yolotxt文件转为sddxml
时间: 2025-04-16 18:24:08 浏览: 24
### 将YOLO格式的TXT文件转换为SDD XML格式
#### 转换过程概述
为了实现从YOLO格式到SDD XML格式的转换,需要编写脚本解析原始YOLO标签文件中的边界框坐标,并按照目标检测标准(Pascal VOC)创建对应的XML描述文件。YOLO格式通常保存在`.txt`文件中,每行代表一个对象及其位置;而SDD XML则是一种更详细的标注方式,适用于多种计算机视觉任务。
#### 解析YOLO TXT文件
YOLO格式下的每一行记录如下所示:
- 类别索引
- 边界框中心点相对于图像宽度的比例 (x_center)
- 边界框中心点相对于图像高度的比例 (y_center)
- 边界框宽高分别占整个图片尺寸比例 (width, height)
这些数值均位于0至1之间[^1]。
#### 创建相应的XML结构
对于每一个YOLO `.txt`文件关联的对象,都需要构建一段特定模式的XML片段来表示该物体的位置和其他属性。典型的XML条目可能看起来像这样:
```xml
<object>
<name>person</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>x_min</xmin>
<ymin>y_min</ymin>
<xmax>x_max</xmax>
<ymax>y_max</ymax>
</bndbox>
</object>
```
其中 `<name>` 是指类别名称,其余字段用于指定边界的最小和最大坐标值[xmin,ymin,xmax,ymax][^3]。
#### Python代码示例
下面是一个简单的Python函数例子,它读取YOLO格式的文本文件并将它们转化为上述提到的标准XML格式:
```python
import xml.etree.ElementTree as ET
from pathlib import Path
def yolo_to_xml(yolo_file_path: str, image_width: int, image_height: int, output_dir: str):
"""
Convert a single YOLO format .txt file to Pascal VOC style XML.
:param yolo_file_path: path of the input YOLO annotation text file
:param image_width: width of corresponding image in pixels
:param image_height: height of corresponding image in pixels
:param output_dir: directory where generated XML files will be saved
"""
def create_object_element(class_name, xmin, ymin, xmax, ymax):
obj = ET.SubElement(root, 'object')
name = ET.SubElement(obj, 'name')
pose = ET.SubElement(obj, 'pose')
truncated = ET.SubElement(obj, 'truncated')
difficult = ET.SubElement(obj, 'difficult')
bndbox = ET.SubElement(obj, 'bndbox')
name.text = class_names[int(class_name)]
pose.text = "Unspecified"
truncated.text = "0"
difficult.text = "0"
ET.SubElement(bndbox, 'xmin').text = str(xmin)
ET.SubElement(bndbox, 'ymin').text = str(ymin)
ET.SubElement(bndbox, 'xmax').text = str(xmax)
ET.SubElement(bndbox, 'ymax').text = str(ymax)
with open(yolo_file_path) as f:
lines = f.readlines()
root = ET.Element('annotation')
folder = ET.SubElement(root, 'folder')
filename = ET.SubElement(root, 'filename')
size_part = ET.SubElement(root, 'size')
depth = ET.SubElement(size_part, 'depth')
# Assuming images are stored under './images/' relative to this script's location,
# and have extension '.jpg'. Adjust accordingly based on actual setup.
img_folder = "./images/"
ext = ".jpg"
base_name = Path(yolo_file_path).stem
folder.text = img_folder
filename.text = base_name + ext
ET.SubElement(size_part, 'width').text = str(image_width)
ET.SubElement(size_part, 'height').text = str(image_height)
depth.text = "3" # assuming RGB color space
for line in lines:
parts = list(map(float, line.strip().split()))
cls_id = int(parts[0])
center_x = float(parts[1]) * image_width
center_y = float(parts[2]) * image_height
bbox_w = float(parts[3]) * image_width
bbox_h = float(parts[4]) * image_height
x_min = max(int(center_x - bbox_w / 2), 0)
y_min = max(int(center_y - bbox_h / 2), 0)
x_max = min(int(center_x + bbox_w / 2), image_width - 1)
y_max = min(int(center_y + bbox_h / 2), image_height - 1)
create_object_element(cls_id, x_min, y_min, x_max, y_max)
tree = ET.ElementTree(root)
out_file = Path(output_dir) / (base_name + ".xml")
tree.write(out_file, encoding='utf8', method="xml")
if __name__ == "__main__":
# Example usage
classes = ["class_0", "class_1"] # Replace these names according to your dataset labels
global class_names
class_names = {i: n for i, n in enumerate(classes)}
yolo_to_xml("path/to/your/yolo.txt", 640, 480, "output/xmls/")
```
阅读全文
相关推荐












