[2025-3-18_13-57-51.43](250)[5040]S32M.[i]:TimeStamp = 250043,c语言根据标志位TimeStamp,获取每末尾时间戳值,俩俩相减

时间: 2025-06-27 11:00:28 浏览: 7
<think>好的,用户想在C语言中解析日志文件中的TimeStamp标志位,并计算时间戳末尾值两两之间的差值。首先,我需要理解用户的需求。他们可能有一个日志文件,里面有很多行,每一行可能包含类似TimeStamp=xxxxx的字段,需要提取这些xxxxx的数值,然后计算相邻两个数值的差值。 首先,我需要考虑如何读取日志文件。在C语言中,通常使用文件操作函数,比如fopen、fgets等。然后,逐行读取文件内容,直到文件结束。 接下来是解析每一行中的TimeStamp值。用户提到的是时间戳的末尾值,所以需要识别出TimeStamp=后面的数值部分。可以用字符串处理函数如strstr来查找"TimeStamp="的位置,然后从这个位置开始提取后面的数字。可能需要用sscanf或者手动遍历字符来提取数字,比如跳过非数字字符,直到遇到数字,然后读取连续的数字字符转换为整数或长整型。 然后,将这些提取出来的时间戳值存储起来。因为需要两两相减,所以需要保存前一个值和当前值。可以使用一个数组来保存所有的时间戳,或者更高效的方式是边读取边计算,只保留前一个值,这样节省内存。 在计算差值时,需要注意时间戳的顺序,以及可能的溢出问题。比如,时间戳是否可能为负数?不过通常时间戳是递增的,所以后面的值应该比前面的大,差值为正。但也要考虑用户的数据情况,是否需要处理负数情况,或者使用无符号类型。 另外,错误处理也是需要考虑的。比如,日志行中没有TimeStamp字段的情况,或者字段格式不正确,这时候需要跳过这些行,或者给出警告信息。还有文件打开失败的情况,需要检查fopen的返回值是否为NULL。 代码的大致步骤可能是这样的: 1. 打开日志文件。 2. 逐行读取文件。 3. 对每一行,查找"TimeStamp="的位置。 4. 提取后面的数值,转换为整数。 5. 将当前值与上一个值相减,得到差值。 6. 更新上一个值为当前值,继续处理下一行。 7. 关闭文件。 需要注意的细节包括:字符串处理时的指针操作是否正确,数值转换是否正确处理了可能的错误,比如非数字字符。例如,使用strtol函数可以更好地处理转换,并检查是否有转换错误。 另外,用户可能需要输出这些差值,或者在内存中保存结果。根据需求,可能需要将差值存储到数组里,或者直接打印出来。 可能的问题点:如果时间戳是浮点数,比如包含毫秒或微秒,那么需要改用double类型,并调整提取方式。但用户提到的是末尾值,可能是指整数部分,或者最后几位数字,需要确认。但根据问题描述,暂时假设是整数。 示例代码的结构可能如下: - 使用fopen打开文件,检查是否成功。 - 使用fgets循环读取每一行。 - 在每行中使用strstr查找"TimeStamp=",如果找到,则指针移动到该位置加上"TimeStamp="的长度。 - 然后提取后面的数值,可能需要跳过非数字字符(比如等号后面可能有空格或其他符号),然后读取数字。 - 将提取的值与前一个值相减(如果是第一个值则跳过),输出或存储差值。 - 处理可能的错误情况,如无法转换数值时跳过该行。 关于如何提取数值,可以使用sscanf,例如: 找到"TimeStamp="的位置后,使用sscanf(pos, "%lld", &timestamp)来读取长整型数值。但需要确保pos指向的是数值的开始,可能需要进一步处理,比如跳过等号后的空格或其他分隔符。 例如,如果日志行的格式是"TimeStamp=123456",那么pos指向的是'1'的位置,可以直接用sscanf。但如果格式是"TimeStamp= 123456",则需要跳过空格,可以用sscanf的格式字符串"%*[^0-9]%lld"来跳过非数字字符,然后读取数字。 或者,手动遍历字符,找到第一个数字的位置,然后继续直到非数字字符,截取子字符串,再用strtol转换。 对于存储差值,如果用户需要保存所有差值,可以动态分配数组,或者在处理时直接输出。 可能的代码示例如下: #include <stdio.h> #include <stdlib.h> #include <string.h> int main() { FILE *file = fopen("logfile.txt", "r"); if (!file) { perror("无法打开文件"); return 1; } char line[256]; long long prev_timestamp = -1; int is_first = 1; while (fgets(line, sizeof(line), file)) { char *ts_ptr = strstr(line, "TimeStamp="); if (ts_ptr) { ts_ptr += strlen("TimeStamp="); // 跳过非数字字符 while (*ts_ptr && !(*ts_ptr >= '0' && *ts_ptr <= '9')) { ts_ptr++; } char *end_ptr; long long current = strtoll(ts_ptr, &end_ptr, 10); if (end_ptr == ts_ptr) { // 没有找到数字 continue; } if (is_first) { prev_timestamp = current; is_first = 0; } else { long long diff = current - prev_timestamp; printf("差值: %lld\n", diff); prev_timestamp = current; } } } fclose(file); return 0; } 这个例子中,使用strstr找到TimeStamp的位置,然后跳过等号后的非数字字符,使用strtoll转换数值。处理第一个值时,只保存,不计算差值,之后每次计算与前一个的差。 用户可能需要根据实际的日志格式调整代码,比如时间戳可能包含其他分隔符,或者不同的格式,比如十六进制、带符号等。需要根据具体情况调整字符串处理部分。 此外,错误处理方面,例如,如果某一行有多个TimeStamp字段,可能需要处理最后一个或者第一个,视用户需求而定。代码示例中处理的是第一个出现的TimeStamp字段。 总结步骤: 1. 打开文件 2. 逐行读取 3. 查找TimeStamp字段 4. 提取时间戳数值 5. 计算相邻差值 6. 输出结果 需要确保数值类型足够大,比如使用long long来存储时间戳,避免溢出。如果时间戳是毫秒级别的大数值,可能需要使用更大的类型,但一般情况下,long long足够。 相关问题可能涉及性能优化、处理大文件、错误处理更全面等。</think>### 步骤说明 1. **读取日志文件** 使用标准文件操作函数`fopen`和`fgets`逐行读取日志文件,确保内存安全: ```c FILE *file = fopen("logfile.txt", "r"); if (!file) { /* 错误处理 */ } ``` 2. **定位TimeStamp字段** 通过`strstr`查找每行中的`TimeStamp=`标志位: ```c char *ts_ptr = strstr(line, "TimeStamp="); if (ts_ptr) { ts_ptr += strlen("TimeStamp="); } ``` 3. **提取时间戳数值** 跳过非数字字符后,用`strtoll`将字符串转换为`long long`类型: ```c while (*ts_ptr && !isdigit(*ts_ptr)) ts_ptr++; // 跳过非数字 long long current = strtoll(ts_ptr, &end_ptr, 10); // 十进制转换 ``` 4. **计算差值** 维护前一个时间戳`prev_timestamp`,计算相邻差值: ```c if (is_first) { prev_timestamp = current; is_first = 0; } else { long long diff = current - prev_timestamp; printf("差值: %lld\n", diff); prev_timestamp = current; } ``` 5. **错误处理与关闭文件** 确保处理无效行和释放资源: ```c if (end_ptr == ts_ptr) { /* 无数字时跳过 */ } fclose(file); // 关闭文件 ``` ### 完整代码示例 ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <ctype.h> int main() { FILE *file = fopen("logfile.txt", "r"); if (!file) { perror("无法打开文件"); return 1; } char line[256]; long long prev_timestamp = -1; int is_first = 1; while (fgets(line, sizeof(line), file)) { char *ts_ptr = strstr(line, "TimeStamp="); if (ts_ptr) { ts_ptr += strlen("TimeStamp="); while (*ts_ptr && !isdigit(*ts_ptr)) ts_ptr++; // 跳过非数字字符 char *end_ptr; long long current = strtoll(ts_ptr, &end_ptr, 10); if (end_ptr == ts_ptr) continue; // 无有效数字时跳过 if (is_first) { prev_timestamp = current; is_first = 0; } else { long long diff = current - prev_timestamp; printf("时间戳差值: %lld\n", diff); prev_timestamp = current; } } } fclose(file); return 0; } ``` ### 关键点说明 - **数值类型选择**:使用`long long`确保大时间戳的存储和计算安全。 - **错误处理**:跳过无效行和无法解析的字段,避免程序崩溃。 - **性能优化**:逐行处理,内存占用恒定,适用于大文件。
阅读全文

相关推荐

td_s32 ret; ot_vpss_grp_attr grp_attr = { 0 }; ot_vpss_chn_attr chn_attr[OT_VPSS_MAX_PHYS_CHN_NUM] = { 0 }; td_bool chn_enable[OT_VPSS_MAX_PHYS_CHN_NUM] = { 0 }; if (vpss_chn >= OT_VPSS_MAX_PHYS_CHN_NUM) { sample_print("vpss_chn:%d invalid!\n", vpss_chn); return TD_FAILURE; } grp_attr.nr_en = TD_TRUE; grp_attr.ie_en = TD_TRUE; grp_attr.dci_en = TD_TRUE; grp_attr.nr_attr.compress_mode = OT_COMPRESS_MODE_FRAME; grp_attr.dei_mode = OT_VPSS_DEI_MODE_OFF; grp_attr.pixel_format = SAMPLE_PIXEL_FORMAT; grp_attr.frame_rate.src_frame_rate = -1; grp_attr.frame_rate.dst_frame_rate = -1; grp_attr.max_width = size->width; grp_attr.max_height = size->height; chn_enable[vpss_chn] = TD_TRUE; chn_attr[vpss_chn].chn_mode = OT_VPSS_CHN_MODE_AUTO; chn_attr[vpss_chn].width = size->width; chn_attr[vpss_chn].height = size->height; chn_attr[vpss_chn].pixel_format = OT_PIXEL_FORMAT_YVU_SEMIPLANAR_420; chn_attr[vpss_chn].frame_rate.src_frame_rate = -1; chn_attr[vpss_chn].frame_rate.dst_frame_rate = -1; chn_attr[vpss_chn].border_en = TD_TRUE; chn_attr[vpss_chn].border_attr.color = COLOR_RGB_BLUE; chn_attr[vpss_chn].border_attr.top_width = 2; /* 2 : border top width */ chn_attr[vpss_chn].border_attr.bottom_width = 2; /* 2 : border bottom width */ chn_attr[vpss_chn].border_attr.left_width = 2; /* 2 : border left width */ chn_attr[vpss_chn].border_attr.right_width = 2; /* 2 : border right width */ ret = sample_common_vpss_start(vpss_grp, chn_enable, &grp_attr, chn_attr, OT_VPSS_MAX_PHYS_CHN_NUM); if (ret != TD_SUCCESS) { sample_print("failed with %#x!\n", ret); return TD_FAILURE; } return TD_SUCCESS;

#include "ADC_Config.h" #define ADCIP_CTRL (*(uint32_t*)(0x40020800+0x60)) /* ADC时钟: 14MHZ 声音范围:20Hz~20KHz TIME触发ADC:TIM频率 128K ADC采样时间 = (71.5 +12.5)/14 采样频率:128K 采样个数: 125ms=8HZ 128K/8Hz=16000次, 512K/8HZ=64000 64000/256=250 BUFF0大小256 BUFF1大小128,DMA HT中断,即要中断16000/128=125次 每125次求和 PA1:ADC_IN1 30-70DB PA2: ADC_IN2 70-100DB PA3:ADC_IN3 100-130DB 采样125ms: 共要计算 16000组数据 采样1s: 共要计算 16000*8=128000组数据 设置DMA BUFF大小 256组 HT中断 中断时间1ms 中断程序耗费8.8us 那么 采样125ms就需要中断 125000/1=125次 9K的信号能采样14组 那么 采样1s就需要中断 125*8=1000次 DMA_MEM 从开始到计算结束 用时140us 不会超过一次ADC DMA中断时间 数据不会被覆盖 */ ADC_BUFF Noise_Data; DMA_InitType DMA_InitStructure, DMA_InitStructure_MEM; u8 USB_Busy ; ADC_InitType ADC_InitStructure; extern uint16_t DMA_Test_Value[5], DMA_Test_Value1[5]; void TIM2_ETR_Config(void) { TIM_TimeBaseInitType TIM_TimeBaseStructure; OCInitType TIM_OCInitStructure; RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_TIM2, ENABLE); TIM_TimeBaseStructure.Period = TRG_FREQ_USER - 1; //64k TIM_TimeBaseStructure.Prescaler = 0; TIM_TimeBaseStructure.ClkDiv = TIM_CLK_DIV1; TIM_TimeBaseStructure.CntMode = TIM_CNT_MODE_UP; TIM_InitTimeBase(TIM2, &TIM_TimeBaseStructure); TIM_OCInitStructure.OcMode = TIM_OCMODE_PWM1; TIM_OCInitStructure.OutputState = TIM_OUTPUT_STATE_ENABLE; TIM_OCInitStructure.Pulse = TRG_FREQ_USER / 2 - 1; TIM_OCInitStructure.OcPolarity = TIM_OC_POLARITY_LOW; TIM_InitOc2(TIM2, &TIM_OCInitStructure); TIM_ConfigInt(TIM2, TIM_INT_CC2, ENABLE); /* TIM2 enable counter */ TIM_Enable(TIM2, ENABLE); TIM_EnableCtrlPwmOutputs(TIM2, ENABLE); } /** * @brief Configures the different system clocks. */ void RCC_Configuration(void) { /* Enable peripheral clocks ------------------------------------------------*/ /* Enable DMA clocks */ RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_DMA, ENABLE); /* Enable GPIOC clocks */ RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE); /* Enable ADC clocks */ RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_ADC, ENABLE); /* RCC_ADCHCLK_DIV16*/ ADC_ConfigClk(ADC_CTRL3_CKMOD_AHB, RCC_ADCHCLK_DIV2);//96/2=48M RCC_ConfigAdc1mClk(RCC_ADC1MCLK_SRC_HSE, RCC_ADC1MCLK_DIV12); //selsect HSE as RCC ADC1M CLK Source } /** * @brief Configures the different GPIO ports. */ void GPIO_Configuration(void) { GPIO_InitType GPIO_InitStructure; GPIO_InitStruct(&GPIO_InitStructure); /* Configure GPIO_PIN_WIFI_RST GPIO_PIN_WIFI_CEN GPIO_PIN_WIFI_RX GPIO_PIN_WIFI_TX as analog input ---------*/ GPIO_InitStructure.Pin = GPIO_PIN_WIFI_RST | GPIO_PIN_WIFI_CEN | GPIO_PIN_WIFI_RX | GPIO_PIN_WIFI_TX | GPIO_PIN_BATT; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Analog; GPIO_InitPeripheral(GPIOA, &GPIO_InitStructure); } //配置DMA中断 void NVIC_DMA_Config(void) { NVIC_InitType NVIC_InitStructure; //DMA通道6中断设置 NVIC_InitStructure.NVIC_IRQChannel = DMA_Channel1_IRQn;// DMA1_Channel2_3_IRQn NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //子优先级3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;//IRQ通道使能 NVIC_Init(&NVIC_InitStructure); } void Change_Addr_MEM(MEA_GROUP_TypeDef MeaGroup) { DMA_EnableChannel(DMA_CH6, DISABLE); switch(MeaGroup) { case GROUP0: DMA_InitStructure_MEM.PeriphAddr = (uint32_t)Noise_Data.Buff0; break; case GROUP1: DMA_InitStructure_MEM.PeriphAddr = (uint32_t)(&Noise_Data.Buff0[DMA_BUFF_SIZE / 2]); break; } DMA_Init(DMA_CH6, &DMA_InitStructure_MEM); if(USB_Busy == 0) //对EEPROM数据进行释放锁后才去打开DMA3 { DMA_EnableChannel(DMA_CH6, ENABLE ); } else { DMA_EnableChannel(DMA_CH6, DISABLE ); } } void ADC_DMA_Cfg(void) { SysData.DMA_Group = 0; /* System clocks configuration ---------------------------------------------*/ RCC_Configuration(); /* GPIO configuration ------------------------------------------------------*/ GPIO_Configuration(); NVIC_DMA_Config(); /* DMA channel1 configuration ----------------------------------------------*/ DMA_DeInit(DMA_CH1); DMA_InitStructure.PeriphAddr = (uint32_t)&ADC->DAT; DMA_InitStructure.MemAddr = (uint32_t)Noise_Data.Buff0; DMA_InitStructure.Direction = DMA_DIR_PERIPH_SRC; DMA_InitStructure.BufSize = DMA_BUFF_SIZE; DMA_InitStructure.PeriphInc = DMA_PERIPH_INC_DISABLE; DMA_InitStructure.DMA_MemoryInc = DMA_MEM_INC_ENABLE; DMA_InitStructure.PeriphDataSize = DMA_PERIPH_DATA_SIZE_HALFWORD; DMA_InitStructure.MemDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.CircularMode = DMA_MODE_NORMAL;//DMA_MODE_CIRCULAR; DMA_InitStructure.Priority = DMA_PRIORITY_HIGH; DMA_InitStructure.Mem2Mem = DMA_M2M_DISABLE; DMA_Init(DMA_CH1, &DMA_InitStructure); DMA_RequestRemap(DMA_REMAP_ADC1, DMA, DMA_CH1, ENABLE); DMA_ClrIntPendingBit(DMA_INT_TXC1, DMA); // DMA_ClrIntPendingBit(DMA_INT_HTX1,DMA); DMA_ConfigInt(DMA_CH1, DMA_INT_TXC, ENABLE); // DMA_ConfigInt(DMA_CH1,DMA_INT_HTX,ENABLE); /* Enable DMA channel1 */ DMA_EnableChannel(DMA_CH1, ENABLE); ADC_DeInit(ADC); /* ADC1 configuration ------------------------------------------------------*/ ADC_InitStructure.MultiChEn = ENABLE; ADC_InitStructure.ContinueConvEn = DISABLE; ADC_InitStructure.ExtTrigSelect = ADC_EXT_TRIGCONV_T2_CC2; ADC_InitStructure.DatAlign = ADC_DAT_ALIGN_R; ADC_InitStructure.ChsNumber = 4; ADC_Init(ADC, &ADC_InitStructure); ADCIP_CTRL = 0x28; //在ADC使能前配置这个 ADC_EnableTempSensorVrefint( ENABLE); /* ADC1 regular channel13 configuration */ ADC_ConfigRegularChannel(ADC, ADC_CH_1_PA0, 1, ADC_SampleTime_User);//WIFI_RST ADC_ConfigRegularChannel(ADC, ADC_CH_2_PA1, 2, ADC_SampleTime_User);//WIFI_CEN ADC_ConfigRegularChannel(ADC, ADC_CH_3_PA2, 3, ADC_SampleTime_User);//WIFI_RX ADC_ConfigRegularChannel(ADC, ADC_CH_4_PA3, 4, ADC_SampleTime_User);//WIFI_TX ADC_EnableExternalTrigConv(ADC, ENABLE); ADC_ConfigInt(ADC, ADC_INT_ENDC, ENABLE); /* Enable ADC DMA */ ADC_EnableDMA(ADC, ENABLE); /* Enable ADC */ ADC_Enable(ADC, ENABLE); /* Check ADC Ready */ while(ADC_GetFlagStatusNew(ADC, ADC_FLAG_RDY) == RESET); /* Start ADC1 calibration */ ADC_StartCalibration(ADC); /* Check the end of ADC1 calibration */ while (ADC_GetCalibrationStatus(ADC)); } #ifndef __ADC_CONFIG_H #define __ADC_CONFIG_H #include "main.h" #define ADC1_DR_Address 0x40012440 #define TRG_FREQ_1M 72 #define TRG_FREQ_500K 144 #define TRG_FREQ_600K 120 #define TRG_FREQ_300K 240 #define TRG_FREQ_50K 1440 //#define TRG_FREQ_64K 1125 //#define TRG_FREQ_32K 1125*2 #define TRG_FREQ_128K 1125 #define TRG_FREQ_64K 750 #define TRG_FREQ_USER TRG_FREQ_64K #define ADC_SampleTime_User ADC_SAMP_TIME_71CYCLES5 //要求大于 64*4=256K 48/(71.5+12.5+16)=480K >256K #define DMA_CAL_BUFF_SIZE 3200 //125ms*64*4=32000=3200*10= DMA_CAL_BUFF_SIZE*SMP_DMA_CNT 3200/64=50ms 中断一次 #define DMA_BUFF_SIZE DMA_CAL_BUFF_SIZE typedef enum { GROUP0 = 0x00, GROUP1 = 0x01, } MEA_GROUP_TypeDef; typedef struct { //ADC DMA 用 u16 Buff0[DMA_CAL_BUFF_SIZE]; u16 Buff1[DMA_CAL_BUFF_SIZE]; } ADC_BUFF; extern ADC_BUFF Noise_Data; void ADC_Config(MEA_RANGE_TypeDef MeaRange); void DMA_Config(void); void NVIC_DMA_Config(void); void DMA_Config_MEM(void); void TIM2_ETR_Config(void); void Change_Addr_MEM(MEA_GROUP_TypeDef MeaGroup); void ADC_DMA_Cfg(void); #endif /***************************************************************************** * Copyright (c) 2022, Nations Technologies Inc. * * All rights reserved. * **************************************************************************** * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the disclaimer below. * * Nations' name may not be used to endorse or promote products derived from * this software without specific prior written permission. * * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY NATIONS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * DISCLAIMED. IN NO EVENT SHALL NATIONS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file n32g43x_it.c * @author Nations * @version v1.2.0 * * @copyright Copyright (c) 2022, Nations Technologies Inc. All rights reserved. */ #include "n32g43x_it.h" #include "n32g43x.h" #include "main.h" #include "usb_istr.h" /** @addtogroup N32G43X_StdPeriph_Template * @{ */ extern __IO uint32_t CurrDataCounterEnd; /******************************************************************************/ /* Cortex-M4 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. */ void DebugMon_Handler(void) { } /** * @brief This function handles DMA interrupt request defined in main.h . */ void DMA_IRQ_HANDLER(void) { } /** * @brief This function handles USB_LP_IRQHandler Handler. */ void USB_LP_IRQHandler(void) { USB_Istr(); } /** * @brief This function handles USB WakeUp interrupt request. */ void USBWakeUp_IRQHandler(void) { EXTI_ClrITPendBit(EXTI_LINE17); } void DMA_Channel1_IRQHandler(void) { //国民芯片在一个DMA通道里面 配置另一个DMA通道会导致当前通道顺序异常 //这里配置 2us完成 ADC 一次的时间是15.4us 足够赶上下一次ADC完成 if(DMA_GetIntStatus(DMA_INT_TXC1, DMA) != RESET) //全传输完 { DMA_ClrIntPendingBit(DMA_INT_TXC1, DMA); //国民芯片 建议传输完成 重新配置TXNUM 否则可能出现顺序错乱 DMA_CH1->CHCFG &= (uint16_t)(~DMA_CHCFG1_CHEN); DMA_CH1->TXNUM = DMA_BUFF_SIZE; SysData.DMA_Group = !SysData.DMA_Group; DMA_CH1->MADDR = (uint32_t)Noise_Data.Buff0; if(SysData.DMA_Group != 0) { DMA_CH1->MADDR = (uint32_t)Noise_Data.Buff1; } DMA_CH1->CHCFG |= DMA_CHCFG1_CHEN; SysFlag.DMA_OK = 1; } } void DMA_Channel6_IRQHandler(void) { if(DMA_GetIntStatus(DMA_INT_TXC6, DMA) != RESET) { DMA_ClrIntPendingBit(DMA_INT_TXC6, DMA); // Get_AD_SUM(); } } void ADC_IRQHandler(void) { if(ADC_GetIntStatus(ADC, ADC_INT_ENDC) != RESET) { ADC_ClearIntPendingBit(ADC, ADC_INT_ENDC); // LED1_Turn(); } } void TIM2_IRQHandler(void) { if(TIM_GetFlagStatus(TIM2, TIM_FLAG_CC2) == SET) { TIM_ClearFlag(TIM2, TIM_FLAG_CC2); // LED1_Turn(); // test1++; } } void TIM3_IRQHandler(void) { if(TIM_GetFlagStatus(TIM3, TIM_FLAG_UPDATE) == SET) { TIM_ClearFlag(TIM3, TIM_FLAG_UPDATE); // Clock_150++; // Clock_500++; // Clock_750++; // SysClock++; // // Buzzer_Process(); } } void TIM4_IRQHandler(void) { if(TIM_GetFlagStatus(TIM4, TIM_FLAG_UPDATE) == SET) { TIM_ClearFlag(TIM4, TIM_FLAG_UPDATE); Clock_150++; Clock_500++; Clock_750++; SysClock++; LED1_Turn(); Buzzer_Process(); } } void EXTI9_5_IRQHandler(void) { if(EXTI_GetITStatus(EXTI_LINE8) != RESET) { EXTI_ClrITPendBit(EXTI_LINE8); SysFlag.PWD = 1; Clock_500 = 0; if((SysFlag.EraseDoing) && (SysInfo.PWRON_Erase == 0)) { SysInfo.PWRON_Erase = 1; Save_Param(&SysInfo.PWRON_Erase, sizeof(SysInfo.PWRON_Erase)); } } } /** * @brief This function handles SysTick Handler. */ u32 Time_1ms = 0; void SysTick_Handler(void) { Time_1ms++; } /******************************************************************************/ /* N32G43X Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_n32g43x.s). */ /******************************************************************************/ /** * @brief This function handles PPP interrupt request. */ /*void PPP_IRQHandler(void) { }*/ /** * @} */ void Get_AD_SUM(void) { uint64_t Sum[3] = {0, 0, 0}; //这里有3种计算,分别是sum[0],sum[1],sum[2] u8 Ratio; u16 loopi, *Data; u32 Temp; Data = Noise_Data.Buff1;//将DMA移过来的地址给Data if(SysData.DMA_Group != 0) Data = Noise_Data.Buff0;//将DMA移过来的地址给Data SysData.BattCnt = 0; //sum[0] for(loopi = 0; loopi < DMA_CAL_BUFF_SIZE; loopi += 4) //循环480/3=150次 { Temp = (u32)(*Data); //将Noise_Data.Buff1的值给Temp Data++;//地址++ if(Temp > ADC_HLimit) SysData.OverCntt[0]++; //如果Temp>2482,数据溢出的标志位++,这个数据溢出的标志位也有3种,用数组来表示 Temp = Temp + (s32)SysInfo.Cal_Adc[0];// 这个应该是存放校准后的ADC if(Temp > 0x80000000)Temp = 0; Temp = Temp * Temp; //不知道平方一次是用来干啥的 Sum[0] += (uint64_t)Temp; //计算总和,存到sum[0] //sum[1] Temp = (u32)(*Data); Data++; if(Temp > ADC_HLimit_H) SysData.OverCntt[1]++; Temp = Temp + (s32)SysInfo.Cal_Adc[1]; if(Temp > 0x80000000)Temp = 0; Temp = Temp * Temp; Sum[1] += (uint64_t)Temp; //计算总和,存到sum[1] //sum[2] Temp = (u32)(*Data); Data++; Temp = Temp + (s32)SysInfo.Cal_Adc[2]; if(Temp > 0x80000000) Temp = 0; Temp = Temp * Temp; Sum[2] += (uint64_t)Temp; //计算总和,存到sum[2] if(SysData.BattCnt < 64) { SysData.BattBuff[SysData.BattCnt++] = *Data; } Data++; } SysData.Batt = 0; for(loopi = 0; loopi < 64; loopi++) { SysData.Batt += SysData.BattBuff[loopi]; } SysData.Batt = SysData.Batt / 64; // //报警时低于3.3V不关机问题,电源检测这里添加关机 // if(SysData.Batt < BattSHUT) // { // Shut_Down(); // } //将计算的总和,存到SysData.ADC_VALUE SysData.ADC_VALUE[0] += (double)Sum[0]; SysData.ADC_VALUE[1] += (double)Sum[1]; SysData.ADC_VALUE[2] += (double)Sum[2]; SysData.ADC_CNT++; Ratio = SysData.Freq_Resp * 7 + 1; //不知道这2句是干嘛的 if(SysData.ADC_CNT >= (SMP_DMA_CNT * Ratio)) { SysData.ADC_CNT = 0; // if(SysData.Cal_Mode == 0) // { // if(SysData.OverCntt[0] < MIN_OVER_CNT) //溢出计数判断 // { // SysData.Adc_Range = RANG_70DB; // } // else if(SysData.OverCntt[1] < MIN_OVER_CNT) // { // SysData.Adc_Range = RANG_100DB; // } // else // { // SysData.Adc_Range = RANG_130DB; // } // } SysData.ADC_Sum_Value = (SysData.ADC_VALUE[SysData.Adc_Range] / (float)Ratio) + SysInfo.Cal_Adc_Squ[SysData.Adc_Range]; if(SysData.ADC_Sum_Value < 0) { ; } else { // Get_Noise_Data(); } SysData.ADC_VALUE[0] = 0; SysData.ADC_VALUE[1] = 0; SysData.ADC_VALUE[2] = 0; SysData.OverCntt[0] = 0; SysData.OverCntt[1] = 0; SysData.OverCntt[2] = 0; } } void Get_Noise_Data(void) { Phasea = SysData.ADC_Sum_Value; /* 523公式:10*log10(SysData.ADC_Sum_Value) *10 //是为了扩大10倍 用于获取小数部分,来显示 */ Phasea = log10(Phasea); Phasea = Phasea * 1000; Phaseb = (u32)Phasea; SysData.CAL_INT_Value = Phaseb + SysInfo.Cal_DB[SysData.Adc_Range]; SysData.ADC_INT_Value = SysData.CAL_INT_Value / 10; if(SysData.Cal_Mode == 0) { if(SysData.ADC_TAB_CNT == 0) { SysData.ADC_TAB_CNT = 1; SysData.ADC_INT_Value_TAB[1] = SysData.ADC_INT_Value; SysData.ADC_INT_Value_TAB[2] = SysData.ADC_INT_Value; SysData.ADC_INT_Value_TAB[3] = SysData.ADC_INT_Value; } else { SysData.ADC_INT_Value_TAB[3] = SysData.ADC_INT_Value_TAB[2]; SysData.ADC_INT_Value_TAB[2] = SysData.ADC_INT_Value_TAB[1]; SysData.ADC_INT_Value_TAB[1] = SysData.ADC_INT_Value_TAB[0]; } SysData.ADC_INT_Value_TAB[0] = SysData.ADC_INT_Value; } else { SysData.CalEn = 1; if(SysData.Adc_Range == RANG_130DB) { if(SysData.ADC_INT_Value == 1300) { SysFlag.FlickEn = 1; } else { SysFlag.FlickEn = 0; } } } } 保留温湿度和电压,去除噪音

最新推荐

recommend-type

关于S32K系列驱动之----SPI(SDK)开发分享.docx

在本文档中,我们将深入探讨S32K系列微控制器(MCU)的SPI(Serial Peripheral Interface)驱动开发,特别是基于SDK144/6芯片的DEMO版本。SPI是一种同步串行通信协议,广泛应用于各种外设的连接,如传感器、存储器等...
recommend-type

(完整word版)《网站设计与建设》教案-顾伟.doc

(完整word版)《网站设计与建设》教案-顾伟.doc
recommend-type

assimp-5.2.4.tar

assimp-5.2.4.tar
recommend-type

Web2.0新特征图解解析

Web2.0是互联网发展的一个阶段,相对于早期的Web1.0时代,Web2.0具有以下显著特征和知识点: ### Web2.0的定义与特点 1. **用户参与内容生产**: - Web2.0的一个核心特征是用户不再是被动接收信息的消费者,而是成为了内容的生产者。这标志着“读写网络”的开始,用户可以在网络上发布信息、评论、博客、视频等内容。 2. **信息个性化定制**: - Web2.0时代,用户可以根据自己的喜好对信息进行个性化定制,例如通过RSS阅读器订阅感兴趣的新闻源,或者通过社交网络筛选自己感兴趣的话题和内容。 3. **网页技术的革新**: - 随着技术的发展,如Ajax、XML、JSON等技术的出现和应用,使得网页可以更加动态地与用户交互,无需重新加载整个页面即可更新数据,提高了用户体验。 4. **长尾效应**: - 在Web2.0时代,即使是小型或专业化的内容提供者也有机会通过互联网获得关注,这体现了长尾理论,即在网络环境下,非主流的小众产品也有机会与主流产品并存。 5. **社交网络的兴起**: - Web2.0推动了社交网络的发展,如Facebook、Twitter、微博等平台兴起,促进了信息的快速传播和人际交流方式的变革。 6. **开放性和互操作性**: - Web2.0时代倡导开放API(应用程序编程接口),允许不同的网络服务和应用间能够相互通信和共享数据,提高了网络的互操作性。 ### Web2.0的关键技术和应用 1. **博客(Blog)**: - 博客是Web2.0的代表之一,它支持用户以日记形式定期更新内容,并允许其他用户进行评论。 2. **维基(Wiki)**: - 维基是另一种形式的集体协作项目,如维基百科,任何用户都可以编辑网页内容,共同构建一个百科全书。 3. **社交网络服务(Social Networking Services)**: - 社交网络服务如Facebook、Twitter、LinkedIn等,促进了个人和组织之间的社交关系构建和信息分享。 4. **内容聚合器(RSS feeds)**: - RSS技术让用户可以通过阅读器软件快速浏览多个网站更新的内容摘要。 5. **标签(Tags)**: - 用户可以为自己的内容添加标签,便于其他用户搜索和组织信息。 6. **视频分享(Video Sharing)**: - 视频分享网站如YouTube,用户可以上传、分享和评论视频内容。 ### Web2.0与网络营销 1. **内容营销**: - Web2.0为内容营销提供了良好的平台,企业可以通过撰写博客文章、发布视频等内容吸引和维护用户。 2. **社交媒体营销**: - 社交网络的广泛使用,使得企业可以通过社交媒体进行品牌传播、产品推广和客户服务。 3. **口碑营销**: - 用户生成内容、评论和分享在Web2.0时代更易扩散,为口碑营销提供了土壤。 4. **搜索引擎优化(SEO)**: - 随着内容的多样化和个性化,SEO策略也必须适应Web2.0特点,注重社交信号和用户体验。 ### 总结 Web2.0是对互联网发展的一次深刻变革,它不仅仅是一个技术变革,更是人们使用互联网的习惯和方式的变革。Web2.0的时代特征与Web1.0相比,更加注重用户体验、社交互动和信息的个性化定制。这些变化为网络营销提供了新的思路和平台,也对企业的市场策略提出了新的要求。通过理解Web2.0的特点和应用,企业可以更好地适应互联网的发展趋势,实现与用户的深度互动和品牌的有效传播。
recommend-type

【C++编程新手必看】:一步步带你制作出风靡全球的“别踩白块儿”游戏

# 摘要 本文全面介绍C++编程在游戏开发中的应用,涵盖了从基础概念到具体实现的多个方面。首先,文章提供了游戏开发环境的搭建指南,包括编译器配置和开发工具的选择。随后,重点介绍了游戏主循环和基本框架的构建,强调了事件处理和渲染技术。在游戏逻辑和交互设计方面,本文阐述了界面布局、事件响应和游戏状态管理的核心实现。为了提升游戏体验,本文还探讨了添加音效和背景音乐以及开发高级游戏特性的方法。最后,文章介绍了性能优化和跨平台发布的过程,包括游戏的打包和针对不同平台的发布策略。本文旨在为C++游戏开发者提供一个实用的开发指南,帮助他们从零开始构建出性能优化、跨平台兼容的游戏。 # 关键字 C++编程;
recommend-type

使用scikit-learn训练模型来预测鸢尾花种类

<think>我们使用scikit-learn库来训练一个分类模型预测鸢尾花种类。鸢尾花数据集是scikit-learn内置的经典数据集,包含三种鸢尾花的四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和对应的类别标签。步骤:1.导入必要的库和数据集2.数据探索(可选,但建议了解数据)3.数据预处理(如划分训练集和测试集、标准化等)4.选择模型(例如KNN、随机森林等)5.训练模型6.模型评估7.使用模型进行预测下面以KNN(K近邻)算法为例,展示完整流程。</think>### 使用 scikit-learn 训练鸢尾花分类模型 以下是基于 scikit-learn 训练鸢尾花分类模型的
recommend-type

WWF工作流设计器C#源码解析及演示

### WWF工作流设计器控件C#源码知识点 #### 1. WWF(Windows Workflow Foundation)概述 WWF是微软公司推出的一个工作流框架,作为.NET Framework的一部分。它提供了一套丰富的API,用于设计、执行和管理工作流。工作流可以用于各种应用程序,包括Web应用、服务和桌面应用,使得开发者能够将复杂的业务逻辑以工作流的形式表现出来,简化业务流程自动化和管理。 #### 2. 工作流设计器控件(Workflow Designer Control) 工作流设计器控件是WWF中的一个组件,主要用于提供可视化设计工作流的能力。它允许用户通过拖放的方式在界面上添加、配置和连接工作流活动,从而构建出复杂的工作流应用。控件的使用大大降低了工作流设计的难度,并使得设计工作流变得直观和用户友好。 #### 3. C#源码分析 在提供的文件描述中提到了两个工程项目,它们均使用C#编写。下面分别对这两个工程进行介绍: - **WorkflowDesignerControl** - 该工程是工作流设计器控件的核心实现。它封装了设计工作流所需的用户界面和逻辑代码。开发者可以在自己的应用程序中嵌入这个控件,为最终用户提供一个设计工作流的界面。 - 重点分析:控件如何加载和显示不同的工作流活动、控件如何响应用户的交互、控件状态的保存和加载机制等。 - **WorkflowDesignerExample** - 这个工程是演示如何使用WorkflowDesignerControl的示例项目。它不仅展示了如何在用户界面中嵌入工作流设计器控件,还展示了如何处理用户的交互事件,比如如何在设计完工作流后进行保存、加载或执行等。 - 重点分析:实例程序如何响应工作流设计师的用户操作、示例程序中可能包含的事件处理逻辑、以及工作流的实例化和运行等。 #### 4. 使用Visual Studio 2008编译 文件描述中提到使用Visual Studio 2008进行编译通过。Visual Studio 2008是微软在2008年发布的集成开发环境,它支持.NET Framework 3.5,而WWF正是作为.NET 3.5的一部分。开发者需要使用Visual Studio 2008(或更新版本)来加载和编译这些代码,确保所有必要的项目引用、依赖和.NET 3.5的特性均得到支持。 #### 5. 关键技术点 - **工作流活动(Workflow Activities)**:WWF中的工作流由一系列的活动组成,每个活动代表了一个可以执行的工作单元。在工作流设计器控件中,需要能够显示和操作这些活动。 - **活动编辑(Activity Editing)**:能够编辑活动的属性是工作流设计器控件的重要功能,这对于构建复杂的工作流逻辑至关重要。 - **状态管理(State Management)**:工作流设计过程中可能涉及保存和加载状态,例如保存当前的工作流设计、加载已保存的工作流设计等。 - **事件处理(Event Handling)**:处理用户交互事件,例如拖放活动到设计面板、双击活动编辑属性等。 #### 6. 文件名称列表解释 - **WorkflowDesignerControl.sln**:解决方案文件,包含了WorkflowDesignerControl和WorkflowDesignerExample两个项目。 - **WorkflowDesignerControl.suo**:Visual Studio解决方案用户选项文件,该文件包含了开发者特有的个性化设置,比如窗口布局、断点位置等。 - **Thumbs.db**:缩略图缓存文件,由Windows自动生成,用于存储文件夹中的图片缩略图,与WWF工作流设计器控件功能无关。 - **WorkflowDesignerExample**:可能是一个文件夹,包含了示例工程相关的所有文件,或者是示例工程的可执行文件。 - **EULA.txt**:最终用户许可协议文本文件,通常说明了软件的版权和使用许可条件。 综上所述,该文件集包含了WWF工作流设计器控件的完整C#源码以及相应的Visual Studio项目文件,开发者可以利用这些资源深入理解WWF工作流设计器控件的工作机制,并将其应用于实际的项目开发中,实现工作流的设计和管理功能。
recommend-type

CAD数据在ANSA中:完美修复几何数据的策略与方法

# 摘要 CAD数据的准确性和几何完整性对于产品设计和工程分析至关重要。本文首先强调了CAD数据和几何修复的重要性,随后介绍了ANSA软件在处理CAD数据中的角色。通过详细的分析,本文探讨了几何数据的常见问题,以及有效的手动和自动修复技术。文中还提供了几何修复在实际应用中的案例分析,并讨论了行业未来对几何修复技术的需求和新兴技术趋势。文章旨在为CAD数据几何修复提供全面的理论知识、诊断方法和修复策略,并
recommend-type

编写verilog代码实现以上的规格化功能

<think>我们有一个16位的二进制数,其格式如下:-a15:尾数符号位(1位)-a14-a5:尾数数值位(10位)-a4:指数符号位(1位)-a3-a0:指数数值位(4位)规格化的目标:确保尾数数值位的最高位a14为1(即尾数的绝对值在[0.5,1)范围内)。步骤:1.提取输入信号的各个部分:尾数符号位、尾数数值位、指数符号位、指数数值位。2.将尾数数值位(10位)视为无符号整数M(范围0到1023),我们需要通过左移操作使得M的最高位为1(即M>=512)。同时记录左移的位数(shift_count)。3.调整指数:新的指数=原指数-shift_count(因为尾数左移相当于乘以2^sh
recommend-type

探索ARM9 2410开发板与wince5.0系统的高级实验

标题中的“周立功ARM (magicarm2410) 高级实验”指明了文档内容涉及周立功品牌下的ARM9 2410开发板的高级使用实验。ARM9 2410是基于ARM920T内核的处理器,广泛应用于嵌入式系统开发。周立功是一家在电子与嵌入式系统领域内具有影响力的公司,提供嵌入式教学和开发解决方案。MagicARM2410是该公司的某型号开发板,可能专为教学和实验设计,携带了特定的实验内容,例如本例中的“eva例程”。 描述提供了额外的背景信息,说明周立功ARM9 2410开发板上预装有Windows CE 5.0操作系统,以及该开发板附带的EVA例程。EVA可能是用于实验教学的示例程序或演示程序。文档中还提到,虽然书店出售的《周立功 ARM9开发实践》书籍中没有包含EVA的源码,但该源码实际上是随开发板提供的。这意味着,EVA例程的源码并不在书籍中公开,而是需要直接从开发板上获取。这对于那些希望深入研究和修改EVA例程的学生和开发者来说十分重要。 标签中的“magicarm2410”和“周立功ARM”是对文档和开发板的分类标识。这些标签有助于在文档管理系统或资料库中对相关文件进行整理和检索。 至于“压缩包子文件的文件名称列表:新建文件夹”,这表明相关文件已经被打包压缩,但具体的文件内容和名称没有在描述中列出。我们仅知道压缩包内至少存在一个“新建文件夹”,这可能意味着用户需要进一步操作来查看或解压出文件夹中的内容。 综合以上信息,知识点主要包括: 1. ARM9 2410开发板:一款基于ARM920T内核的处理器的嵌入式开发板,适用于教学和项目实验。 2. Windows CE 5.0系统:这是微软推出的专为嵌入式应用设计的操作系统,提供了一个可定制、可伸缩的、实时的操作环境。 3. EVA例程:一个嵌入式系统开发的教学或实验示例程序。它可能被设计用于演示特定功能或技术,如显示、控制或通信。 4. 开发实践书籍与源码提供:《周立功 ARM9开发实践》一书可能详细介绍了ARM9 2410开发板的使用方法,但书中的内容不包含EVA例程的源码,源码需要通过其他途径获得。 5. 文件打包压缩:文档可能以压缩包的形式存在,包含了需要的内容,但具体内容未知,需要解压缩之后才能查看。 了解这些知识点后,对于从事嵌入式系统开发的工程师或者学生来说,可以更好地利用周立功 ARM9 2410开发板进行学习和实验,尤其是可以进行更深入的研究和实验设计,通过EVA例程的源码来理解嵌入式系统的运行机制和程序结构。同时,也能够使用Windows CE 5.0系统环境来开发相应的应用程序。