我要构建一个知识图谱用来做音乐推荐系统,在pycharm中,数据源在mysql中,如何构建知识图谱并存在neo4j中
时间: 2025-06-27 08:01:09 浏览: 13
<<
要将MySQL中的数据转化为Neo4J的知识图谱,并用于构建音乐推荐系统,大致分为以下几个步骤:
1. **从MySQL中提取数据**:使用`pymysql`库连接到MySQL数据库并将所需的数据加载为DataFrame或字典形式。
2. **处理与转换数据结构**:对提取出的数据进行清洗、标准化以及关系建模(例如实体识别和关系定义)。
3. **将数据导入Neo4j**:利用Py2neo或其他Python Neo4j驱动程序创建节点和边存储进Neo4j。
下面是详细的代码示例及说明:
```python
import pymysql
from py2neo import Graph, Node, Relationship
# Step 1: Connect to MySQL and fetch data
def get_data_from_mysql():
connection = pymysql.connect(host='localhost',
user='root',
password='password',
database='music_db')
try:
with connection.cursor() as cursor:
sql_query_songs = "SELECT song_id, title FROM songs"
sql_query_artists = "SELECT artist_id, name FROM artists"
sql_query_relationships = """
SELECT s.song_id, a.artist_id
FROM songs s JOIN song_artist sa ON s.song_id = sa.song_id
JOIN artists a ON a.artist_id = sa.artist_id;
"""
# Fetching Data into dictionaries/lists etc.
cursor.execute(sql_query_songs)
songs = {row[0]: row[1] for row in cursor.fetchall()}
cursor.execute(sql_query_artists)
artists = {row[0]: row[1] for row in cursor.fetchall()}
cursor.execute(sql_query_relationships)
relationships = [(song_id, artist_id) for (song_id, artist_id) in cursor.fetchall()]
return songs, artists, relationships
finally:
connection.close()
# Step 2 & 3: Process the data and push it to neo4j graph db.
def create_knowledge_graph(songs, artists, relationships):
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))
tx = graph.begin()
node_map_song = {}
node_map_artist = {}
# Create Nodes from Songs Dictionary
for song_id, title in songs.items():
song_node = Node('Song', id=song_id, title=title)
tx.create(song_node)
node_map_song[song_id] = song_node
# Similarly For Artists
for artist_id, name in artists.items():
artist_node = Node('Artist', id=artist_id, name=name)
tx.create(artist_node)
node_map_artist[artist_id] = artist_node
# Establish Relationships Between Songs And Artists As Retrieved From The Database Query Results
for song_id, artist_id in relationships:
rel = Relationship(node_map_song.get(song_id), 'SUNG_BY', node_map_artist.get(artist_id))
tx.create(rel)
tx.commit()
if __name__ == "__main__":
songs_dict, artists_dict, relations_list = get_data_from_mysql()
create_knowledge_graph(songs_dict, artists_dict, relations_list)
```
### 解释:
1. 使用 `pymysql` 库建立与 MySQL 数据库的链接,并执行 SQL 查询语句获取歌曲信息、艺术家信息及其之间的关联关系;
2. 将查询结果映射成 Python 字典/列表的形式方便后续操作;
3. 利用 Py2neo 的 API 创建一个 Neo4j 图形对象实例化后开始事务,接着逐个添加歌单作为“歌曲”类型的节点,同样地添加艺人名称组成另一类别的顶点即"艺人";
4. 最终基于之前得到的关系表新建两个类型间的连结——也就是所谓的边(edge),从而完成整个知识图谱的基本构造过程;
#### 注意事项:
- 必须确保已经安装了必要的依赖包如`pip install pymysql py2neo`
- 替换上述例子中的主机名/IP地址等配置项以匹配您的实际环境设置情况
阅读全文
相关推荐

















