从0开始复现unet
时间: 2025-06-22 13:37:07 浏览: 5
Unet是一种经典的卷积神经网络(CNN),特别适用于图像分割任务,如医学影像分析、遥感图像解析等。要从头开始复现Unet,你需要遵循以下步骤:
1. **导入必要的库**:首先安装Python的深度学习库如TensorFlow或PyTorch,并引入相关的模块。
```python
import torch
from torch import nn
import torchvision.models as models
```
2. **定义基础网络结构**:Unet通常基于预训练的卷积模型(如VGG16、ResNet等)。你可以选择其中一个,然后去掉顶部的全连接层。
```python
def get_encoder(input_channels, base_model_name='vgg16'):
encoder = getattr(models, base_model_name)(pretrained=True)
for param in encoder.parameters():
param.requires_grad_(False)
# 获取特征图列表
layers = list(encoder.children())[:-1] if base_model_name == 'vgg16' else list(encoder.children())[:-2]
return nn.Sequential(*layers), list(layers)[-1].out_channels
```
3. **设计编码器-解码器结构**:将预训练的前部分作为编码器,通过上采样(upsampling)和拼接操作连接到解码器部分,逐渐增加通道数并恢复分辨率。
```python
class UNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, upsample=True):
super(UNetBlock, self).__init__()
self.upsample = upsample and nn.Upsample(scale_factor=2) or None
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.norm = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU()
def forward(self, x1, x2=None):
if x2 is not None:
x = torch.cat([x2, self.upsample(x1)], dim=1)
else:
x = self.upsample(x1)
x = self.conv(x)
x = self.norm(x)
x = self.activation(x)
return x
class UnetDecoder(nn.Module):
def __init__(self, num_classes, in_channels, start_filters):
super(UnetDecoder, self).__init__()
self.decoder = nn.Sequential(
UNetBlock(in_channels, start_filters * 2),
UNetBlock(start_filters * 2, start_filters * 4),
UNetBlock(start_filters * 4, start_filters * 8),
nn.Conv2d(start_filters * 8, num_classes, kernel_size=1)
)
def forward(self, x):
return self.decoder(x)
```
4. **构建完整的Unet模型**:
```python
def build_unet(input_channels, num_classes):
encoder_channels, last_layer_channels = get_encoder(input_channels)
decoder = UnetDecoder(num_classes, last_layer_channels, start_filters=64)
model = nn.Sequential()
model.add_module('encoder', encoder_channels)
model.add_module('decoder', decoder)
return model
```
5. **训练模型**:定义损失函数(如交叉熵损失)、优化器和训练循环。
```python
# ...省略训练过程...
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
# train loop
for epoch in range(num_epochs):
model.train() # 开启训练模式
# ...省略训练步骤...
model.eval() # 开启验证模式
```
阅读全文
相关推荐


















