unsigned short CRC16 (puchMsg, usDataLen) /* 该函数返回 CRC 作为 unsigned short 类型 */ unsigned char *puchMsg ; /* 要计算 CRC 的消息 */ unsigned short usDataLen ; /* 消息中的字节数 */ { unsigned char uchCRCHi = 0xFF ; /* CRC 高字节初始化 */ unsigned char uchCRCLo = 0xFF ; /* CRC 低字节初始化 */ unsigned uIndex ; /* 用于索引 CRC 查找表 */ while (usDataLen--) /* 遍历消息缓冲区 */ { uIndex = uchCRCLo ^ *puchMsg++ ; /* 计算 CRC */ uchCRCLo = uchCRCHi ^ auchCRCHi[uIndex] ; uchCRCHi = auchCRCLo[uIndex] ; } return (uchCRCHi << 8 | uchCRCLo) ; }

时间: 2025-06-11 10:54:22 浏览: 14
<think>好的,我现在要解释用户提供的这个CRC16函数的实现。首先,我需要回忆一下CRC校验的基本原理。CRC,循环冗余校验,是一种通过多项式除法来检测数据传输或存储中错误的校验码。用户给的这段代码看起来是一个基于查表法的CRC16计算函数。 首先,函数的定义是unsigned short CRC16,参数是unsigned char指针puchMsg和unsigned short类型的usDataLen。函数内部初始化了两个变量uchCRCHi和uchCRCLo为0xFF,这应该是CRC寄存器的初始值。然后进入一个循环,处理每个字节的数据。 在循环内部,uIndex被计算为uchCRCLo异或当前消息字节。这里可能用的是查表法,所以uIndex作为索引去查两个不同的表auchCRCHi和auchCRCLo,然后更新CRC的高低位字节。最后返回组合后的高8位和低8位。 不过这里有几个疑问点:通常CRC查表法可能只需要一个预计算的表,而这里用了两个表auchCRCHi和auchCRCLo,这可能是因为将CRC寄存器分成了高低两个字节,每个表对应不同的部分。需要确认这两个表的生成方式是否符合特定的CRC16标准,比如CRC-16-CCITT或者其他变种。 另外,初始值设置为0xFFFF,这是常见的CRC16的初始值,比如CRC-16-CCITT。而循环中每个字节的处理步骤是否正确,比如异或的顺序,查表的方式是否正确。例如,每次处理一个字节时,是否应该先与CRC的低字节异或,然后查表得到新的高低字节。这需要参考具体的CRC算法步骤。 还有,返回值的组合是uchCRCHi左移8位后与uchCRCLo进行或操作,即高位在前,低位在后,是否正确?这取决于具体的CRC规范,有的可能是大端序,有的可能是小端序。例如,CRC-16通常是将高位放在前面,所以这里的处理是正确的。 可能存在的一个问题是,在代码中,uchCRCLo被赋值为uchCRCHi异或auchCRCHi[uIndex],而uchCRCHi被赋值为auchCRCLo[uIndex]。这里的表命名可能有点混淆,需要确认auchCRCHi和auchCRCLo这两个表是否对应正确的预计算值。通常,查表法中的每个表项是一个16位的值,分成高低两个部分。所以可能这里是将预先生成的高字节和低字节分别存储在两个不同的数组中,这样处理的时候可以分别取出高低字节进行异或操作。 举个例子,假设当前CRC寄存器的高字节是uchCRCHi,低字节是uchCRCLo,处理下一个数据字节时,将低字节与数据字节异或得到索引uIndex,然后用这个索引查高字节表得到新的低字节(uchCRCLo = uchCRCHi ^ auchCRCHi[uIndex]),而高字节则来自低字节表auchCRCLo[uIndex]。这样可能对应于特定的位序或多项式处理。 需要确认这种处理方式是否符合某个标准的CRC16算法。例如,CRC-16-CCITT的标准多项式是0x1021,初始值0xFFFF,结果异或值0x0000。如果在代码中使用的多项式或表的生成方式不同,结果也会不同。 另外,循环结束后是否需要与结果异或值进行异或操作?比如有些CRC算法在最后会异或一个固定值(如0xFFFF),但在用户提供的代码中没有这一步,直接返回了组合后的值。这可能意味着该CRC算法不需要最后异或,或者异或值已经是0x0000。 总结来说,这段代码实现的是一个查表法的CRC16计算,初始值为0xFFFF,使用两个预计算的高低位表,处理每个字节时,通过索引查找并更新CRC寄存器的高低字节。最终的CRC值由高8位和低8位组合而成。但具体的CRC变种需要根据预计算的表内容来确定,比如多项式、是否反转输入输出等。</think>这是一个基于查表法的CRC16校验码计算函数实现,主要用于数据通信中的错误检测。以下是逐层解析: $$ \text{CRC16算法核心} = \text{初始值} \oplus \sum_{i=0}^{n}(\text{数据字节}_i \bowtie \text{查表运算}) $$ **一、函数结构** ```c unsigned short CRC16(unsigned char *puchMsg, unsigned short usDataLen) { // 初始化CRC寄存器 unsigned char uchCRCHi = 0xFF; // 高字节初始值 unsigned char uchCRCLo = 0xFF; // 低字节初始值 // 计算过程 while (usDataLen--) { uIndex = uchCRCLo ^ *puchMsg++; // 核心异或操作 uchCRCLo = uchCRCHi ^ auchCRCHi[uIndex]; uchCRCHi = auchCRCLo[uIndex]; } return (uchCRCHi << 8 | uchCRCLo); // 合成16位CRC } ``` **二、关键要素解析** 1. **初始化阶段** - 双字节初始值:0xFFFF(符合CRC-16/CCITT标准) - 数学表达:$$ \text{CRC} = 0xFFFF $$ 2. **数据遍历处理** - 逐字节处理:每个字节参与两次异或运算 - 核心操作: $$ uIndex = (CRC_{\text{low}} \oplus \text{DataByte}) $$ $$ CRC_{\text{new-low}} = CRC_{\text{high}} \oplus Table_{\text{high}}[uIndex] $$ $$ CRC_{\text{new-high}} = Table_{\text{low}}[uIndex] $$ 3. **预计算查找表** - 需要两个256字节的数组: - `auchCRCHi[]`:存储CRC高字节预计算值 - `auchCRCLo[]`:存储CRC低字节预计算值 - 表示形式: $$ Table_{\text{high}}[i] = \lfloor \frac{\text{CRC}(i)}{256} \rfloor $$ $$ Table_{\text{low}}[i] = \text{CRC}(i) \mod 256 $$ **三、算法特性** - 多项式选择:具体多项式由查找表决定(常见0x1021) - 输入反转:无(直接使用原始数据) - 输出处理:不进行最终异或(原始计算结果直接输出) - 字节顺序:高字节在前(Big-Endian) **四、典型应用场景** 1. MODBUS通信协议 2. 串口数据传输校验 3. 文件完整性验证 4. 嵌入式系统固件校验 **五、性能优势** - 时间复杂度:O(n),仅需遍历数据一次 - 空间复杂度:512字节(双查找表) - 计算速度:比直接计算快10-100倍 **示例计算流程:** 假设数据字节0x01,当前CRC=0xFFFF 1. uIndex = 0xFF ^ 0x01 = 0xFE 2. 查表得到: - auchCRCHi[0xFE] = 0x86 - auchCRCLo[0xFE] = 0x68 3. 新CRC值: - uchCRCLo = 0xFF ^ 0x86 = 0x79 - uchCRCHi = 0x68 4. 更新后CRC:0x6879 该实现通过空间换时间的策略,显著提升了CRC计算效率,适用于对实时性要求较高的嵌入式系统。实际使用时需确保查找表与目标CRC标准(如CRC-16/CCITT、CRC-16/MODBUS等)严格匹配。
阅读全文

相关推荐

/* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __OBJ_CAN1_H #define __OBJ_CAN1_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "Public.h" //***********data type definiton*********************// typedef struct _CAN_COMM_MSG_ { unsigned short u16CanStatus; unsigned short u16LinkStep; unsigned short u16StepTimer; unsigned short u16LinkingTimer; unsigned short u16LinkFlag; unsigned short u16Rxflag; CAN_RX_FRAME *xRxFrame; CAN_TX_FRAME xTxFrame; }CAN_COMM_MSG; //触发发送条件内部定时器和标志位的定义 typedef struct _CAN_INTIM_ { unsigned short u16Time; //发送等待计时 unsigned long u32CanID; //ID值和发送的标记 unsigned char u8Ident; // unsigned short u16CycTxTime; }CAN_INTIM; //*******************接收*************************// typedef struct _MSG_SYS_LK_ { unsigned char u8LiftMsg; unsigned char u8rsvd; unsigned char u8Ident; unsigned char u8SWVer; unsigned char u8Mod; unsigned char u8HWVer; }MSG_SYS_LK; typedef struct _MSG_FROM_MC2_IDM_ { unsigned char u8Mask; unsigned char u8Data; unsigned char u8MsgCnt; }MSG_FROM_MC2_IDM; typedef struct _MSG_FROM_MC2_ { MSG_SYS_LK xMsgLk; MSG_FROM_MC2_IDM xMsgId70; MSG_FROM_MC2_IDM xMsgId71; MSG_FROM_MC2_IDM xMsgId72; MSG_FROM_MC2_IDM xMsgId73; MSG_FROM_MC2_IDM xMsgId80; MSG_FROM_MC2_IDM xMsgId81; }MSG_FROM_MC2; //*******************发送*************************// typedef struct _MSG_FROM_MF3_DI_ { unsigned char u8MaskId30; unsigned char u8MsgId30; unsigned char u8MaskId32; unsigned char u8MsgId32; unsigned char u8MaskId34; unsigned char u8MsgId34; unsigned char u8MaskIdA0; unsigned char u8MsgIdA0; unsigned char u8MaskIdA1; unsigned char u8MsgIdA1; }MSG_FROM_MF3_DI; //total typedef struct _MSG_FROM_MF3_ { MSG_SYS_LK xMsgLk; MSG_FROM_MF3_DI xMsgDi; }MSG_FROM_MF3; //****************EID*********** typedef struct _CAN_EID_PROCESS__ { unsigned char u8ReqFlag; unsigned char u8TxFlag; unsigned char u8Step; unsigned char u8TxNum; unsigned char u8TxTimer; }CAN_EID_PROCESS; //***********macro definiton************************// #define CAN_COMM_INIT 0 //通讯握手 #define CAN_COMM_OK 1 //握手成功正常传输 #define CAN_ID_NULL 0xFFFFFFFF #define UP_LIMIT_IN_TIM 0xFFFF //发送计数上限制 #define CAN_POS_NULL 0xFFFF #define CAN_IDENT_NULL 0xFF //****************************CAN_ID************************************// #define CAN_ID_MF3_TO_MC2 0x191 #define CAN_ID_MF3_TO_MC2_EXT 0x02000000 #define CAN_ID_MF3_TO_MC2_EID 0x112 #define CAN_MC2_TO_MF3_ID100 0x100 #define CAN_MC2_TO_MF3_ID740 0x740 #define CAN_MC2_TO_MF3_ID500 0x500 //****************************Identification*****************************// #define IDENT_MF3_F8 0xF8 #define IDENT_MF3_F9 0xF9 #define IDENT_MF3_30 0x30 #define IDENT_MF3_32 0x32 #define IDENT_MF3_34 0x34 #define IDENT_MF3_FA 0xFA #define IDENT_MF3_A0 0xA0 #define IDENT_MF3_A1 0xA1 #define IDENT_MF3_EID 0XE5 #define IDENT_MF3_EXT 0XFE #define IDENT_MC2_F8 0xF8 #define IDENT_MC2_E8 0xE8 #define IDENT_MC2_40 0x40 #define IDENT_MC2_47 0x47 #define IDENT_MC2_48 0x48 #define IDENT_MC2_49 0x49 #define IDENT_MC2_50 0x50 #define IDENT_MC2_51 0x51 #define IDENT_MC2_52 0x52 #define IDENT_MC2_60 0x60 #define IDENT_MC2_61 0x61 #define IDENT_MC2_62 0x62 #define IDENT_MC2_63 0x63 #define IDENT_MC2_64 0x64 #define IDENT_MC2_65 0x65 #define IDENT_MC2_66 0x66 #define IDENT_MC2_67 0x67 #define IDENT_MC2_68 0x68 #define IDENT_MC2_69 0x69 #define IDENT_MC2_6A 0x6A #define IDENT_MC2_6B 0x6B #define IDENT_MC2_6C 0x6C #define IDENT_MC2_6D 0x6D #define IDENT_MC2_6E 0x6E #define IDENT_MC2_6F 0x6F #define IDENT_MC2_70 0x70 #define IDENT_MC2_71 0x71 #define IDENT_MC2_72 0x72 #define IDENT_MC2_73 0x73 #define IDENT_MC2_80 0x80 #define IDENT_MC2_81 0x81 #define IDENT_MC2_EID 0XE4 #define CAN_LINK_STEP0 0 #define CAN_LINK_STEP1 1 #define CAN_LINK_STEP2 2 #define CAN_LINK_STEP3 3 #define CAN_LINK_STEP4 4 #define CAN_LINK_STEP5 5 #define MF3_D2_DEVICE_NO 0 //******************************************** #define CAN_EID_STEP0 0 #define CAN_EID_STEP1 1 #define CAN_EID_STEP2 2 #define CAN_EID_STEP3 3 #define CAN_EID_STEP4 4 #define CAN_EID_STEP5 5 #define CAN_EID_STEP6 6 #define CAN_EID_STEP7 7 #define CAN_EID_STEP8 8 #define CAN_EID_STEP9 9 #define CAN_EID_STEP_END 20 //每个ID的周期定时的位置宏 #define ID_TIM_POS_IDFA 0 #define ID_TIM_POS_ID30 1 #define ID_TIM_POS_ID32 2 #define ID_TIM_POS_ID34 3 #define ID_TIM_POS_IDA0 4 #define ID_TIM_POS_IDA1 5 #define ID_TIM_POS_EID 6 #define ID_TIM_POS_EXT 7 #define ID_TIM_POS8 8 #define ID_TIM_POS9 9 #define ID_TIM_POS10 10 #define ID_TIM_POS11 11 #define ID_TIM_POS12 12 #define ID_TIM_POS13 13 #define ID_TIM_POS14 14 #define ID_TIM_POS15 15 #define ID_TIM_POS16 16 #define ID_TIM_POS17 17 #define ID_TIM_POS18 18 #define ID_TIM_POS19 19 #define CAN1_COMM_IS_OK() (gObjCan1_xMsg.u16CanStatus==CAN_COMM_OK) //***********prototype function definiton*************// void ObjCan1_Init(void); void ObjCan1_Main(void); void ObjCan1_RxDeal(void); //***********prototype variable definiton*************// extern CAN_COMM_MSG gObjCan1_xMsg; extern MSG_FROM_MC2 gObjCan1_xMsgFromMc2; extern MSG_FROM_MF3 gObjCan1_xMsgFromMf3; extern CAN_RX_FIFO gObjCan1_xRxFifo; extern CAN_EID_PROCESS gObjCan1_xEid; #ifdef __cplusplus } #endif #endif /*__ pinoutConfig_H */

大家在看

recommend-type

idisplay电脑端

idisplay电脑端
recommend-type

Local Dimming LED TV 背光驱动整体方案

目前,液晶电视的使用越来越广泛,在人们的日常生活中占据越来越重要的位置,而其消耗的能量也越来越引起人们的关注。因此,各个电视、液晶厂商都投入极大的物力、人力、财力加大研发力量去降低功耗,从技术发展趋势上来说,如何降低背光的功耗受到关注。因为背光源是的能量消耗者,降低了背光的功耗,也就大大降低了整机的功耗。这其中的技术包括改善背光源的驱动电路,改善LED的发光效率,开发新的LED种类,目前,Local Dimming是这些技术中易于实现,效果明显的一项技术。尤其是直下式LED背光搭配Local Dimming技术,可大幅度降低电量、提高显示画面对比值、灰阶数、及减少残影等。   1. Loca
recommend-type

ISO IEC 19941:2017 Information technology — Cloud computing — In

ISO IEC 19941:2017 Information technology — Cloud computing — Interoperability and portability - 完整英文电子版(71页).zip
recommend-type

KAD 只能脱机门禁管理系统.zip

管理系统是一种通过计算机技术实现的用于组织、监控和控制各种活动的软件系统。这些系统通常被设计用来提高效率、减少错误、加强安全性,同时提供数据和信息支持。以下是一些常见类型的管理系统: 学校管理系统: 用于学校或教育机构的学生信息、教职员工信息、课程管理、成绩记录、考勤管理等。学校管理系统帮助提高学校的组织效率和信息管理水平。 人力资源管理系统(HRM): 用于处理组织内的人事信息,包括员工招聘、培训记录、薪资管理、绩效评估等。HRM系统有助于企业更有效地管理人力资源,提高员工的工作效率和满意度。 库存管理系统: 用于追踪和管理商品或原材料的库存。这种系统可以帮助企业避免库存过剩或不足的问题,提高供应链的效率。 客户关系管理系统(CRM): 用于管理与客户之间的关系,包括客户信息、沟通记录、销售机会跟踪等。CRM系统有助于企业更好地理解客户需求,提高客户满意度和保留率。 医院管理系统: 用于管理医院或医疗机构的患者信息、医生排班、药品库存等。这种系统可以提高医疗服务的质量和效率。 财务管理系统: 用于记录和管理组织的财务信息,包括会计凭证、财务报表、预算管理等。财务管理系统
recommend-type

FastReport报表格式FRX文件转Fr3文件

FastReport报表格式FRX文件转Fr3文件

最新推荐

recommend-type

使用C语言实现CRC校验的方法

unsigned short crc16(const unsigned char *data, size_t len) { unsigned short crc = 0; for (size_t i = 0; i ; ++i) { crc ^= data[i]; for (int bit = 8; bit &gt; 0; --bit) { if (crc & 0x8000) { crc = ...
recommend-type

五G通信关键技术课件.ppt

五G通信关键技术课件.ppt
recommend-type

基于51单片机的多功能电子时钟汇编程序设计与实现

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 核心架构:采用8051内核单片机,通过汇编语言实现集时间显示、日期管理及温度监测于一体的多功能电子时钟系统。 硬件配置: 定义关键控制位:DSIO(数据同步)、RST(复位)、SCLK(时钟) LCD1602接口配置:EN(使能)、RS(寄存器选择)、RW(读写控制) 程序流程: 初始化:跳转至主程序段,设置LCD工作模式并清屏 时间显示: 读取秒/分/时寄存器值 通过SWAP、ANL指令转换为ASCII码 调用LcdWriteData输出至LCD 日期显示: 处理年/月/日数据(地址0x35/0x33/0x32) 同上完成ASCII转换与显示 温度采集: 启动DHT11传感器(DHT11_start) 校验数据有效性后接收字节(DHT11_rec_byte) 处理并显示温湿度值 技术要点: 汇编指令集直接操作寄存器,实现高效硬件控制 通过位操作完成数据格式转换(如BCD转ASCII) 模块化设计:LCD驱动、传感器通信、时间处理独立实现 应用场景:适用于教学实践,展示单片机底层硬件编程与实时系统开发能力。
recommend-type

工程项目管理实施方案.doc

工程项目管理实施方案.doc
recommend-type

模拟电子技术基础学习指导与习题精讲

模拟电子技术是电子技术的一个重要分支,主要研究模拟信号的处理和传输,涉及到的电路通常包括放大器、振荡器、调制解调器等。模拟电子技术基础是学习模拟电子技术的入门课程,它为学习者提供了电子器件的基本知识和基本电路的分析与设计方法。 为了便于学习者更好地掌握模拟电子技术基础,相关的学习指导与习题解答资料通常会包含以下几个方面的知识点: 1. 电子器件基础:模拟电子技术中经常使用到的电子器件主要包括二极管、晶体管、场效应管(FET)等。对于每种器件,学习指导将会介绍其工作原理、特性曲线、主要参数和使用条件。同时,还需要了解不同器件在电路中的作用和性能优劣。 2. 直流电路分析:在模拟电子技术中,需要掌握直流电路的基本分析方法,这包括基尔霍夫电压定律和电流定律、欧姆定律、节点电压法、回路电流法等。学习如何计算电路中的电流、电压和功率,以及如何使用这些方法解决复杂电路的问题。 3. 放大电路原理:放大电路是模拟电子技术的核心内容之一。学习指导将涵盖基本放大器的概念,包括共射、共基和共集放大器的电路结构、工作原理、放大倍数的计算方法,以及频率响应、稳定性等。 4. 振荡电路:振荡电路能够产生持续的、周期性的信号,它在模拟电子技术中非常重要。学习内容将包括正弦波振荡器的原理、LC振荡器、RC振荡器等类型振荡电路的设计和工作原理。 5. 调制与解调:调制是将信息信号加载到高频载波上的过程,解调则是提取信息信号的过程。学习指导会介绍调幅(AM)、调频(FM)、调相(PM)等调制方法的基本原理和解调技术。 6. 模拟滤波器:滤波器用于分离频率成分不同的信号。模拟滤波器一般可分为低通、高通、带通和带阻滤波器。学习指导会涉及到模拟滤波器的设计原理、特性曲线和应用。 7. 电源技术:电源电路是电子设备中不可或缺的部分,它主要为电子设备提供稳定的直流电压和电流。在模拟电子技术基础学习指导中,会讲解线性稳压电源和开关稳压电源的设计原理及其实现方法。 8. 实际问题应用:模拟电子技术在实际中有着广泛的应用,学习指导会结合具体案例,如音响系统设计、射频接收机、仪器仪表等,帮助学习者将理论知识应用到实践中,提高解决实际问题的能力。 9. 习题解答:为了帮助学习者巩固理论知识和分析问题的能力,相关习题解答资料将提供大量精选习题,并给出详细的解答步骤和答案。习题类型涵盖选择题、填空题、计算题和设计题,旨在帮助学习者全面掌握知识点。 学习模拟电子技术需要具备一定的数学、物理基础,尤其是对电路分析的理解。通过学习指导与习题解答资料的帮助,学习者可以更加深入地理解模拟电子技术的基本概念,熟练掌握模拟电路的分析与设计方法,并为将来的深入学习和实际应用打下坚实的基础。
recommend-type

【5G通信背后的秘密】:极化码与SCL译码技术的极致探索

# 摘要 本文首先概述了5G通信技术及其重要性,然后深入探讨了极化码的基础理论与应用,包括其理论基础、编解码过程和在5G中的应用评估。接着,文章详细解析了SCL译码技术的原理、改进方法以及实现和优化策略。在第四章中,分析了极化码与SCL译码技术在5G通信中的实践挑战、优化案例,以及未来的发展趋势。最后一章展望了极化码与S
recommend-type

谷歌浏览器中如何使用hackbar

<think>我们正在处理用户关于在Google Chrome浏览器中安装和使用HackBar插件的请求。根据引用[1]和引用[2]的信息,我们可以总结出安装步骤。注意,引用中提到了两种安装方法:一种是直接拖放crx文件(但可能会遇到问题),另一种是将crx文件改为rar格式再安装。同时,引用[2]还提到了Firefox的安装方法,但用户只关心Chrome。 由于Chrome浏览器对扩展程序的安全性要求提高,直接从第三方下载的crx文件可能会被阻止安装。因此,我们需要提供一种可行的安装方法。 根据引用[2]的步骤,我们可以这样安装: 1. 下载HackBar_v2.2.6插件(通常是一个c
recommend-type

一步搞定局域网共享设置的超级工具

在当前信息化高速发展的时代,局域网共享设置成为了企业、学校甚至家庭用户在资源共享、网络协同办公或学习中不可或缺的一部分。局域网共享不仅能够高效地在本地网络内部分发数据,还能够在保护网络安全的前提下,让多个用户方便地访问同一资源。然而,对于部分用户而言,局域网共享设置可能显得复杂、难以理解,这时一款名为“局域网共享设置超级工具”的软件应运而生,旨在简化共享设置流程,使得即便是对网络知识了解不多的用户也能够轻松配置。 ### 局域网共享知识点 #### 1. 局域网基础 局域网(Local Area Network,LAN)指的是在一个较小的地理范围内,如一座建筑、一个学校或者一个家庭内部,通过电缆或者无线信号连接的多个计算机组成的网络。局域网共享主要是指将网络中的某台计算机或存储设备上的资源(如文件、打印机等)对网络内其他用户开放访问权限。 #### 2. 工作组与域的区别 在Windows系统中,局域网可以通过工作组或域来组织。工作组是一种较为简单的组织方式,每台电脑都是平等的,没有中心服务器管理,各个计算机间互为对等网络,共享资源只需简单的设置。而域模式更为复杂,需要一台中央服务器(域控制器)进行集中管理,更适合大型网络环境。 #### 3. 共享设置的要素 - **共享权限:**决定哪些用户或用户组可以访问共享资源。 - **安全权限:**决定了用户对共享资源的访问方式,如读取、修改或完全控制。 - **共享名称:**设置的名称供网络上的用户通过网络邻居访问共享资源时使用。 #### 4. 共享操作流程 在使用“局域网共享设置超级工具”之前,了解传统手动设置共享的流程是有益的: 1. 确定需要共享的文件夹,并右键点击选择“属性”。 2. 进入“共享”标签页,点击“高级共享”。 3. 勾选“共享此文件夹”,可以设置共享名称。 4. 点击“权限”按钮,配置不同用户或用户组的共享权限。 5. 点击“安全”标签页配置文件夹的安全权限。 6. 点击“确定”,完成设置,此时其他用户可以通过网络邻居访问共享资源。 #### 5. 局域网共享安全性 共享资源时,安全性是一个不得不考虑的因素。在设置共享时,应避免公开敏感数据,并合理配置访问权限,以防止未授权访问。此外,应确保网络中的所有设备都安装了防病毒软件和防火墙,并定期更新系统和安全补丁,以防恶意软件攻击。 #### 6. “局域网共享设置超级工具”特点 根据描述,该软件提供了傻瓜式的操作方式,意味着它简化了传统的共享设置流程,可能包含以下特点: - **自动化配置:**用户只需简单操作,软件即可自动完成网络发现、权限配置等复杂步骤。 - **友好界面:**软件可能具有直观的用户界面,方便用户进行设置。 - **一键式共享:**一键点击即可实现共享设置,提高效率。 - **故障诊断:**可能包含网络故障诊断功能,帮助用户快速定位和解决问题。 - **安全性保障:**软件可能在设置共享的同时,提供安全增强功能,如自动更新密码、加密共享数据等。 #### 7. 使用“局域网共享设置超级工具”的注意事项 在使用该类工具时,用户应注意以下事项: - 确保安装了最新版本的软件以获得最佳的兼容性和安全性。 - 在使用之前,了解自己的网络安全政策,防止信息泄露。 - 定期检查共享设置,确保没有不必要的资源暴露在网络中。 - 对于不熟悉网络共享的用户,建议在专业人士的指导下进行操作。 ### 结语 局域网共享是实现网络资源高效利用的基石,它能大幅提高工作效率,促进信息共享。随着技术的进步,局域网共享设置变得更加简单,各种一键式工具的出现让设置过程更加快捷。然而,安全性依旧是不可忽视的问题,任何时候在享受便捷的同时,都要确保安全措施到位,防止数据泄露和网络攻击。通过合适的工具和正确的设置,局域网共享可以成为网络环境中一个强大而安全的资源。
recommend-type

PBIDesktop在Win7上的终极安装秘籍:兼容性问题一次性解决!

# 摘要 PBIDesktop作为数据可视化工具,其在Windows 7系统上的安装及使用备受企业关注。本文首先概述了PBIDesktop的安装过程,并从理论上探讨了其兼容性问题,包括问题类型、原因以及通用解决原则。通过具体
recommend-type

#include "stm32f10x.h" #include "delay.h" #include "OLED.h" #include "dht11.h" #include "FMQ.h" #include "Serial.h" #include "esp8266.h" #include "stm32f10x_it.h" // 系统时钟配置 void SystemClock_Config(void) { SystemInit(); RCC_DeInit(); RCC_HSEConfig(RCC_HSE_ON); // 添加HSE启动检测 if(!RCC_WaitForHSEStartUp()) { while(1); // HSE启动失败,陷入死循环 } FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); FLASH_SetLatency(FLASH_Latency_2); RCC_HCLKConfig(RCC_SYSCLK_Div1); RCC_PCLK1Config(RCC_HCLK_Div2); RCC_PCLK2Config(RCC_HCLK_Div1); RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); RCC_PLLCmd(ENABLE); while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); while(RCC_GetSYSCLKSource() != 0x08); } // 全局变量 u8 temp, humi; int main(void) { // 系统初始化 SystemClock_Config(); Delay_Init(); OLED_Init(); DHT11_Init(); mfq_Init(); Serial_Init(); // 用于调试的串口 // 显示初始化 OLED_ShowCN(0, 0, "温度:"); // 修改为正确的中文字库函数 OLED_ShowCN(0, 16, "湿度:"); OLED_ShowCN(64, 16, "RH"); OLED_ShowCN(64, 0, "C"); OLED_Update(); // 初始化ESP8266为AP模式 ESP8266_Init(); printf("ESP8266 AP Mode Ready\r\n"); printf("Connect to WiFi: ESP8266wd, Password:123456789\r\n"); printf("Then connect to TCP Server: 192.168.4.1:8080\r\n"); uint32_t lastSendTime = 0; while(1) { // 读取温湿度 if(DHT11_Read_Data(&temp, &humi)) { // 更新显示 OLED_ShowNum(47, 0, temp, 2, OLED_8X16); OLED_ShowNum(47, 16, humi, 2, OLED_8X16); OLED_Update(); // 控制蜂鸣器 fmq(temp, humi); // 串口输出信息 printf("temp=%d, humi=%d RH\r\n", temp, humi); // 准备WiFi发送数据 sprintf(wifi_data, "Temp:%d,Humi:%d\r\n", temp, humi); ESP8266_SendData(wifi_data); } delay_ms(5000); // 5秒更新一次 } } /** ****************************************************************************** * @file Project/STM32F10x_StdPeriph_Template/stm32f10x_conf.h * @author MCD Application Team * @version V3.5.0 * @date 08-April-2011 * @brief Library configuration file. ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2> ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F10x_CONF_H #define __STM32F10x_CONF_H /* Includes ------------------------------------------------------------------*/ /* Uncomment/Comment the line below to enable/disable peripheral header file inclusion */ #include "stm32f10x_adc.h" #include "stm32f10x_bkp.h" #include "stm32f10x_can.h" #include "stm32f10x_cec.h" #include "stm32f10x_crc.h" #include "stm32f10x_dac.h" #include "stm32f10x_dbgmcu.h" #include "stm32f10x_dma.h" #include "stm32f10x_exti.h" #include "stm32f10x_flash.h" #include "stm32f10x_fsmc.h" #include "stm32f10x_gpio.h" #include "stm32f10x_i2c.h" #include "stm32f10x_iwdg.h" #include "stm32f10x_pwr.h" #include "stm32f10x_rcc.h" #include "stm32f10x_rtc.h" #include "stm32f10x_sdio.h" #include "stm32f10x_spi.h" #include "stm32f10x_tim.h" #include "stm32f10x_usart.h" #include "stm32f10x_wwdg.h" #include "misc.h" /* High level functions for NVIC and SysTick (add-on to CMSIS functions) */ /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Uncomment the line below to expanse the "assert_param" macro in the Standard Peripheral Library drivers code */ /* #define USE_FULL_ASSERT 1 */ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr: If expr is false, it calls assert_failed function which reports * the name of the source file and the source line number of the call * that failed. If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0 : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t* file, uint32_t line); #else #define assert_param(expr) ((void)0) #endif /* USE_FULL_ASSERT */ #endif /* __STM32F10x_CONF_H */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/ /** ****************************************************************************** * @file Project/STM32F10x_StdPeriph_Template/stm32f10x_it.c * @author MCD Application Team * @version V3.5.0 * @date 08-April-2011 * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2> ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f10x_it.h" volatile uint32_t sysTickUptime = 0; // 添加在文件顶部 /** @addtogroup STM32F10x_StdPeriph_Template * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /******************************************************************************/ /* Cortex-M3 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. * @param None * @retval None */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { // 添加SysTick中断处理 sysTickUptime++; } /******************************************************************************/ /* STM32F10x Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f10x_xx.s). */ /******************************************************************************/ /** * @brief This function handles USART3 global interrupt request. * @param None * @retval None */ void USART2_IRQHandler(void) { // 调用ESP8266模块的中断处理函数 extern void ESP8266_IRQHandler(void); ESP8266_IRQHandler(); } uint32_t HAL_GetTick(void) { return sysTickUptime; } /** * @} */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/ /** ****************************************************************************** * @file Project/STM32F10x_StdPeriph_Template/stm32f10x_it.h * @author MCD Application Team * @version V3.5.0 * @date 08-April-2011 * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2> ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F10x_IT_H #define __STM32F10x_IT_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32f10x.h" extern volatile uint32_t sysTickUptime; uint32_t HAL_GetTick(void); /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* Exported macro ------------------------------------------------------------*/ /* Exported functions ------------------------------------------------------- */ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); #ifdef __cplusplus } #endif #endif /* __STM32F10x_IT_H */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/ #include "esp8266.h" #include <string.h> #include "stm32f10x_usart.h" #include "stm32f10x_gpio.h" #include "stm32f10x_rcc.h" // 发送AT指令 void ESP8266_SendCmd(char* cmd, char* resp, uint16_t timeout) { USART_ClearFlag(ESP8266_USARTx, USART_FLAG_TC); // 发送命令 while(*cmd) { USART_SendData(ESP8266_USARTx, *cmd++); while(USART_GetFlagStatus(ESP8266_USARTx, USART_FLAG_TC) == RESET); } // 等待响应 uint32_t start = HAL_GetTick(); while(strstr((const char*)USART_RxBuffer, resp) == NULL) { if(HAL_GetTick() - start > timeout) { break; } } delay_ms(50); } // 初始化ESP8266为AP模式 void ESP8266_Init(void) { // 初始化USART2 USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; // 配置USART2 Tx (PA2) 为复用推挽输出 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置USART2 Rx (PA3) 为浮空输入 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); USART_InitStructure.USART_BaudRate = ESP8266_USART_BAUDRATE; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(ESP8266_USARTx, &USART_InitStructure); USART_Cmd(ESP8266_USARTx, ENABLE); // 添加NVIC中断配置 NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); // 配置ESP8266为AP模式 Delay_ms(1000); // 等待模块启动 ESP8266_SendCmd("AT+RST\r\n", "OK", 2000); ESP8266_SendCmd("AT+CWMODE=2\r\n", "OK", 2000); // 设置为AP模式 ESP8266_SendCmd("AT+CWSAP=\"ESP8266_AP\",\"12345678\",1,4\r\n", "OK", 2000); // 设置AP参数 ESP8266_SendCmd("AT+CIPMUX=1\r\n", "OK", 2000); // 允许多连接 ESP8266_SendCmd("AT+CIPSERVER=1,8080\r\n", "OK", 2000); // 开启TCP服务器 } // 发送数据到TCP客户端 u8 ESP8266_SendData(char* data) { char cmd[64]; sprintf(cmd, "AT+CIPSEND=0,%d\r\n", strlen(data)); ESP8266_SendCmd(cmd, "OK", 1000); // 等待OK响应 ESP8266_SendCmd(data, ">", 1000); // 等待>提示符 ESP8266_SendCmd((char*)0x1A, "SEND OK", 1000); // 发送Ctrl+Z return 0; } // esp8266.h #ifndef __ESP8266_H #define __ESP8266_H #include "stm32f10x.h" #include "stm32f10x_usart.h" #include "delay.h" #define ESP8266_USARTx USART2 #define ESP8266_USART_BAUDRATE 115200 void ESP8266_Init(void); void ESP8266_SendCmd(char* cmd); u8 ESP8266_SendData(char* data); #endif 将代码修改正确

<think>好的,我需要帮助用户修改他们的代码。首先,我得仔细阅读用户提供的代码,找出其中的问题。用户提到他们使用STM32F10x系列的MCU,结合DHT11、OLED、ESP8266等外设,但可能存在错误需要修正。 首先看主函数部分。在SystemClock_Config函数中,用户调用了SystemInit(),然后进行RCC_DeInit(),这可能有问题,因为SystemInit()已经初始化了系统时钟,而RCC_DeInit()会将RCC寄存器复位,可能导致冲突。正确的做法应该是在SystemInit()之后不再调用RCC_DeInit(),或者在配置前先确保时钟设置正确。