // 2, 0, w) y1 = np.clip(cy - cut_h // 2, 0, h) x2 = np.clip(cx + cut_w // 2, 0, w) y2 = np.clip(cy + cut_h // 2, 0, h) # 执行CutMix操作 mixed_img = img1.copy() mixed_img[y1:y2, x1:x2] = img2[y1:y2, x1:x2] # 计算实际的混合比例 lam = 1 - ((x2 - x1) * (y2 - y1) / (w * h)) # 处理边界框(如果有) mixed_bboxes = None if bboxes1 is not None and bboxes2 is not None: mixed_bboxes = [] # 添加第一张图像的边界框 for bbox in bboxes1: mixed_bboxes.append(bbox + [lam]) # 添加混合权重 # 添加第二张图像的边界框(只添加在裁剪区域内的) for bbox in bboxes2: # 检查边界框是否在裁剪区域内 bbox_x_center = (bbox[0] + bbox[2]) / 2 bbox_y_center = (bbox[1] + bbox[3]) / 2 if (x1 <= bbox_x_center <= x2) and (y1 <= bbox_y_center <= y2): mixed_bboxes.append(bbox + [1 - lam]) return mixed_img, mixed_bboxes def image_degradation_and_augmentation(image, bboxes=None): """ 完整的图像退化和增强流程(修改为使用CutMix) 参数: image: 输入图像(PIL.Image或numpy数组) bboxes: 边界框(可选) 返回: dict: 包含所有退化组和最终增强结果的字典 """ # 确保输入是numpy数组 if not isinstance(image, np.ndarray): image = np.array(image) # 确保图像为RGB格式 if len(image.shape) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) elif image.shape[2] == 4: image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) degraded_sets = [] original = image.copy() # 第一组退化:三种基础退化 degraded_sets.append(wavelet_degradation(original.copy())) degraded_sets.append(degraded_sets) degraded_sets.append(adaptive_interpolation_degradation(original.copy())) degraded_sets.append(degraded_sets) degraded_sets.append(bilinear_degradation(original.copy())) degraded_sets.append(degraded_sets) # # 原始图像 # original = image.copy() # # 插值方法列表 # interpolation_methods = ['nearest', 'bilinear', 'bicubic'] # # 第一组退化: 三种插值方法 # group1 = [] # for method in interpolation_methods: # degraded = apply_interpolation_degradation(original, method) # group1.append(degraded) # 第二组退化: 随机额外退化 # group2 = [] # for img in group1: # # 随机选择一种退化方法 # method = random.choice(interpolation_methods) # extra_degraded = apply_interpolation_degradation(img, method) # group2.append(extra_degraded) # 第二组退化:随机选择再退化 methods = [wavelet_degradation, adaptive_interpolation_degradation, bilinear_degradation] group2=[] for img in degraded_sets: selected_method = random.choice(methods) group2.append(selected_method(img)) group2.append(group2) # 原始图像 original = image.copy() all_degraded_images = [original] + degraded_sets + group2 # 应用黑暗处理 dark_original = darken_image(original) dark_degraded = [darken_image(img) for img in all_degraded_images] # 合并原始和退化图像 all_images = [dark_original] + dark_degraded # 应用数据增强 # 1. 随机仿射变换 affine_images = [random_affine(img) for img in all_images] # 2. HSV增强 hsv_images = [augment_hsv(img) for img in affine_images] # 3. CutMix增强 # 随机选择两个增强后的图像进行混合 mixed_image, mixed_bboxes = cutmix( random.choice(hsv_images), random.choice(hsv_images), bboxes1=bboxes if bboxes is not None else None, bboxes2=bboxes if bboxes is not None else None ) # 返回结果 results = { 'original': original, 'degraded': dark_degraded, 'augmented_images': hsv_images, # 所有增强后的图像(原始+六组退化) 'cutmix_image': mixed_image, # CutMix混合图像 'cutmix_bboxes': mixed_bboxes if bboxes is not None else None # 混合后的边界框 } return results train_transform = transforms.Compose([ transforms.RandomResizedCrop(32), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])]) # data_processing prepare train_data = CIFAR10Pair(root="E:/contrast/yolov8/MoCo/data_visdrone2019", train=True, transform=train_transform, download=False) moco_train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=0, pin_memory=True, drop_last=True) memory_data = CIFAR10(root="E:/contrast/yolov8/MoCo/data_visdrone2019", train=True, transform=test_transform, download=False) memory_loader = DataLoader(memory_data, batch_size=args.batch_size, shuffle=False, num_workers=0, pin_memory=True) test_data = CIFAR10(root="E:/contrast/yolov8/MoCo/data_visdrone2019", train=False, transform=test_transform, download=False) test_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False, num_workers=0, pin_memory=True) # 定义基本编码器 # SplitBatchNorm: simulate multi-gpu behavior of BatchNorm in one gpu by splitting alone the batch dimension # implementation adapted from https://github.com/davidcpage/cifar10-fast/blob/master/torch_backend.py class SplitBatchNorm(nn.BatchNorm2d): def __init__(self, num_features, num_splits, **kw): super().__init__(num_features, **kw) self.num_splits = num_splits def forward(self, input): N, C, H, W = input.shape if self.training or not self.track_running_stats: running_mean_split = self.running_mean.repeat(self.num_splits) running_var_split = self.running_var.repeat(self.num_splits) outcome = nn.functional.batch_norm( input.view(-1, C * self.num_splits, H, W), running_mean_split, running_var_split, self.weight.repeat(self.num_splits), self.bias.repeat(self.num_splits), True, self.momentum, self.eps).view(N, C, H, W) self.running_mean.data.copy_(running_mean_split.view(self.num_splits, C).mean(dim=0)) self.running_var.data.copy_(running_var_split.view(self.num_splits, C).mean(dim=0)) return outcome else: return nn.functional.batch_norm( input, self.running_mean, self.running_var, self.weight, self.bias, False, self.momentum, self.eps) class ModelBase(nn.Module): """ Common CIFAR ResNet recipe. Comparing with ImageNet ResNet recipe, it: (i) replaces conv1 with kernel=3, str=1 (ii) removes pool1 """ def __init__(self, feature_dim=128, arch=None, bn_splits=16): super(ModelBase, self).__init__() # use split batchnorm norm_layer = partial(SplitBatchNorm, num_splits=bn_splits) if bn_splits > 1 else nn.BatchNorm2d resnet_arch = getattr(resnet, arch) net = resnet_arch(num_classes=feature_dim, norm_layer=norm_layer) self.net = [] for name, module in net.named_children(): if name == 'conv1': module = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) if isinstance(module, nn.MaxPool2d): continue if isinstance(module, nn.Linear): self.net.append(nn.Flatten(1)) self.net.append(module) self.net = nn.Sequential(*self.net) def forward(self, x): x = self.net(x) # note: not normalized here return x # 定义MOCO class ModelMoCo(nn.Module): def __init__(self, dim=128, K=4096, m=0.99, T=0.1, arch='resnet18', bn_splits=8, symmetric=True): super(ModelMoCo, self).__init__() self.K = K self.m = m self.T = T self.symmetric = symmetric # create the encoders self.encoder_q = ModelBase(feature_dim=dim, arch=arch, bn_splits=bn_splits) self.encoder_k = ModelBase(feature_dim=dim, arch=arch, bn_splits=bn_splits) for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data.copy_(param_q.data) # initialize param_k.requires_grad = False # not update by gradient 不参与训练 # create the queue self.register_buffer("queue", torch.randn(dim, K)) self.queue = nn.functional.normalize(self.queue, dim=0) self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) @torch.no_grad() def _momentum_update_key_encoder(self): # 动量更新encoder_k """ Momentum update of the key encoder """ for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data = param_k.data * self.m + param_q.data * (1. - self.m) @torch.no_grad() def _dequeue_and_enqueue(self, keys): # 出队与入队 batch_size = keys.shape[0] ptr = int(self.queue_ptr) assert self.K % batch_size == 0 # for simplicity # replace the keys at ptr (dequeue and enqueue) self.queue[:, ptr:ptr + batch_size] = keys.t() # transpose ptr = (ptr + batch_size) % self.K # move pointer self.queue_ptr[0] = ptr @torch.no_grad() def _batch_shuffle_single_gpu(self, x): """ Batch shuffle, for making use of BatchNorm. """ # random shuffle index idx_shuffle = torch.randperm(x.shape[0]).cuda() # index for restoring idx_unshuffle = torch.argsort(idx_shuffle) return x[idx_shuffle], idx_unshuffle @torch.no_grad() def _batch_unshuffle_single_gpu(self, x, idx_unshuffle): """ Undo batch shuffle. """ return x[idx_unshuffle] def contrastive_loss(self, im_q, im_k): # compute query features q = self.encoder_q(im_q) # queries: NxC q = nn.functional.normalize(q, dim=1) # already normalized # compute key features with torch.no_grad(): # no gradient to keys # shuffle for making use of BN im_k_, idx_unshuffle = self._batch_shuffle_single_gpu(im_k) k = self.encoder_k(im_k_) # keys: NxC k = nn.functional.normalize(k, dim=1) # already normalized # undo shuffle k = self._batch_unshuffle_single_gpu(k, idx_unshuffle) # compute logits # Einstein sum is more intuitive # positive logits: Nx1 l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1) # negative logits: NxK l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()]) # logits: Nx(1+K) logits = torch.cat([l_pos, l_neg], dim=1) # apply temperature logits /= self.T # labels: positive key indicators labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda() loss = nn.CrossEntropyLoss().cuda()(logits, labels) # 交叉熵损失 return loss, q, k def forward(self, im1, im2): """ Input: im_q: a batch of query images im_k: a batch of key images Output: loss """ # update the key encoder with torch.no_grad(): # no gradient to keys self._momentum_update_key_encoder() # compute loss if self.symmetric: # asymmetric loss loss_12, q1, k2 = self.contrastive_loss(im1, im2) loss_21, q2, k1 = self.contrastive_loss(im2, im1) loss = loss_12 + loss_21 k = torch.cat([k1, k2], dim=0) else: # asymmetric loss loss, q, k = self.contrastive_loss(im1, im2) self._dequeue_and_enqueue(k) return loss # create model moco_model = ModelMoCo( dim=args.moco_dim, K=args.moco_k, m=args.moco_m, T=args.moco_t, arch=args.arch, bn_splits=args.bn_splits, symmetric=args.symmetric, ).cuda() # print(moco_model.encoder_q) moco_model_1 = ModelMoCo( dim=args.moco_dim, K=args.moco_k, m=args.moco_m, T=args.moco_t, arch=args.arch, bn_splits=args.bn_splits, symmetric=args.symmetric, ).cuda() # print(moco_model_1.encoder_q) """ CIFAR10 Dataset. """ from torch.cuda import amp scaler = amp.GradScaler(enabled=cuda) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # train for one epoch # def moco_train(net, net_1, data_loader, train_optimizer, epoch, args): # net.train() # adjust_learning_rate(moco_optimizer, epoch, args) # total_loss, total_num, train_bar = 0.0, 0, tqdm(data_loader) # loss_add = 0.0 # for im_1, im_2 in train_bar: # im_1, im_2 = im_1.cuda(non_blocking=True), im_2.cuda(non_blocking=True) # loss = net(im_1, im_2) # 原始图像对比损失 梯度清零—>梯度回传—>梯度跟新 # # lossT = loss # 只使用原始对比损失 # # train_optimizer.zero_grad() # # lossT.backward() # # train_optimizer.step() # # loss_add += lossT.item() # # total_num += data_loader.batch_size # # total_loss += loss.item() * data_loader.batch_size # # train_bar.set_description( # # 'Train Epoch: [{}/{}], lr: {:.6f}, Loss: {:.4f}'.format( # # epoch, args.epochs, # # train_optimizer.param_groups[0]['lr'], # # loss_add / total_num # # ) # # ) # #傅里叶变换处理流程 # #im_3 = torch.rfft(im_1, 3, onesided=False, normalized=True)[:, :, :, :, 0] # fft_output = torch.fft.fftn(im_1, dim=(-3, -2, -1), norm="ortho")#转换为频域 # real_imag = torch.view_as_real(fft_output)#分解实部虚部 # im_3 = real_imag[..., 0]#提取频域实部作为新视图 # #该处理实现了频域空间的增强,与空间域增强形成了互补 # #im_4 = torch.rfft(im_2, 3, onesided=False, normalized=True)[:, :, :, :, 0] # fft_output = torch.fft.fftn(im_2, dim=(-3, -2, -1), norm="ortho") # real_imag = torch.view_as_real(fft_output) # im_4 = real_imag[..., 0] # loss_1 = net_1(im_3, im_4)#频域特征对比损失 # lossT = 0.8*loss + 0.2*loss_1#多模态损失对比融合 # train_optimizer.zero_grad() # lossT.backward() # train_optimizer.step() # loss_add += lossT # total_num += data_loader.batch_size # total_loss += loss.item() * data_loader.batch_size # # train_bar.set_description( # # 'Train Epoch: [{}/{}], lr: {:.6f}, Loss: {:.4f}'.format(epoch, args.epochs, moco_optimizer.param_groups[0]['lr'], # # loss_add / total_num)) # return (loss_add / total_num).cpu().item() # yolov5需要的损失 def moco_train(net, net_1, data_loader, train_optimizer, epoch, args): net.train() adjust_learning_rate(train_optimizer, epoch, args) total_loss, total_num = 0.0, 0 train_bar = tqdm(data_loader) for im_1, im_2, im_3, im_4 in train_bar: # 接收4组视图 im_1, im_2 = im_1.cuda(), im_2.cuda() im_3, im_4 = im_3.cuda(), im_4.cuda() # 原始空间域对比损失 loss_orig = net(im_1, im_2) # 退化增强图像的空间域对比损失 loss_degraded = net(im_3, im_4) # 频域处理(对退化增强后的图像) fft_3 = torch.fft.fftn(im_3, dim=(-3, -2, -1), norm="ortho") fft_3 = torch.view_as_real(fft_3)[..., 0] # 取实部 fft_4 = torch.fft.fftn(im_4, dim=(-3, -2, -1), norm="ortho") fft_4 = torch.view_as_real(fft_4)[..., 0] # 频域对比损失 loss_freq = net_1(fft_3, fft_4) # 多模态损失融合 loss = 0.6 * loss_orig + 0.3 * loss_degraded + 0.1 * loss_freq # 反向传播 train_optimizer.zero_grad() loss.backward() train_optimizer.step() # 记录损失 total_num += data_loader.batch_size total_loss += loss.item() # train_bar.set_description(f'Epoch: [{epoch}/{args.epochs}] Loss: {total_loss/total_num:.4f}') return total_loss / total_num # lr scheduler for training def adjust_learning_rate(optimizer, epoch, args): # 学习率衰减 """Decay the learning rate based on schedule""" lr = args.lr if args.cos: # cosine lr schedule lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs)) else: # stepwise lr schedule for milestone in args.schedule: lr *= 0.1 if epoch >= milestone else 1. for param_group in optimizer.param_groups: param_group['lr'] = lr # test using a knn monitor def test(net, memory_data_loader, test_data_loader, epoch, args): net.eval() classes = len(memory_data_loader.dataset.classes) total_top1, total_top5, total_num, feature_bank = 0.0, 0.0, 0, [] with torch.no_grad(): # generate feature bank for data, target in tqdm(memory_data_loader, desc='Feature extracting'): feature = net(data.cuda(non_blocking=True)) feature = F.normalize(feature, dim=1) feature_bank.append(feature) # [D, N] feature_bank = torch.cat(feature_bank, dim=0).t().contiguous() # [N] feature_labels = torch.tensor(memory_data_loader.dataset.targets, device=feature_bank.device) # loop test data_processing to predict the label by weighted knn search test_bar = tqdm(test_data_loader) for data, target in test_bar: data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True) feature = net(data) feature = F.normalize(feature, dim=1) pred_labels = knn_predict(feature, feature_bank, feature_labels, classes, args.knn_k, args.knn_t) total_num += data.size(0) total_top1 += (pred_labels[:, 0] == target).float().sum().item() test_bar.set_description( 'Test Epoch: [{}/{}] Acc@1:{:.2f}%'.format(epoch, args.epochs, total_top1 / total_num * 100)) return total_top1 / total_num * 100 # knn monitor as in InstDisc https://arxiv.org/abs/1805.01978 # implementation follows http://github.com/zhirongw/lemniscate.pytorch and https://github.com/leftthomas/SimCLR def knn_predict(feature, feature_bank, feature_labels, classes, knn_k, knn_t): # compute cos similarity between each feature vector and feature bank ---> [B, N] sim_matrix = torch.mm(feature, feature_bank) # [B, K] sim_weight, sim_indices = sim_matrix.topk(k=knn_k, dim=-1) # [B, K] sim_labels = torch.gather(feature_labels.expand(feature.size(0), -1), dim=-1, index=sim_indices) sim_weight = (sim_weight / knn_t).exp() # counts for each class one_hot_label = torch.zeros(feature.size(0) * knn_k, classes, device=sim_labels.device) # [B*K, C] one_hot_label = one_hot_label.scatter(dim=-1, index=sim_labels.view(-1, 1), value=1.0) # weighted score ---> [B, C] pred_scores = torch.sum(one_hot_label.view(feature.size(0), -1, classes) * sim_weight.unsqueeze(dim=-1), dim=1) pred_labels = pred_scores.argsort(dim=-1, descending=True) return pred_labels # 开始训练 # define optimizer moco_optimizer = torch.optim.SGD(moco_model.parameters(), lr=args.lr, weight_decay=args.wd, momentum=0.9) 上述问题怎么修改?

import h5py import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset import numpy as np import matplotlib.pyplot as plt # ------------------------- 1. 数据加载(h5py) ------------------------- def load_hdf5_data(file_path): with h5py.File(file_path, 'r') as f: # 检查HDF5文件结构 print("HDF5文件结构:", list(f.keys())) # 确认变量路径(根据实际保存的键名调整) X = np.array(f['X']) # 维度: (num_samples, 64, 2) y = np.array(f['y']) # 维度: (num_samples, 128) # 转换为PyTorch张量并调整维度顺序 X_tensor = torch.from_numpy(X.astype(np.float32)).permute(2, 0, 1,) # (batch, 2, 64) y_tensor = torch.from_numpy(y.astype(np.float32)).permute((1,0)) return X_tensor, y_tensor # ------------------------- 2. 模型定义 ------------------------- class JointEstimationModel(nn.Module): def __init__(self, input_dim=64, output_dim=128): super().__init__() self.conv1d = nn.Conv1d(in_channels=2, out_channels=64, kernel_size=3, padding=1) self.lstm = nn.LSTM(input_size=64, hidden_size=128, batch_first=True) self.fc1 = nn.Linear(64 * 128, 256) self.fc2 = nn.Linear(256, output_dim) self.sigmoid = nn.Sigmoid() def forward(self, x): x = torch.relu(self.conv1d(x)) # 输出: (batch, 64, 64) x = x.permute(0, 2, 1) # 调整维度: (batch, 64, 64) x, _ = self.lstm(x) # 输出: (batch, 64, 128) x = x.reshape(x.size(0), -1) # 展平: (batch, 64*128) x = torch.relu(self.fc1(x)) x = self.fc2(x) return self.sigmoid(x) # ------------------------- 3. 训练函数 ------------------------- def train_model(train_loader, model, criterion, optimizer, device): model.train() total_loss = 0.0 for inputs, labels in train_loader: inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step()

大家在看

recommend-type

ELEC5208 Group project submissions.zip_furniturer4m_smart grid_悉

悉尼大学ELEC5208智能电网project的很多组的报告和code都在里面,供学习和参考
recommend-type

基于python单通道脑电信号的自动睡眠分期研究

【作品名称】:基于python单通道脑电信号的自动睡眠分期研究 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:网络结构(具体可查看network.py文件): 网络整体结构类似于TinySleepNet,对RNN部分进行了修改,增加了双向RNN、GRU、Attention等网络结构,可根据参数进行调整选择。 定义了seq_len参数,可以更灵活地调整batch_size与seq_len。 数据集加载(具体可查看dataset.py文件) 直接继承自torch的Dataset,并定义了seq_len和shuffle_seed,方便调整输入,并复现实验。 训练(具体可查看train.py文件): 定义并使用了focal loss损失函数 在实验中有使用wandb,感觉用起来还挺方便的,非常便于实验记录追溯 测试(具体可查看test.py文件): 可以输出accuracy、mf1、recall_confusion_matrics、precision_confusion_matrics、f1
recommend-type

bid格式文件电子标书阅读器.zip

软件介绍: bid格式招投标文件阅读器,可以打开浏览、管理电子招标文件,如果打不开标书文件,请按下面步骤检查:1、请查看招标文件(.bid文件)是否下载完全,请用IE下载工具下载;2、查看IE浏览器版本,如果版本低于IE8,低于IE8版本的请升级为IE8浏览器。
recommend-type

机器翻译WMT14数据集

机器翻译WMT14数据集,ACL2014公布的share task,很多模型都在这上benchmark
recommend-type

高通QXDM使用手册.pdf

高通QXDM使用手册,介绍高通QXDM工具软件的使用,中文版的哦。

最新推荐

recommend-type

Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

在TensorFlow库中,`tf.nn.atrous_conv2d`函数用于实现空洞卷积,这是一种特殊形式的卷积操作,能够扩大模型的感受野,同时避免池化带来的信息丢失。空洞卷积(也称为膨胀卷积或带孔卷积)通过在卷积核的元素之间...
recommend-type

C#类库封装:简化SDK调用实现多功能集成,构建地磅无人值守系统

内容概要:本文介绍了利用C#类库封装多个硬件设备的SDK接口,实现一系列复杂功能的一键式调用。具体功能包括身份证信息读取、人证识别、车牌识别(支持臻识和海康摄像头)、LED显示屏文字输出、称重数据读取、二维码扫描以及语音播报。所有功能均被封装为简单的API,极大降低了开发者的工作量和技术门槛。文中详细展示了各个功能的具体实现方式及其应用场景,如身份证读取、人证核验、车牌识别等,并最终将这些功能整合到一起,形成了一套完整的地磅称重无人值守系统解决方案。 适合人群:具有一定C#编程经验的技术人员,尤其是需要快速集成多种硬件设备SDK的应用开发者。 使用场景及目标:适用于需要高效集成多种硬件设备SDK的项目,特别是那些涉及身份验证、车辆管理、物流仓储等领域的企业级应用。通过使用这些封装好的API,可以大大缩短开发周期,降低维护成本,提高系统的稳定性和易用性。 其他说明:虽然封装后的API极大地简化了开发流程,但对于一些特殊的业务需求,仍然可能需要深入研究底层SDK。此外,在实际部署过程中,还需考虑网络环境、硬件兼容性等因素的影响。
recommend-type

Teleport Pro教程:轻松复制网站内容

标题中提到的“复制别人网站的软件”指向的是一种能够下载整个网站或者网站的特定部分,然后在本地或者另一个服务器上重建该网站的技术或工具。这类软件通常被称作网站克隆工具或者网站镜像工具。 描述中提到了一个具体的教程网址,并提到了“天天给力信誉店”,这可能意味着有相关的教程或资源可以在这个网店中获取。但是这里并没有提供实际的教程内容,仅给出了网店的链接。需要注意的是,根据互联网法律法规,复制他人网站内容并用于自己的商业目的可能构成侵权,因此在此类工具的使用中需要谨慎,并确保遵守相关法律法规。 标签“复制 别人 网站 软件”明确指出了这个工具的主要功能,即复制他人网站的软件。 文件名称列表中列出了“Teleport Pro”,这是一款具体的网站下载工具。Teleport Pro是由Tennyson Maxwell公司开发的网站镜像工具,允许用户下载一个网站的本地副本,包括HTML页面、图片和其他资源文件。用户可以通过指定开始的URL,并设置各种选项来决定下载网站的哪些部分。该工具能够帮助开发者、设计师或内容分析人员在没有互联网连接的情况下对网站进行离线浏览和分析。 从知识点的角度来看,Teleport Pro作为一个网站克隆工具,具备以下功能和知识点: 1. 网站下载:Teleport Pro可以下载整个网站或特定网页。用户可以设定下载的深度,例如仅下载首页及其链接的页面,或者下载所有可访问的页面。 2. 断点续传:如果在下载过程中发生中断,Teleport Pro可以从中断的地方继续下载,无需重新开始。 3. 过滤器设置:用户可以根据特定的规则过滤下载内容,如排除某些文件类型或域名。 4. 网站结构分析:Teleport Pro可以分析网站的链接结构,并允许用户查看网站的结构图。 5. 自定义下载:用户可以自定义下载任务,例如仅下载图片、视频或其他特定类型的文件。 6. 多任务处理:Teleport Pro支持多线程下载,用户可以同时启动多个下载任务来提高效率。 7. 编辑和管理下载内容:Teleport Pro具备编辑网站镜像的能力,并可以查看、修改下载的文件。 8. 离线浏览:下载的网站可以在离线状态下浏览,这对于需要测试网站在不同环境下的表现的情况十分有用。 9. 备份功能:Teleport Pro可以用来备份网站,确保重要数据的安全。 在实际使用此类工具时,需要注意以下几点: - 著作权法:复制网站内容可能侵犯原作者的版权,因此在使用此类工具时,必须确保有合法权利去下载和使用目标网站的内容。 - 服务条款:许多网站的服务条款明确禁止未经授权的网站克隆。因此,在使用此类软件之前,应当仔细阅读并遵守目标网站的服务条款。 - 数据隐私:下载含有个人数据的网站可能触及隐私保护法律,特别是在欧洲通用数据保护条例(GDPR)等法规的环境下。 - 网络安全:随意下载网站可能导致恶意软件和病毒的传播,用户应当使用最新的反病毒软件,并在安全的环境中进行操作。 综上所述,虽然“复制别人网站的软件”在技术上是可行的,且可以用于多种正当目的,但在使用此类工具时,必须遵守法律法规和道德规范,不可侵犯他人的合法权益。
recommend-type

【跨平台开发者的必读】:解决Qt5Widgetsd.lib目标计算机类型冲突终极指南

# 1. 跨平台开发与Qt框架简介 跨平台开发已经成为现代软件开发中不可或缺的一部分,它使得开发者能够构建出能够在多种操作系统上运行的应用程序,从而触及更广泛的用户群体。在这其中,Qt框架作为一套成熟的跨平台应用程序和用户界面框架,扮演着关键角色。Qt不仅仅是一个跨平台的工具集,它的设计哲学还包含了模块化和可扩展性,使其能够适应各种规模和复杂度的项目。本章节我们将简要介绍
recommend-type

普通RNN结构和特点

<think>首先,用户的问题是:“我想了解普通RNN的结构及其特点请问RNN循环神经网络结构特点工作原理”。这涉及到RNN的结构、特点和工作原理。根据系统级指令:-所有行内数学表达式必须使用$...$格式。-独立公式必须使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识。用户可见层指令:-回答结构清晰,帮助用户逐步解决问题。-保证回答真实可靠。参考站内引用:-引用[1]:关于RNN的基本介绍,为什么需要RNN。-引用[2]:关于RNN的工作原理、结构图,以及与其他网络的比较。用户上一次的问题和我的回答:用户是第一次
recommend-type

探讨通用数据连接池的核心机制与应用

根据给定的信息,我们能够推断出讨论的主题是“通用数据连接池”,这是一个在软件开发和数据库管理中经常用到的重要概念。在这个主题下,我们可以详细阐述以下几个知识点: 1. **连接池的定义**: 连接池是一种用于管理数据库连接的技术,通过维护一定数量的数据库连接,使得连接的创建和销毁操作更加高效。开发者可以在应用程序启动时预先创建一定数量的连接,并将它们保存在一个池中,当需要数据库连接时,可以直接从池中获取,从而降低数据库连接的开销。 2. **通用数据连接池的概念**: 当提到“通用数据连接池”时,它意味着这种连接池不仅支持单一类型的数据库(如MySQL、Oracle等),而且能够适应多种不同数据库系统。设计一个通用的数据连接池通常需要抽象出一套通用的接口和协议,使得连接池可以兼容不同的数据库驱动和连接方式。 3. **连接池的优点**: - **提升性能**:由于数据库连接创建是一个耗时的操作,连接池能够减少应用程序建立新连接的时间,从而提高性能。 - **资源复用**:数据库连接是昂贵的资源,通过连接池,可以最大化现有连接的使用,避免了连接频繁创建和销毁导致的资源浪费。 - **控制并发连接数**:连接池可以限制对数据库的并发访问,防止过载,确保数据库系统的稳定运行。 4. **连接池的关键参数**: - **最大连接数**:池中能够创建的最大连接数。 - **最小空闲连接数**:池中保持的最小空闲连接数,以应对突发的连接请求。 - **连接超时时间**:连接在池中保持空闲的最大时间。 - **事务处理**:连接池需要能够管理不同事务的上下文,保证事务的正确执行。 5. **实现通用数据连接池的挑战**: 实现一个通用的连接池需要考虑到不同数据库的连接协议和操作差异。例如,不同的数据库可能有不同的SQL方言、认证机制、连接属性设置等。因此,通用连接池需要能够提供足够的灵活性,允许用户配置特定数据库的参数。 6. **数据连接池的应用场景**: - **Web应用**:在Web应用中,为了处理大量的用户请求,数据库连接池可以保证数据库连接的快速复用。 - **批处理应用**:在需要大量读写数据库的批处理作业中,连接池有助于提高整体作业的效率。 - **微服务架构**:在微服务架构中,每个服务可能都需要与数据库进行交互,通用连接池能够帮助简化服务的数据库连接管理。 7. **常见的通用数据连接池技术**: - **Apache DBCP**:Apache的一个Java数据库连接池库。 - **C3P0**:一个提供数据库连接池和控制工具的开源Java框架。 - **HikariCP**:目前性能最好的开源Java数据库连接池之一。 - **BoneCP**:一个高性能的开源Java数据库连接池。 - **Druid**:阿里巴巴开源的一个数据库连接池,提供了对性能监控的高级特性。 8. **连接池的管理与监控**: 为了保证连接池的稳定运行,开发者需要对连接池的状态进行监控,并对其进行适当的管理。监控指标可能包括当前活动的连接数、空闲的连接数、等待获取连接的请求队列长度等。一些连接池提供了监控工具或与监控系统集成的能力。 9. **连接池的配置和优化**: 连接池的性能与连接池的配置密切相关。需要根据实际的应用负载和数据库性能来调整连接池的参数。例如,在高并发的场景下,可能需要增加连接池中连接的数量。另外,适当的线程池策略也可以帮助连接池更好地服务于多线程环境。 10. **连接池的应用案例**: 一个典型的案例是电商平台在大型促销活动期间,用户访问量激增,此时通用数据连接池能够保证数据库操作的快速响应,减少因数据库连接问题导致的系统瓶颈。 总结来说,通用数据连接池是现代软件架构中的重要组件,它通过提供高效的数据库连接管理,增强了软件系统的性能和稳定性。了解和掌握连接池的原理及实践,对于任何涉及数据库交互的应用开发都至关重要。在实现和应用连接池时,需要关注其设计的通用性、配置的合理性以及管理的有效性,确保在不同的应用场景下都能发挥出最大的效能。
recommend-type

【LabVIEW网络通讯终极指南】:7个技巧提升UDP性能和安全性

# 摘要 本文系统介绍了LabVIEW在网络通讯中的应用,尤其是针对UDP协议的研究与优化。首先,阐述了UDP的原理、特点及其在LabVIEW中的基础应用。随后,本文深入探讨了通过调整数据包大小、实现并发通信及优化缓冲区管理等技巧来优化UDP性能的LabVIEW方法。接着,文章聚焦于提升UDP通信安全性,介绍了加密技术和认证授权机制在LabVIEW中的实现,以及防御网络攻击的策略。最后,通过具体案例展示了LabVIEW在实时数据采集和远程控制系统中的高级应用,并展望了LabVIEW与UDP通讯技术的未来发展趋势及新兴技术的影响。 # 关键字 LabVIEW;UDP网络通讯;性能优化;安全性;
recommend-type

简要介绍cnn卷积神经网络

<think>首先,用户的问题是:“我想了解卷积神经网络的基本概念和原理 请问CNN卷积神经网络简介及其工作原理”。所以,我需要基于提供的引用材料,构建一个清晰的回答。 引用材料总结: - [^1]: CNN的核心思想是局部感受野、权值共享和时间或空间亚采样,提供位移、尺度、形变不变性。三大特色:局部感知、权重共享和多卷积核。 - [^2]: CNN是一种前馈神经网络,由卷积层和池化层组成,特别在图像处理方面出色。与传统多层神经网络相比,CNN加入了卷积层和池化层,使特征学习更有效。 - [^3]: CNN与全连接神经网络的区别:至少有一个卷积层提取特征;神经元局部连接和权值共享,减少参数数
recommend-type

基于ASP的深度学习网站导航系统功能详解

从给定文件中我们可以提取以下IT知识点: ### 标题知识点 #### "ASP系统篇" - **ASP技术介绍**:ASP(Active Server Pages)是一种服务器端的脚本环境,用于创建动态交互式网页。ASP允许开发者将HTML网页与服务器端脚本结合,使用VBScript或JavaScript等语言编写代码,以实现网页内容的动态生成。 - **ASP技术特点**:ASP适用于小型到中型的项目开发,它可以与数据库紧密集成,如Microsoft的Access和SQL Server。ASP支持多种组件和COM(Component Object Model)对象,使得开发者能够实现复杂的业务逻辑。 #### "深度学习网址导航系统" - **深度学习概念**:深度学习是机器学习的一个分支,通过构建深层的神经网络来模拟人类大脑的工作方式,以实现对数据的高级抽象和学习。 - **系统功能与深度学习的关系**:该标题可能意味着系统在进行网站分类、搜索优化、内容审核等方面采用了深度学习技术,以提供更智能、自动化的服务。然而,根据描述内容,实际上系统并没有直接使用深度学习技术,而是提供了一个传统的网址导航服务,可能是命名上的噱头。 ### 描述知识点 #### "全后台化管理,操作简单" - **后台管理系统的功能**:后台管理系统允许网站管理员通过Web界面执行管理任务,如内容更新、用户管理等。它通常要求界面友好,操作简便,以适应不同技术水平的用户。 #### "栏目无限分类,自由添加,排序,设定是否前台显示" - **动态网站结构设计**:这意味着网站结构具有高度的灵活性,支持创建无限层级的分类,允许管理员自由地添加、排序和设置分类的显示属性。这种设计通常需要数据库支持动态生成内容。 #### "各大搜索和站内搜索随意切换" - **搜索引擎集成**:网站可能集成了外部搜索引擎(如Google、Bing)和内部搜索引擎功能,让用户能够方便地从不同来源获取信息。 #### "网站在线提交、审阅、编辑、删除" - **内容管理系统的功能**:该系统提供了一个内容管理平台,允许用户在线提交内容,由管理员进行审阅、编辑和删除操作。 #### "站点相关信息后台动态配置" - **动态配置机制**:网站允许管理员通过后台系统动态调整各种配置信息,如网站设置、参数调整等,从而实现快速的网站维护和更新。 #### "自助网站收录,后台审阅" - **网站收录和审核机制**:该系统提供了一套自助收录流程,允许其他网站提交申请,由管理员进行后台审核,决定是否收录。 #### "网站广告在线发布" - **广告管理功能**:网站允许管理员在线发布和管理网站广告位,以实现商业变现。 #### "自动生成静态页 ver2.4.5" - **动态与静态内容**:系统支持动态内容的生成,同时也提供了静态页面的生成机制,这可能有助于提高网站加载速度和搜索引擎优化。 #### "重写后台网址分类管理" - **系统优化与重构**:提到了后台网址分类管理功能的重写,这可能意味着系统进行了一次重要的更新,以修复前一个版本的错误,并提高性能。 ### 标签知识点 #### "ASP web 源代码 源码" - **ASP程序开发**:标签表明这是一个ASP语言编写的网站源代码,可能是一个开源项目,供开发者下载、研究或部署到自己的服务器上。 ### 压缩包子文件名称列表知识点 #### "深度学习(asp)网址导航程序" - **文件内容和类型**:文件列表中提到的“深度学习(asp)网址导航程序”表明这是一个ASP语言编写的网址导航系统程序,可能包含了系统安装和配置需要的所有源文件。 通过以上分析,我们可以得出这个ASP系统是一个传统的网址导航系统,以后台管理为核心功能,并没有实际运用到深度学习技术。系统的主要功能包括对网站内容、分类、搜索引擎、广告位、以及其他网站相关信息的管理。它可能还提供了一个平台,供用户提交网址,供管理员审核并收录到导航中。源代码可能以ASP语言编写,并在文件中包含了所有必要的程序文件。
recommend-type

【Oracle数据泵进阶技巧】:避免ORA-31634和ORA-31664错误的终极策略

# 1. Oracle数据泵技术概述 ## Oracle数据泵技术简介 Oracle数据泵(Data Pump)是一种用于高效地在Oracle数据库之间传输数据和元数据的工具。它从Oracle 10g版本开始引入,提供了快速且灵活的数据导入导出功能。数据泵技术优于旧版的`imp`和`exp`工具,因为它支持多线程,可以在导入和导出过程中显著提高性能。 ## 数据泵的核心优势 数据泵的核心优势在于它能并行处理数据,支持大对象(LOBs)和网络传输。它还允许用户自定义数据和对象的传输方式,以及可以控制传输过程中的各种细节,如过滤对象、调整数据缓冲区大小、并行度和网络数据包大小等。 ## 数据