C++ torch::nn::Sequential如何使用

时间: 2024-11-22 18:37:37 浏览: 62
在PyTorch(C++版本)中,`torch::nn::Sequential`是一个用于线性堆叠神经网络层的模块容器,它使得构建深层模型变得更加简单。你可以按照以下步骤使用`Sequential`: 1. **创建 Sequential 对象**: ```cpp auto model = torch::nn::Sequential(); ``` 2. **添加层**: ```cpp // 添加全连接层 (Linear) model.add_module("fc1", torch::nn::Linear(input_size, hidden_size)); // 或者添加卷积层 (Conv2d) model.add_module("conv1", torch::nn::Conv2d(in_channels, out_channels, kernel_size)); ``` 每次`add_module`都会给每个层分配一个新的名字,方便后续访问。 3. **设置权重和偏差**: ```cpp // 初始化权重和偏差 torch::no_grad(); // 开启无梯度模式 model.fc1.weight.data() = ...; // 设置权重 model.fc1.bias.data() = ...; // 设置偏置 ``` 4. **处理输入**: ```cpp at::Tensor input = ...; // 定义输入张量 at::Tensor output = model(input); ``` `output`将是通过所有添加到`Sequential`中的层应用到输入后的结果。 5. **训练或评估**: ```cpp for (int epoch = 0; epoch < num_epochs; ++epoch) { // 执行训练迭代... loss.backward(); optimizer.step(); optimizer.zero_grad(); } ```
阅读全文

相关推荐

下面的代码出现错误要求修改下面的代码且是完整的没有省略步骤的代码import torch.nn as nn import torch.nn.modules.utils as torch_utils from collections import namedtuple import torch.nn.functional as F import torch ConvLayerConfig = namedtuple('LayerConfig', 'in_channels out_channels kernel_size padding pool') class SEBlock(nn.Module): """通道注意力模块(Squeeze-and-Excitation)""" def __init__(self, channel, reduction=16): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) class SpatialAttention(nn.Module): """空间注意力模块""" def __init__(self, kernel_size=7): super().__init__() self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) scale = torch.cat([avg_out, max_out], dim=1) scale = self.conv(scale) return x * self.sigmoid(scale) class Conv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, pool=True, relu=True, bn=False): super(Conv, self).__init__() layers = [nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding)] if pool: layers.append(nn.MaxPool2d(kernel_size=2, stride=2, padding=0)) if bn: layers.append(nn.BatchNorm2d(out_channels)) if relu: layers.app

import traceback import cv2 import json import os import sys import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from albumentations import ( Compose, Resize, Normalize, HorizontalFlip, VerticalFlip, Rotate, OneOf, RandomBrightnessContrast, GaussNoise, ElasticTransform, RandomGamma, HueSaturationValue, CoarseDropout, Perspective, KeypointParams, CLAHE, MotionBlur, ISONoise,Lambda ) from albumentations.pytorch import ToTensorV2 from torch.optim.lr_scheduler import LinearLR, CosineAnnealingLR, StepLR, ReduceLROnPlateau from torch.utils.data import Dataset, DataLoader from torchvision.models import resnet18, ResNet18_Weights from sklearn.metrics import precision_score, recall_score, f1_score import matplotlib.pyplot as plt from tqdm import tqdm # 添加进度条库 class EnhancedTrainingLogger: """增强的训练日志记录器,跟踪多种损失指标并实时可视化""" def __init__(self): self.total_losses = [] self.bin_losses = [] self.thresh_losses = [] self.db_losses = [] self.timestamps = [] self.start_time = time.time() self.lr_history = [] self.val_metrics = {'precision': [], 'recall': [], 'f1': []} # 实时可视化设置 plt.ion() # 开启交互模式 self.fig, self.axs = plt.subplots(2, 2, figsize=(15, 10)) self.fig.suptitle('Training Progress', fontsize=16) # 初始化图表 self.loss_line, = self.axs[0, 0].plot([], [], 'r-', label='Total Loss') self.bin_line, = self.axs[0, 0].plot([], [], 'g-', label='Binary Loss') self.thresh_line, = self.axs[0, 0].plot([], [], 'b-', label='Threshold Loss') self.db_line, = self.axs[0, 0].plot([], [], 'm-', label='DB Loss') self.axs[0, 0].set_title('Training Loss Components') self.axs[0, 0].set_xlabel('Batch') self.axs[0, 0].set_ylabel('Loss') self.axs[0, 0].legend() self.axs[0, 0].grid(True) self.lr_line, = self.axs[0, 1].plot([], [], 'c-') self.axs[0, 1].set_title('Learning Rate Schedule') self.axs[0, 1].set_xlabel('Batch') self.axs[0, 1].set_ylabel('Learning Rate') self.axs[0, 1].grid(True) self.precision_line, = self.axs[1, 0].plot([], [], 'r-', label='Precision') self.recall_line, = self.axs[1, 0].plot([], [], 'g-', label='Recall') self.f1_line, = self.axs[1, 0].plot([], [], 'b-', label='F1 Score') self.axs[1, 0].set_title('Validation Metrics') self.axs[1, 0].set_xlabel('Epoch') self.axs[1, 0].set_ylabel('Score') self.axs[1, 0].legend() self.axs[1, 0].grid(True) # 添加文本区域显示当前指标 self.metrics_text = self.axs[1, 1].text(0.5, 0.5, "", horizontalalignment='center', verticalalignment='center', transform=self.axs[1, 1].transAxes, fontsize=12) self.axs[1, 1].axis('off') # 关闭坐标轴 plt.tight_layout() plt.subplots_adjust(top=0.9) plt.draw() plt.pause(0.1) def on_batch_end(self, batch_idx, total_loss, bin_loss, thresh_loss, db_loss, lr=None): elapsed = time.time() - self.start_time self.total_losses.append(total_loss) self.bin_losses.append(bin_loss) self.thresh_losses.append(thresh_loss) self.db_losses.append(db_loss) self.timestamps.append(elapsed) if lr is not None: self.lr_history.append(lr) # 更新实时图表 self.update_plots(batch_idx) # 每10个batch打印详细日志 if batch_idx % 10 == 0: avg_total = np.mean(self.total_losses[-10:]) if len(self.total_losses) >= 10 else total_loss avg_bin = np.mean(self.bin_losses[-10:]) if len(self.bin_losses) >= 10 else bin_loss avg_thresh = np.mean(self.thresh_losses[-10:]) if len(self.thresh_losses) >= 10 else thresh_loss avg_db = np.mean(self.db_losses[-10:]) if len(self.db_losses) >= 10 else db_loss # 更新文本区域 metrics_text = ( f"Batch: {batch_idx}\n" f"Total Loss: {total_loss:.4f} (Avg10: {avg_total:.4f})\n" f"Binary Loss: {bin_loss:.4f} (Avg10: {avg_bin:.4f})\n" f"Threshold Loss: {thresh_loss:.4f} (Avg10: {avg_thresh:.4f})\n" f"DB Loss: {db_loss:.4f} (Avg10: {avg_db:.4f})\n" f"Learning Rate: {lr:.2e}\n" f"Time: {int(elapsed // 3600):02d}:{int((elapsed % 3600) // 60):02d}:{int(elapsed % 60):02d}" ) self.metrics_text.set_text(metrics_text) # 刷新图表 plt.draw() plt.pause(0.01) def update_plots(self, batch_idx): # 更新损失图表 x_data = np.arange(len(self.total_losses)) self.loss_line.set_data(x_data, self.total_losses) self.bin_line.set_data(x_data, self.bin_losses) self.thresh_line.set_data(x_data, self.thresh_losses) self.db_line.set_data(x_data, self.db_losses) # 自动调整Y轴范围 all_losses = self.total_losses + self.bin_losses + self.thresh_losses + self.db_losses if all_losses: min_loss = min(all_losses) * 0.9 max_loss = max(all_losses) * 1.1 self.axs[0, 0].set_ylim(min_loss, max_loss) # 更新学习率图表 if self.lr_history: self.lr_line.set_data(np.arange(len(self.lr_history)), self.lr_history) self.axs[0, 1].set_ylim(min(self.lr_history) * 0.9, max(self.lr_history) * 1.1) # 更新验证指标图表 if self.val_metrics['precision']: x_epochs = np.arange(len(self.val_metrics['precision'])) self.precision_line.set_data(x_epochs, self.val_metrics['precision']) self.recall_line.set_data(x_epochs, self.val_metrics['recall']) self.f1_line.set_data(x_epochs, self.val_metrics['f1']) # 自动调整Y轴范围 all_metrics = self.val_metrics['precision'] + self.val_metrics['recall'] + self.val_metrics['f1'] if all_metrics: min_metric = min(all_metrics) * 0.9 max_metric = max(all_metrics) * 1.1 self.axs[1, 0].set_ylim(min_metric, max_metric) # 调整X轴范围 self.axs[0, 0].set_xlim(0, max(1, len(self.total_losses))) self.axs[0, 1].set_xlim(0, max(1, len(self.lr_history))) if self.val_metrics['precision']: self.axs[1, 0].set_xlim(0, max(1, len(self.val_metrics['precision']))) def on_epoch_end(self, epoch, optimizer=None): # 添加空列表检查 total_min = min(self.total_losses) if self.total_losses else 0.0 total_max = max(self.total_losses) if self.total_losses else 0.0 total_avg = np.mean(self.total_losses) if self.total_losses else 0.0 bin_min = min(self.bin_losses) if self.bin_losses else 0.0 bin_avg = np.mean(self.bin_losses) if self.bin_losses else 0.0 thresh_min = min(self.thresh_losses) if self.thresh_losses else 0.0 thresh_avg = np.mean(self.thresh_losses) if self.thresh_losses else 0.0 db_min = min(self.db_losses) if self.db_losses else 0.0 db_avg = np.mean(self.db_losses) if self.db_losses else 0.0 # 生成详细的损失报告 report = ( f"\n{'=' * 70}\n" f"EPOCH {epoch + 1} SUMMARY:\n" f" - Total Loss: Min={total_min:.6f}, Max={total_max:.6f}, Avg={total_avg:.6f}\n" f" - Binary Loss: Min={bin_min:.6f}, Avg={bin_avg:.6f}\n" f" - Threshold Loss: Min={thresh_min:.6f}, Avg={thresh_avg:.6f}\n" f" - DB Loss: Min={db_min:.6f}, Avg={db_avg:.6f}\n" ) if self.val_metrics['precision']: report += ( f" - Val Metrics: Precision={self.val_metrics['precision'][-1]:.4f}, " f"Recall={self.val_metrics['recall'][-1]:.4f}, F1={self.val_metrics['f1'][-1]:.4f}\n" ) if optimizer: report += f" - Learning Rate: {optimizer.param_groups[0]['lr']:.6e}\n" report += f"{'=' * 70}" print(report) # 保存CSV日志 with open(f'training_log_epoch_{epoch + 1}.csv', 'w') as f: f.write("Timestamp,Total_Loss,Bin_Loss,Thresh_Loss,DB_Loss,Learning_Rate\n") for i, t in enumerate(self.timestamps): lr_val = self.lr_history[i] if i < len(self.lr_history) else 0 f.write( f"{t:.2f},{self.total_losses[i]:.6f},{self.bin_losses[i]:.6f},{self.thresh_losses[i]:.6f},{self.db_losses[i]:.6f},{lr_val:.6e}\n") # 重置记录(保留最后一个批次的值) self.total_losses = [self.total_losses[-1]] if self.total_losses else [] self.bin_losses = [self.bin_losses[-1]] if self.bin_losses else [] self.thresh_losses = [self.thresh_losses[-1]] if self.thresh_losses else [] self.db_losses = [self.db_losses[-1]] if self.db_losses else [] self.timestamps = [self.timestamps[-1]] if self.timestamps else [] self.lr_history = [self.lr_history[-1]] if self.lr_history else [] # 更新图表 self.update_plots(0) plt.draw() plt.pause(0.1) def on_train_end(self): """训练结束后生成图表并保存""" plt.ioff() # 关闭交互模式 # 保存最终图表 plt.savefig('training_summary.png') plt.close() # 生成详细的训练报告图 self.generate_detailed_report() def generate_detailed_report(self): """生成详细的训练报告图表""" fig, axs = plt.subplots(3, 1, figsize=(12, 15)) # 损失图表 axs[0].plot(self.total_losses, label='Total Loss') axs[0].plot(self.bin_losses, label='Binary Loss') axs[0].plot(self.thresh_losses, label='Threshold Loss') axs[0].plot(self.db_losses, label='DB Loss') axs[0].set_title('Training Loss Components') axs[0].set_xlabel('Batch') axs[0].set_ylabel('Loss') axs[0].legend() axs[0].grid(True) # 学习率图表 axs[1].plot(self.lr_history) axs[1].set_title('Learning Rate Schedule') axs[1].set_xlabel('Batch') axs[1].set_ylabel('Learning Rate') axs[1].grid(True) # 验证指标图表 if self.val_metrics['precision']: axs[2].plot(self.val_metrics['precision'], 'o-', label='Precision') axs[2].plot(self.val_metrics['recall'], 'o-', label='Recall') axs[2].plot(self.val_metrics['f1'], 'o-', label='F1 Score') axs[2].set_title('Validation Metrics') axs[2].set_xlabel('Epoch') axs[2].set_ylabel('Score') axs[2].legend() axs[2].grid(True) # 标记最佳F1分数 best_f1_idx = np.argmax(self.val_metrics['f1']) best_f1 = self.val_metrics['f1'][best_f1_idx] axs[2].plot(best_f1_idx, best_f1, 'ro', markersize=8) axs[2].annotate(f'Best F1: {best_f1:.4f}', xy=(best_f1_idx, best_f1), xytext=(best_f1_idx + 0.5, best_f1 - 0.05), arrowprops=dict(facecolor='black', shrink=0.05)) plt.tight_layout() plt.savefig('training_detailed_report.png') plt.close() # 在类外部定义全局函数 # 在类外部定义全局函数 def suppress_water_meter_glare(img, **kwargs): """水表专用反光抑制(忽略额外参数)""" lab = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) l, a, b = cv2.split(lab) # 动态计算CLAHE参数 l_mean = np.mean(l) clip_limit = 2.0 + (l_mean / 40) # 亮度越高,clipLimit越大 clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=(8, 8)) l_clahe = clahe.apply(l) # 选择性增强暗部区域 _, mask = cv2.threshold(l, 100, 255, cv2.THRESH_BINARY_INV) blended = cv2.addWeighted(l, 0.7, l_clahe, 0.3, 0) l_final = np.where(mask > 0, blended, l) lab = cv2.merge((l_final, a, b)) return cv2.cvtColor(lab, cv2.COLOR_LAB2RGB) # ---------------------------- # 1. 数据集加载与预处理 (优化浮点坐标处理) # ---------------------------- class WaterMeterDataset(Dataset): """水表数字区域检测数据集 - 优化浮点坐标处理""" # ... (初始化代码保持不变) ... def __init__(self, image_dir, label_dir, input_size=(640, 640), augment=True): self.image_dir = image_dir self.label_dir = label_dir self.input_size = input_size self.augment = augment self.image_files = [f for f in os.listdir(image_dir) if os.path.isfile(os.path.join(image_dir, f))] # 基础预处理流程 self.base_transform = Compose([ Resize(height=input_size[0], width=input_size[1]), Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ToTensorV2() ]) # 简化但有效的数据增强 self.augmentation = Compose([ # 水表专用增强 OneOf([ # 模拟不同角度拍摄 Perspective(scale=(0.05, 0.1), p=0.3), # 模拟水表玻璃反光 RandomGamma(gamma_limit=(80, 120), p=0.2), # 模拟水表污渍 CoarseDropout(max_holes=5, max_height=20, max_width=20, fill_value=0, p=0.2) ], p=0.8), # 水表反光抑制 Lambda(name='glare_reduction', image=suppress_water_meter_glare), Lambda(name='water_meter_aug', image=water_meter_specific_aug, p=0.7), OneOf([ HorizontalFlip(p=0.3), VerticalFlip(p=0.2), Rotate(limit=15, p=0.5) ], p=0.7), OneOf([ RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.5), CLAHE(clip_limit=2.0, p=0.3), GaussNoise(std_range=(0.15, 0.4), # 优化后范围 mean_range=(0, 0), per_channel=True, p=0.3), ISONoise(color_shift=(0.01, 0.05), intensity=(0.1, 0.5)) ], p=0.7) ], p=0.8, keypoint_params=KeypointParams(format='xyas')) if augment else None def __len__(self): return len(self.image_files) def __getitem__(self, idx): img_name = self.image_files[idx] img_path = os.path.join(self.image_dir, img_name) # 加载图像 image = cv2.imread(img_path) if image is None: print(f"错误: 无法读取图像 {img_path}") return self[(idx + 1) % len(self)] # 跳过错误图像 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 应用反光抑制 if np.random.rand() > 0.5: lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB) l, a, b = cv2.split(lab) clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8)) l = clahe.apply(l) lab = cv2.merge([l, a, b]) image = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB) # 解析标注 base_name = os.path.splitext(img_name)[0] label_path = os.path.join(self.label_dir, base_name + '.json') try: with open(label_path) as f: label_data = json.load(f) polygons = [] orig_h, orig_w = image.shape[:2] # 获取标注时的图像尺寸(如果存在) json_h = label_data.get('imageHeight', orig_h) json_w = label_data.get('imageWidth', orig_w) # 计算缩放比例(处理不同尺寸的标注) scale_x = orig_w / json_w scale_y = orig_h / json_h for shape in label_data['shapes']: if shape['shape_type'] == 'polygon': # 直接使用浮点坐标,避免整数转换 poly = np.array(shape['points'], dtype=np.float32) # 应用缩放比例 poly[:, 0] = poly[:, 0] * scale_x poly[:, 1] = poly[:, 1] * scale_y # 裁剪到实际图像范围内 poly[:, 0] = np.clip(poly[:, 0], 0, orig_w - 1) poly[:, 1] = np.clip(poly[:, 1], 0, orig_h - 1) polygons.append(poly) # 生成目标前验证标注有效性 if len(polygons) == 0: print(f"警告: {img_name} 无有效标注,使用随机样本替代") return self[np.random.randint(0, len(self))] # === 调试可视化 === if idx < 5: debug_img = image.copy() for poly in polygons: int_poly = poly.astype(np.int32).reshape(-1, 1, 2) cv2.polylines(debug_img, [int_poly], True, (0, 255, 0), 3) debug_info = f"Size: {orig_w}x{orig_h} | Polys: {len(polygons)}" cv2.putText(debug_img, debug_info, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2) debug_path = f"debug_{base_name}.jpg" cv2.imwrite(debug_path, cv2.cvtColor(debug_img, cv2.COLOR_RGB2BGR)) print(f"保存调试图像: {debug_path}") # 应用数据增强 keypoints = [] for poly in polygons: for point in poly: # 保留浮点精度 keypoints.append((point[0], point[1], 0, 0)) if self.augment and self.augmentation: poly_lengths = [len(poly) for poly in polygons] # 应用增强 augmented = self.augmentation(image=image, keypoints=keypoints) image = augmented['image'] keypoints = augmented['keypoints'] # 正确重组多边形 polygons = [] start_idx = 0 for poly_len in poly_lengths: end_idx = start_idx + poly_len if end_idx <= len(keypoints): poly_points = keypoints[start_idx:end_idx] new_poly = np.array([[p[0], p[1]] for p in poly_points], dtype=np.float32) polygons.append(new_poly) start_idx = end_idx # 对所有多边形进行边界裁剪 for poly in polygons: poly[:, 0] = np.clip(poly[:, 0], 0, image.shape[1] - 1) poly[:, 1] = np.clip(poly[:, 1], 0, image.shape[0] - 1) except (FileNotFoundError, json.JSONDecodeError) as e: print(f"警告: 无法加载标注文件 {label_path} - {str(e)}") polygons = [] # 记录数据增强后的图像尺寸 aug_h, aug_w = image.shape[:2] # 基础预处理(包含Resize) processed = self.base_transform(image=image) image_tensor = processed['image'] # 将多边形坐标缩放到input_size scale_x = self.input_size[1] / aug_w scale_y = self.input_size[0] / aug_h scaled_polygons = [] for poly in polygons: scaled_poly = poly.copy() scaled_poly[:, 0] = scaled_poly[:, 0] * scale_x scaled_poly[:, 1] = scaled_poly[:, 1] * scale_y scaled_poly[:, 0] = np.clip(scaled_poly[:, 0], 0, self.input_size[1] - 1) scaled_poly[:, 1] = np.clip(scaled_poly[:, 1], 0, self.input_size[0] - 1) scaled_polygons.append(scaled_poly) # 生成目标(使用input_size尺寸) binary_target = self.generate_binary_target(scaled_polygons, (self.input_size[0], self.input_size[1])) threshold_target = self.generate_threshold_target(scaled_polygons, (self.input_size[0], self.input_size[1])) return image_tensor, binary_target, threshold_target def generate_threshold_target(self, polygons, img_shape, ratio=0.4): """生成阈值目标图(优化浮点坐标处理)""" # 定义输出尺寸(特征图尺寸) output_size = (self.input_size[0] // 8, self.input_size[1] // 8) # 创建全尺寸距离图 full_size_map = np.zeros(img_shape[:2], dtype=np.float32) for poly in polygons: if len(poly) < 3: continue # 确保坐标在图像范围内 poly[:, 0] = np.clip(poly[:, 0], 0, img_shape[1] - 1) poly[:, 1] = np.clip(poly[:, 1], 0, img_shape[0] - 1) # 计算最大距离(防止除零错误) area = cv2.contourArea(poly) perimeter = cv2.arcLength(poly, True) if perimeter < 1e-3 or area < 10: continue max_dist = area * (1 - ratio ** 2) / max(perimeter, 1e-3) # 创建浮点精度的多边形掩码 mask = np.zeros(img_shape[:2], dtype=np.uint8) int_poly = poly.reshape((-1, 1, 2)).astype(np.int32) cv2.fillPoly(mask, [int_poly], 255) # 计算距离变换并更新全尺寸图 dist = cv2.distanceTransform(mask, cv2.DIST_L2, 3) normalized = np.clip(dist / max(max_dist, 1e-6), 0, 1) full_size_map = np.maximum(full_size_map, normalized) # 下采样到特征图尺寸 dist_map = cv2.resize(full_size_map, output_size, interpolation=cv2.INTER_LINEAR) # 空目标检查 if np.max(dist_map) < 1e-6: return torch.zeros((1, *output_size), dtype=torch.float32) return torch.from_numpy(dist_map).unsqueeze(0).float() def generate_binary_target(self, polygons, img_shape): """生成二值化目标图(优化浮点坐标处理)""" # 直接在目标尺寸上创建 output_size = (self.input_size[0] // 8, self.input_size[1] // 8) binary_map = np.zeros(output_size, dtype=np.float32) # 计算缩放比例 (原始图像->特征图) scale_x = output_size[1] / img_shape[1] scale_y = output_size[0] / img_shape[0] for poly in polygons: if len(poly) > 2: # 缩放多边形到特征图尺寸(保持浮点精度) scaled_poly = poly.copy() scaled_poly[:, 0] = scaled_poly[:, 0] * scale_x scaled_poly[:, 1] = scaled_poly[:, 1] * scale_y # 使用浮点坐标填充(更精确) int_poly = scaled_poly.reshape((-1, 1, 2)).astype(np.float32) # 创建临时画布进行填充 temp_canvas = np.zeros(output_size, dtype=np.uint8) cv2.fillPoly(temp_canvas, [int_poly.astype(np.int32)], 1) binary_map = np.maximum(binary_map, temp_canvas.astype(np.float32)) return torch.from_numpy(binary_map).unsqueeze(0).float() # ---------------------------- # 2. DBNet模型定义 (增强版) # ---------------------------- class DBNet(nn.Module): """基于ResNet18的DBNet文本检测模型""" def __init__(self, pretrained=True): super(DBNet, self).__init__() base_model = resnet18(weights=ResNet18_Weights.DEFAULT) # 提取中间特征层 self.conv1 = base_model.conv1 self.bn1 = base_model.bn1 self.relu = base_model.relu self.maxpool = base_model.maxpool self.layer1 = base_model.layer1 self.layer2 = base_model.layer2 self.layer3 = base_model.layer3 self.layer4 = base_model.layer4 # 特征融合层 self.fusion_conv = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True) ) # 检测头 self.db_head = DBHead(64) def forward(self, x): # 骨干网络前向传播 x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) # 特征融合 fused = self.fusion_conv(x) # 检测头 binary_map, thresh_map = self.db_head(fused) return binary_map, thresh_map class DBHead(nn.Module): """DBNet检测头,包含注意力机制和残差连接""" def __init__(self, in_channels): super(DBHead, self).__init__() # 修改DBHead的残差块 self.res_block = nn.Sequential( nn.Conv2d(in_channels, in_channels, 3, padding=1), nn.BatchNorm2d(in_channels), nn.LeakyReLU(0.2, inplace=True), # 使用LeakyReLU防止梯度消失 nn.Conv2d(in_channels, in_channels, 3, padding=1), nn.BatchNorm2d(in_channels) ) # 添加空间注意力机制 self.spatial_attn = nn.Sequential( nn.Conv2d(in_channels, 1, kernel_size=3, padding=1), nn.Sigmoid() ) # 通道注意力机制 self.attention = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, in_channels // 8, 1), nn.ReLU(inplace=True), nn.Conv2d(in_channels // 8, in_channels, 1), nn.Sigmoid() ) # 二值化分支 self.binarize = nn.Sequential( nn.Conv2d(in_channels, in_channels // 2, 3, padding=1), nn.BatchNorm2d(in_channels // 2), nn.ReLU(inplace=True), nn.Conv2d(in_channels // 2, in_channels // 2, 3, padding=1), nn.BatchNorm2d(in_channels // 2), nn.ReLU(inplace=True), nn.ConvTranspose2d(in_channels // 2, in_channels // 4, 4, stride=2, padding=1), nn.BatchNorm2d(in_channels // 4), nn.ReLU(inplace=True), nn.ConvTranspose2d(in_channels // 4, 1, 4, stride=2, padding=1), nn.Sigmoid() ) # 阈值分支 self.thresh = nn.Sequential( nn.Conv2d(in_channels, in_channels // 2, 3, padding=1), nn.BatchNorm2d(in_channels // 2), nn.ReLU(inplace=True), nn.Conv2d(in_channels // 2, in_channels // 4, 3, padding=1), nn.BatchNorm2d(in_channels // 4), nn.ReLU(inplace=True), nn.ConvTranspose2d(in_channels // 4, in_channels // 8, 4, stride=2, padding=1), nn.BatchNorm2d(in_channels // 8), nn.ReLU(inplace=True), nn.ConvTranspose2d(in_channels // 8, 1, 4, stride=2, padding=1), nn.Sigmoid() ) def forward(self, x): # 残差连接 residual = x x = self.res_block(x) + residual # 空间注意力 attn_map = self.spatial_attn(x) x = x * attn_map binary_map = self.binarize(x) thresh_map = self.thresh(x) return binary_map, thresh_map # ---------------------------- # 3. 损失函数定义 (增强版) # ---------------------------- class DBLoss(nn.Module): """重构后的 DBNet 损失函数,符合原始论文设计[1,2,4](@ref)""" def __init__(self, alpha=1.0, beta=10.0, k=50, ohem_ratio=3.0): super(DBLoss, self).__init__() self.alpha = alpha # 概率图损失权重 self.beta = beta # 阈值图损失权重 self.k = k # 可微二值化参数[1](@ref) self.ohem_ratio = ohem_ratio def forward(self, preds, targets): binary_pred, thresh_pred = preds binary_target, thresh_target = targets # 1. 概率图损失(二值图损失)使用带 OHEM 的 Dice Loss[2](@ref) prob_loss = self.dice_loss_with_ohem(binary_pred, binary_target) # 2. 阈值图损失使用 L1 Loss[4](@ref) thresh_loss = F.l1_loss(thresh_pred, thresh_target, reduction='mean') # 3. 可微二值化计算[1](@ref) with torch.no_grad(): # 计算近似二值图 B = 1 / (1 + exp(-k(P - T))) binary_map = torch.sigmoid(self.k * (binary_pred - thresh_pred)) # 4. 二值图损失使用 Dice Loss bin_loss = self.dice_loss(binary_map, binary_target) # 5. 组合损失:L = L_s + α × L_t + β × L_b total_loss = prob_loss + self.alpha * thresh_loss + self.beta * bin_loss return total_loss, prob_loss, thresh_loss, bin_loss def dice_loss(self, pred, target): """标准 Dice Loss 实现""" smooth = 1.0 intersection = (pred * target).sum() union = pred.sum() + target.sum() return 1 - (2. * intersection + smooth) / (union + smooth) def dice_loss_with_ohem(self, pred, target): """带 OHEM 的 Dice Loss 实现[2](@ref)""" # 计算每个像素的损失 loss_map = 1 - (2 * pred * target + 1) / (pred + target + 1) # 应用 OHEM 采样 pos_mask = (target > 0.5).float() neg_mask = 1 - pos_mask # 计算正负样本数量 n_pos = pos_mask.sum().item() n_neg = min(int(n_pos * self.ohem_ratio), neg_mask.sum().item()) if n_neg == 0: return self.dice_loss(pred, target) # 选择最难负样本 neg_loss = loss_map * neg_mask neg_loss = neg_loss.view(-1) topk_neg_loss, _ = torch.topk(neg_loss, n_neg) # 组合正负样本损失 pos_loss = (loss_map * pos_mask).sum() total_loss = (pos_loss + topk_neg_loss.sum()) / (n_pos + n_neg + 1e-6) return total_loss # ---------------------------- # 辅助函数 (保持不变) # ---------------------------- def calculate_metrics(pred, target, threshold=0.5): """计算精确度、召回率和F1分数""" pred_bin = (pred > threshold).float() target_bin = (target > 0.5).float() pred_flat = pred_bin.view(-1).cpu().numpy() target_flat = target_bin.view(-1).cpu().numpy() # 避免全零情况 if np.sum(target_flat) == 0: return 0.0, 0.0, 0.0 precision = precision_score(target_flat, pred_flat, zero_division=0) recall = recall_score(target_flat, pred_flat, zero_division=0) f1 = f1_score(target_flat, pred_flat, zero_division=0) return precision, recall, f1 # ... (保持不变) ... def validate_model(model, dataloader, device): """验证模型性能""" model.eval() total_precision = 0.0 total_recall = 0.0 total_f1 = 0.0 num_batches = 0 with torch.no_grad(): for images, binary_targets, _ in dataloader: images = images.to(device) binary_targets = binary_targets.to(device) binary_preds, _ = model(images) precision, recall, f1 = calculate_metrics(binary_preds, binary_targets) total_precision += precision total_recall += recall total_f1 += f1 num_batches += 1 avg_precision = total_precision / num_batches avg_recall = total_recall / num_batches avg_f1 = total_f1 / num_batches return avg_precision, avg_recall, avg_f1 # 2. 动态损失权重校准 - 修改DBLoss类 class AdaptiveDBLoss(DBLoss): def __init__(self, alpha=1.0, beta=5.0, gamma=2.0, adapt_step=100): super().__init__(alpha, beta, gamma) self.adapt_step = adapt_step self.beta_history = [] def forward(self, preds, targets, step): # 动态调整β系数 if step % self.adapt_step == 0 and len(self.beta_history) > 10: db_median = np.median(self.beta_history[-10:]) self.beta = max(1.0, min(db_median * 0.8, 10.0)) total_loss, bin_loss, thresh_loss, db_loss = super().forward(preds, targets) # 记录当前β值的表现 self.beta_history.append(db_loss.item()) return total_loss, bin_loss, thresh_loss, db_loss # 3. 模型架构增强 - 替换原始DBHead class EnhancedDBHead(DBHead): def __init__(self, in_channels): super().__init__(in_channels) # 增加通道容量 self.res_block = nn.Sequential( nn.Conv2d(in_channels, in_channels * 2, 3, padding=1), nn.GroupNorm(8, in_channels * 2), nn.GELU(), nn.Conv2d(in_channels * 2, in_channels, 3, padding=1), nn.GroupNorm(8, in_channels) ) # 深度可分离卷积增强特征 self.depthwise = nn.Sequential( nn.Conv2d(in_channels, in_channels, 3, padding=1, groups=in_channels), nn.Conv2d(in_channels, in_channels * 4, 1), nn.GELU() ) # 自门控注意力机制 self.gate_attn = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, in_channels // 4, 1), nn.GELU(), nn.Conv2d(in_channels // 4, in_channels, 1), nn.Sigmoid() ) def forward(self, x): residual = x x = self.res_block(x) + residual # 深度特征提取 depth_feat = self.depthwise(x) # 门控特征融合 gate = self.gate_attn(depth_feat) x = x * gate + depth_feat # 原始输出 return super().forward(x) # ---------------------------- # 4. 训练函数 (增强版,添加进度条) # ---------------------------- def enhanced_train_model(model, train_loader, val_loader, criterion, optimizer, device, epochs=200, checkpoint_path='dbnet_checkpoint.pth', lr_init=5e-5): # 初始化 start_epoch = 0 best_loss = float('inf') best_f1 = 0.0 logger = EnhancedTrainingLogger() # 学习率调度器 (CosineAnnealingWarmRestarts) scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=3, verbose=True) # 混合精度训练 scaler = torch.cuda.amp.GradScaler() # 检查点恢复机制 if os.path.exists(checkpoint_path): print(f"发现检查点文件 {checkpoint_path}, 尝试恢复训练...") checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] + 1 best_loss = checkpoint['best_loss'] logger = checkpoint['logger'] print(f"成功恢复训练状态: 从第 {start_epoch} 轮开始, 最佳损失: {best_loss:.6f}") if not logger.total_losses: # 检查日志是否为空 logger = EnhancedTrainingLogger() # 创建新的日志记录器 model.train() optimizer.param_groups[0]['lr'] = lr_init try: for epoch in range(start_epoch, epochs): epoch_total_loss = 0.0 epoch_bin_loss = 0.0 epoch_thresh_loss = 0.0 epoch_db_loss = 0.0 epoch_start = time.time() # 使用tqdm添加进度条 pbar = tqdm(enumerate(train_loader), total=len(train_loader), desc=f"Epoch {epoch + 1}/{epochs}", unit="batch") for batch_idx, (images, binary_targets, thresh_targets) in pbar: images = images.to(device) binary_targets = binary_targets.to(device) thresh_targets = thresh_targets.to(device) # 混合精度训练 with torch.cuda.amp.autocast(): binary_preds, thresh_preds = model(images) total_loss, bin_loss, thresh_loss, db_loss = criterion( (binary_preds, thresh_preds), (binary_targets, thresh_targets) ) # 记录损失 epoch_total_loss += total_loss.item() epoch_bin_loss += bin_loss.item() epoch_thresh_loss += thresh_loss.item() epoch_db_loss += db_loss.item() # 记录日志 current_lr = optimizer.param_groups[0]['lr'] logger.on_batch_end( batch_idx, total_loss.item(), bin_loss.item(), thresh_loss.item(), db_loss.item(), current_lr ) # 更新进度条描述 pbar.set_postfix({ 'Loss': f"{total_loss.item():.4f}", 'Bin': f"{bin_loss.item():.4f}", 'Thresh': f"{thresh_loss.item():.4f}", 'DB': f"{db_loss.item():.4f}", 'LR': f"{current_lr:.2e}" }) # 反向传播 optimizer.zero_grad() scaler.scale(total_loss).backward() # 梯度裁剪 torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) scaler.step(optimizer) scaler.update() # 更新学习率 scheduler.step(epoch + batch_idx / len(train_loader)) # 每100个batch保存一次紧急检查点 if batch_idx % 100 == 0: checkpoint = { 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'best_loss': best_loss, 'logger': logger, 'scheduler_state': scheduler.state_dict() } torch.save(checkpoint, checkpoint_path) # 计算平均损失 num_batches = len(train_loader) avg_total_loss = epoch_total_loss / num_batches avg_bin_loss = epoch_bin_loss / num_batches avg_thresh_loss = epoch_thresh_loss / num_batches avg_db_loss = epoch_db_loss / num_batches # 验证模型 precision, recall, f1 = validate_model(model, val_loader, device) logger.val_metrics['precision'].append(precision) logger.val_metrics['recall'].append(recall) logger.val_metrics['f1'].append(f1) epoch_time = time.time() - epoch_start print(f"Epoch [{epoch + 1}/{epochs}] completed in {epoch_time:.2f}s") print( f" - Avg Loss: {avg_total_loss:.6f} (Bin:{avg_bin_loss:.6f}, Thresh:{avg_thresh_loss:.6f}, DB:{avg_db_loss:.6f})") print(f" - Val Metrics: Precision={precision:.4f}, Recall={recall:.4f}, F1={f1:.4f}") logger.on_epoch_end(epoch, optimizer) # 保存最佳模型 if f1 > best_f1 or (f1 == best_f1 and avg_total_loss < best_loss): best_f1 = f1 best_loss = avg_total_loss torch.save({ 'epoch': epoch + 1, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': avg_total_loss, 'f1': best_f1 }, 'dbnet_best.pth') print(f"🔥 发现新的最佳模型! F1: {best_f1:.4f}, 损失: {best_loss:.6f}") # 保存常规检查点 checkpoint = { 'epoch': epoch + 1, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'best_loss': best_loss, 'logger': logger, 'scheduler_state': scheduler.state_dict() } torch.save(checkpoint, checkpoint_path) except KeyboardInterrupt: print("\n训练被用户中断!") except Exception as e: print(f"\n❌ 训练中断! 原因: {str(e)}") traceback.print_exc() finally: print("训练完成! 保存最终模型...") torch.save(model.state_dict(), 'dbnet_final.pth') logger.on_train_end() return model # ---------------------------- # 5. 推理与区域裁剪 (增强版) # ---------------------------- def enhanced_detect_text_regions(image, model, device, threshold=0.3): # 预处理 orig_h, orig_w = image.shape[:2] input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) input_img = cv2.resize(input_img, (640, 640)) input_img = input_img.astype(np.float32) / 255.0 input_img = (input_img - [0.485, 0.456, 0.406]) / [0.229, 0.224, 0.225] input_tensor = torch.from_numpy(input_img).permute(2, 0, 1).unsqueeze(0).to(device) input_tensor = input_tensor.to(torch.float32) # 推理 with torch.no_grad(): binary_map, _ = model(input_tensor) # 后处理 binary_map = binary_map.squeeze().cpu().numpy() binary_output = (binary_map > threshold).astype(np.uint8) * 255 # 形态学操作增强 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) binary_output = cv2.morphologyEx(binary_output, cv2.MORPH_CLOSE, kernel) # 查找轮廓 contours, _ = cv2.findContours(binary_output, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) return contours, orig_h, orig_w # 返回检测到的文本区域轮廓 # ... (保持不变) ... def perspective_transform(image, contour): """对检测到的文本区域进行透视变换校正""" # 多边形逼近轮廓 epsilon = 0.02 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) # 确保是四边形 if len(approx) != 4: # 使用最小外接矩形 rect = cv2.minAreaRect(contour) box = cv2.boxPoints(rect) approx = np.int0(box) # 获取四边形顶点并排序 (左上, 右上, 右下, 左下) pts = approx.reshape(4, 2) rect_pts = np.zeros((4, 2), dtype="float32") # 计算顶点和 s = pts.sum(axis=1) rect_pts[0] = pts[np.argmin(s)] # 左上 rect_pts[2] = pts[np.argmax(s)] # 右下 # 计算顶点差 diff = np.diff(pts, axis=1) rect_pts[1] = pts[np.argmin(diff)] # 右上 rect_pts[3] = pts[np.argmax(diff)] # 左下 # 计算目标矩形尺寸 (tl, tr, br, bl) = rect_pts widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # 目标点坐标 dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32") # 计算透视变换矩阵并应用 M = cv2.getPerspectiveTransform(rect_pts, dst) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) return warped def crop_text_regions(image, contours, orig_h, orig_w): """裁剪检测到的文本区域并进行透视校正""" cropped_regions = [] # 计算缩放比例 (从640x640到原始尺寸) scale_x = orig_w / 640.0 scale_y = orig_h / 640.0 for contour in contours: # 过滤小区域 if cv2.contourArea(contour) < 100: continue # 缩放轮廓到原始图像尺寸 scaled_contour = contour.copy() scaled_contour[:, :, 0] = scaled_contour[:, :, 0] * scale_x scaled_contour[:, :, 1] = scaled_contour[:, :, 1] * scale_y # 获取轮廓边界框 x, y, w, h = cv2.boundingRect(scaled_contour) # 扩展边界框 (增加10%的边距) margin_x = int(w * 0.1) margin_y = int(h * 0.1) x = max(0, x - margin_x) y = max(0, y - margin_y) w = min(orig_w - x, w + 2 * margin_x) h = min(orig_h - y, h + 2 * margin_y) # 裁剪区域 roi = image[y:y + h, x:x + w] # 对裁剪区域进行透视校正 try: # 调整轮廓坐标到ROI坐标系 roi_contour = scaled_contour.copy() roi_contour[:, :, 0] -= x roi_contour[:, :, 1] -= y # 应用透视变换 warped_roi = perspective_transform(roi, roi_contour) # 确保最小尺寸 if warped_roi.shape[0] > 10 and warped_roi.shape[1] > 10: cropped_regions.append(warped_roi) except Exception as e: # 如果透视变换失败,使用原始ROI print(f"透视变换失败: {str(e)},使用原始ROI") cropped_regions.append(roi) return cropped_regions # ---------------------------- # 7. 模型加载与推理接口 (新增功能) # ---------------------------- def load_trained_model(model_path, device='cuda'): """加载训练好的模型""" model = DBNet(pretrained=False).to(device) checkpoint = torch.load(model_path, map_location=device) model.load_state_dict(checkpoint['model_state_dict']) model.eval() return model # 5. 水表图像增强改进 def water_meter_specific_aug(image, **kwargs): """水表专用增强链""" # 抑制高频反光 kernel_size = int(min(image.shape[:2]) * 0.01) if kernel_size % 2 == 0: kernel_size += 1 blurred = cv2.GaussianBlur(image, (kernel_size, kernel_size), 0) # 自适应直方图均衡 lab = cv2.cvtColor(blurred, cv2.COLOR_RGB2LAB) l, a, b = cv2.split(lab) clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8)) l_eq = clahe.apply(l) # 色偏校正 a_balanced = cv2.normalize(a, None, 0, 255, cv2.NORM_MINMAX) b_balanced = cv2.normalize(b, None, 0, 255, cv2.NORM_MINMAX) return cv2.cvtColor(cv2.merge([l_eq, a_balanced, b_balanced]), cv2.COLOR_LAB2RGB) def suppress_glare(image): """减少图像反光区域的影响[1](@ref)""" lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB) l, a, b = cv2.split(lab) # 对亮度通道进行CLAHE均衡化 clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8)) l_clahe = clahe.apply(l) # 合并通道 lab_clahe = cv2.merge((l_clahe, a, b)) return cv2.cvtColor(lab_clahe, cv2.COLOR_LAB2RGB) def detect_and_crop(image_path, model, device='cuda', output_dir='cropped_regions'): """使用训练好的模型检测并裁剪水表数字区域""" # 创建输出目录 os.makedirs(output_dir, exist_ok=True) # 读取图像 image = cv2.imread(image_path) if image is None: print(f"错误: 无法读取图像 {image_path}") return [] # 应用反光抑制 image = suppress_glare(image) # 检测文本区域 contours, orig_h, orig_w = enhanced_detect_text_regions(image, model, device) # 裁剪文本区域 cropped_regions = crop_text_regions(image, contours, orig_h, orig_w) # 保存结果 base_name = os.path.splitext(os.path.basename(image_path))[0] for i, region in enumerate(cropped_regions): output_path = os.path.join(output_dir, f'{base_name}_region_{i}.jpg') cv2.imwrite(output_path, region) print(f"成功裁剪 {len(cropped_regions)} 个文本区域到 {output_dir}") return cropped_regions # ---------------------------- # 8. 主程序 (优化版) # ---------------------------- if __name__ == "__main__": # 优化参数 INPUT_SIZE = (512, 512) # 减小输入尺寸适配水表 # 配置参数 DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' DATA_DIR = 'images_train' LABEL_DIR = 'labels_train' VAL_DATA_DIR = 'images_val' VAL_LABEL_DIR = 'labels_val' BATCH_SIZE = 16 EPOCHS = 100 LR = 1e-4 CHECKPOINT_PATH = 'dbnet_checkpoint.pth' TRAINED_MODEL_PATH = 'dbnet_best.pth' # 模式选择: 'train' 或 'inference' MODE = 'train' if MODE == 'train': # 1. 准备数据集 print("准备训练数据集...") train_dataset = WaterMeterDataset( image_dir=DATA_DIR, label_dir=LABEL_DIR, input_size=INPUT_SIZE, augment=True ) train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True) print("准备验证数据集...") val_dataset = WaterMeterDataset( image_dir=VAL_DATA_DIR, label_dir=VAL_LABEL_DIR, input_size=INPUT_SIZE, augment=False ) val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=2) # 2. 初始化模型 print("初始化模型...") model = DBNet(pretrained=True).to(DEVICE) # 3. 损失函数和优化器 # 初始化时使用自适应损失 criterion = DBLoss(alpha=1.0, beta=8.0) # 使用更先进的优化器 # 1. 强化学习率调度机制 - 更新优化器配置 optimizer = optim.AdamW( # 替换原始Adam model.parameters(), lr=3e-4, # 适当提升基础学习率 weight_decay=1e-4 ) # 4. 训练模型 print("开始训练...") model = enhanced_train_model( model, train_loader, val_loader, criterion, optimizer, DEVICE, epochs=EPOCHS, checkpoint_path=CHECKPOINT_PATH, lr_init=LR ) print(f"✅ 训练完成! 最佳模型已保存到 {TRAINED_MODEL_PATH}") elif MODE == 'inference': # 加载训练好的模型 print(f"加载训练好的模型: {TRAINED_MODEL_PATH}") model = load_trained_model(TRAINED_MODEL_PATH, DEVICE) # 处理单个图像 test_image_path = 'test_images/test_1.jpg' print(f"处理测试图像: {test_image_path}") detect_and_crop(test_image_path, model, DEVICE) # 处理整个目录 input_dir = 'test_images' output_dir = 'cropped_results' print(f"批量处理目录: {input_dir}") for img_file in os.listdir(input_dir): if img_file.lower().endswith(('.jpg', '.png', '.jpeg')): img_path = os.path.join(input_dir, img_file) print(f"处理图像: {img_file}") detect_and_crop(img_path, model, DEVICE, output_dir)

import torch import torch.nn as nn import torch.optim as optim from torchtext.datasets import IMDB import os # 设置本地数据集路径 data_path = "C:\sdxx" # 加载数据 train_iter, test_iter = IMDB(root=data_path, split=('train', 'test')) from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator, GloVe import matplotlib.pyplot as plt from torch.utils.data.dataset import random_split import numpy as np import time from torch.utils.data import DataLoader import os from sklearn.metrics import confusion_matrix, classification_report # 禁用警告信息 import warnings warnings.filterwarnings('ignore') import torchtext torchtext.disable_torchtext_deprecation_warning() # 设置随机种子,保证结果可复现 torch.manual_seed(42) np.random.seed(42) # 检查GPU是否可用 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"使用设备: {device}") # 1. 数据预处理 tokenizer = get_tokenizer('basic_english') train_iter = IMDB(split='train') # 检查数据集格式 first_example = next(iter(train_iter)) print(f"数据集格式示例: {first_example}") # 构建词汇表 def yield_tokens(data_iter): for _, text in data_iter: yield tokenizer(text) vocab = build_vocab_from_iterator(yield_tokens(train_iter), min_freq=5, specials=["", "<unk>"]) vocab.set_default_index(vocab["<unk>"]) # 加载预训练词向量 (300d) print("加载预训练GloVe词向量...") vectors = GloVe(name='6B', dim=300) pretrained_embedding = vectors.get_vecs_by_tokens(vocab.get_itos()) print(f"预训练词向量形状: {pretrained_embedding.shape}") # 超参数 - 已优化配置 MAX_SEQ_LEN = 256 # 增加最大序列长度 EMBEDDING_DIM = 300 HIDDEN_DIM = 192 # 增加隐藏层维度 OUTPUT_DIM = 1 BATCH_SIZE = 32 # 减小批次大小增加随机性 EPOCHS = 15 # 增加最大训练轮次 LR = 5e-4 # 降低初始学习率 DROPOUT = 0.6 # 增加Dropout比率 accumulation_steps = 4 # 梯度累积步数 LSTM_LAYERS = 3 # 增加LSTM层数 WEIGHT_DECAY = 5e-4 # 增加权重衰减 # 数据批量处理函数 - 动态长度+标签处理 def collate_batch(batch): # 标签处理:将标签1映射为0(负例),标签2映射为1(正例) labels = [1 if example[0] == 2 else 0 for example in batch] labels = torch.tensor(labels).to(device) # 处理文本 - 动态长度 texts = [tokenizer(example[1]) for example in batch] # 计算当前批次平均长度,动态调整截断值 avg_len = sum(len(t) for t in texts) // len(texts) dynamic_len = min(avg_len + 25, MAX_SEQ_LEN) # 增加动态长度上限 texts = [vocab(text) for text in texts] texts = [torch.tensor([i for i in text[:dynamic_len]]) for text in texts] texts = torch.nn.utils.rnn.pad_sequence(texts, batch_first=True, padding_value=vocab[""]).to(device) return texts, labels # 重新加载训练集和测试集 train_iter = IMDB(split='train') test_iter = IMDB(split='test') # 使用原始数据(若需数据增强,可取消注释以下部分) train_dataset = list(train_iter) test_dataset = list(test_iter) # 划分训练集和验证集 train_size = int(0.8 * len(train_dataset)) val_size = len(train_dataset) - train_size train_dataset, val_dataset = random_split(train_dataset, [train_size, val_size]) # 创建数据加载器 train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch) val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, collate_fn=collate_batch) test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, collate_fn=collate_batch) # 检查数据分布 def check_data_distribution(): train_labels = [label for (label, _) in train_dataset] val_labels = [label for (label, _) in val_dataset] test_labels = [label for (label, _) in test_dataset] # 计算正例比例 train_pos_ratio = sum([1 for lbl in train_labels if lbl == 2]) / len(train_labels) val_pos_ratio = sum([1 for lbl in val_labels if lbl == 2]) / len(val_labels) test_pos_ratio = sum([1 for lbl in test_labels if lbl == 2]) / len(test_labels) print(f"训练集大小: {len(train_dataset)}, 正例比例: {train_pos_ratio:.4f}") print(f"验证集大小: {len(val_dataset)}, 正例比例: {val_pos_ratio:.4f}") print(f"测试集大小: {len(test_dataset)}, 正例比例: {test_pos_ratio:.4f}") # 检查批次数据 batch = next(iter(train_loader)) texts, labels = batch print(f"批次示例 - 文本形状: {texts.shape}, 标签形状: {labels.shape}") print(f"标签示例: {labels[:10].cpu().numpy()}") check_data_distribution() # 2. 改进模型结构 - 双向LSTM+注意力机制 class AttentionLSTM(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, dropout=0.5, pretrained=None, num_layers=2): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) # 使用预训练词向量 if pretrained is not None: self.embedding.weight.data.copy_(pretrained) self.embedding.weight.requires_grad = True # 微调预训练向量 self.lstm = nn.LSTM( embedding_dim, hidden_dim, batch_first=True, bidirectional=True, # 双向LSTM num_layers=num_layers, # 增加LSTM层数 dropout=dropout # 层间dropout ) # 注意力机制 self.attention = nn.Sequential( nn.Linear(hidden_dim * 2, hidden_dim), nn.Tanh(), nn.Linear(hidden_dim, 1), nn.Softmax(dim=1) ) self.dropout = nn.Dropout(dropout) # 添加额外的全连接层 self.fc1 = nn.Linear(hidden_dim * 2, hidden_dim) self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, text): # text: [batch_size, seq_len] embedded = self.embedding(text) # [batch_size, seq_len, embedding_dim] # LSTM输出 lstm_out, _ = self.lstm(embedded) # [batch_size, seq_len, hidden_dim*2] # 注意力权重计算 attn_weights = self.attention(lstm_out) # [batch_size, seq_len, 1] # 加权求和得到上下文向量 context = torch.bmm(attn_weights.transpose(1, 2), lstm_out).squeeze(1) # [batch_size, hidden_dim*2] # 多层全连接 output = self.dropout(self.fc1(context)) output = self.fc2(output) # [batch_size, output_dim] return output # 3. 训练配置 - 优化器与调度器 def train_model(model_id=0): # 初始化模型 model = AttentionLSTM( vocab_size, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM, DROPOUT, pretrained_embedding, LSTM_LAYERS ).to(device) # 优化器 - 使用调整后的权重衰减 optimizer = optim.AdamW(model.parameters(), lr=LR, weight_decay=WEIGHT_DECAY) # 学习率调度器 - 改进版 total_steps = len(train_loader) * EPOCHS warmup_steps = int(total_steps * 0.15) # 增加warmup比例 def warmup_cosine(current_step): if current_step < warmup_steps: return float(current_step) / float(max(1, warmup_steps)) progress = float(current_step - warmup_steps) / float(max(1, total_steps - warmup_steps)) return max(0.0, 0.5 * (1.0 + np.cos(np.pi * progress))) scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warmup_cosine) # 早停机制 - 更严格的配置 early_stopping = EarlyStopping(patience=7, delta=0.005, verbose=True, path=f'best_model_{model_id}.pt') # 训练循环 train_losses = [] val_losses = [] val_accs = [] print(f"\n开始训练模型 {model_id + 1}...") start_time = time.time() for epoch in range(EPOCHS): # 训练阶段 model.train() train_loss = 0.0 train_correct = 0 train_total = 0 for i, (texts, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(texts).squeeze(1) loss = criterion(outputs, labels.float()) loss = loss / accumulation_steps # 梯度累积 loss.backward() # 梯度裁剪(防止梯度爆炸) nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) # 累积一定步数后更新参数 if (i + 1) % accumulation_steps == 0: optimizer.step() optimizer.zero_grad() scheduler.step() # 更新学习率 train_loss += loss.item() * accumulation_steps preds = torch.round(torch.sigmoid(outputs)) train_total += labels.size(0) train_correct += (preds == labels).sum().item() # 计算训练准确率 train_acc = train_correct / train_total # 验证阶段 model.eval() val_loss = 0.0 val_correct = 0 val_total = 0 with torch.no_grad(): for texts, labels in val_loader: outputs = model(texts).squeeze(1) loss = criterion(outputs, labels.float()) val_loss += loss.item() preds = torch.round(torch.sigmoid(outputs)) val_total += labels.size(0) val_correct += (preds == labels).sum().item() # 计算平均损失和准确率 avg_train_loss = train_loss / len(train_loader) avg_val_loss = val_loss / len(val_loader) val_acc = val_correct / val_total # 记录结果 train_losses.append(avg_train_loss) val_losses.append(avg_val_loss) val_accs.append(val_acc) # 打印当前学习率 current_lr = optimizer.param_groups[0]['lr'] print(f"Epoch: {epoch + 1}/{EPOCHS}, LR: {current_lr:.7f}, " f"Train Loss: {avg_train_loss:.4f}, Train Acc: {train_acc:.4f}, " f"Val Loss: {avg_val_loss:.4f}, Val Acc: {val_acc:.4f}") # 早停判断 early_stopping(avg_val_loss, model) if early_stopping.early_stop: print("Early stopping") break total_time = time.time() - start_time print(f"模型 {model_id + 1} 训练完成,总耗时: {total_time:.2f}秒") return { 'model': model, 'train_losses': train_losses, 'val_losses': val_losses, 'val_accs': val_accs, 'best_val_loss': early_stopping.val_loss_min, 'best_val_acc': max(val_accs) } # 早停机制 class EarlyStopping: def __init__(self, patience=5, verbose=False, delta=0.0, path='best_model.pt'): self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta self.path = path def __call__(self, val_loss, model): score = -val_loss if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model) elif score < self.best_score + self.delta: self.counter += 1 print(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True else: self.best_score = score self.save_checkpoint(val_loss, model) self.counter = 0 def save_checkpoint(self, val_loss, model): if self.verbose: print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') torch.save(model.state_dict(), self.path) self.val_loss_min = val_loss # 集成模型预测 def ensemble_predict(models, texts): probs = [] for model in models: model.eval() with torch.no_grad(): output = model(texts).squeeze(1) probs.append(torch.sigmoid(output)) # 平均概率 avg_prob = torch.mean(torch.stack(probs), dim=0) return torch.round(avg_prob) # 训练多个模型进行集成 criterion = nn.BCEWithLogitsLoss() num_models = 3 # 集成3个模型 models_info = [] for i in range(num_models): model_info = train_model(i) models_info.append(model_info) # 加载最佳模型并在测试集上评估 ensemble_models = [] for i in range(num_models): model = AttentionLSTM( vocab_size, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM, DROPOUT, pretrained_embedding, LSTM_LAYERS ).to(device) model.load_state_dict(torch.load(f'best_model_{i}.pt')) ensemble_models.append(model) # 测试集评估 test_correct = 0 test_total = 0 all_preds = [] all_labels = [] with torch.no_grad(): for texts, labels in test_loader: preds = ensemble_predict(ensemble_models, texts) test_total += labels.size(0) test_correct += (preds == labels).sum().item() all_preds.extend(preds.cpu().numpy()) all_labels.extend(labels.cpu().numpy()) test_accuracy = test_correct / test_total print(f"\n集成模型最终测试准确率: {test_accuracy:.4f}") # 5. 可视化 plt.figure(figsize=(18, 5)) # 损失曲线 plt.subplot(1, 3, 1) for i, info in enumerate(models_info): plt.plot(range(1, len(info['train_losses']) + 1), info['train_losses'], f'{i + 1}-', label=f'Train Loss {i + 1}') plt.plot(range(1, len(info['val_losses']) + 1), info['val_losses'], f'{i + 1}--', label=f'Val Loss {i + 1}') plt.title('Training and Validation Loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.grid(True) # 准确率曲线 plt.subplot(1, 3, 2) for i, info in enumerate(models_info): plt.plot(range(1, len(info['val_accs']) + 1), info['val_accs'], f'{i + 1}-', label=f'Val Acc {i + 1}') plt.axhline(y=test_accuracy, color='purple', linestyle='--', label=f'Test Accuracy: {test_accuracy:.4f}') plt.title('Validation and Test Accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.grid(True) # 混淆矩阵 plt.subplot(1, 3, 3) cm = confusion_matrix(all_labels, all_preds) plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title('Confusion matrix') plt.colorbar() classes = ['Negative', 'Positive'] tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) # 在混淆矩阵上标注数字 thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): plt.text(j, i, format(cm[i, j], 'd'), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.tight_layout() plt.savefig('training_metrics.png') # 保存图表 plt.show() # 打印分类报告 report = classification_report(all_labels, all_preds, target_names=['Negative', 'Positive']) print("\n分类报告:") print(report) # 单个样本测试 def predict_sentiment(models, vocab, tokenizer, sentence, max_len=MAX_SEQ_LEN): tokens = tokenizer(sentence) indexed = [vocab[t] for t in tokens] tensor = torch.tensor(indexed).unsqueeze(0).to(device) # [1, seq_len] # 动态长度处理 dynamic_len = min(len(indexed) + 25, max_len) tensor = torch.nn.utils.rnn.pad_sequence([tensor.squeeze(0)], batch_first=True, padding_value=vocab[""]).to(device) # 集成预测 probs = [] for model in models: model.eval() with torch.no_grad(): output = model(tensor).squeeze(1) probs.append(torch.sigmoid(output).item()) avg_prob = sum(probs) / len(probs) return "Positive" if avg_prob > 0.5 else "Negative", avg_prob # 测试示例 test_sentences = [ "This movie is amazing! I love it.", "Terrible film, waste of money and time.", "The plot was confusing but the visuals were stunning.", "I've seen better, but it wasn't terrible.", "Absolutely fantastic - one of the best I've seen!", "The acting was good, but the story had no depth." ] print("\n样本测试结果:") for sentence in test_sentences: sentiment, prob = predict_sentiment(ensemble_models, vocab, tokenizer, sentence) print(f"影评: {sentence}") print(f"情感: {sentiment}, 置信度: {prob:.4f}") print("-" * 50) # 保存模型和词汇表 for i, model in enumerate(ensemble_models): torch.save(model.state_dict(), f'ensemble_model_{i}.pt') torch.save(vocab, 'vocab.pth') print("\n模型和词汇表已保存!") # 预测自定义影评函数 def predict_custom_review(models): print("\n输入影评文本 (输入'q'退出):") while True: review = input("> ") if review.lower() == 'q': break sentiment, prob = predict_sentiment(models, vocab, tokenizer, review) print(f"情感: {sentiment}, 置信度: {prob:.4f}") print("-" * 50) # 启动交互式预测 predict_custom_review(ensemble_models) 这段代码报错:C:\anaconda\envs\py39\python.exe C:\Users\32398\PyCharmMiscProject\深度学习\期末.py C:\anaconda\envs\py39\lib\site-packages\torchtext\datasets\__init__.py:4: UserWarning: /!\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\ Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: import torchtext; torchtext.disable_torchtext_deprecation_warning() warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG) C:\anaconda\envs\py39\lib\site-packages\torchtext\data\__init__.py:4: UserWarning: /!\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\ Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: import torchtext; torchtext.disable_torchtext_deprecation_warning() warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG) C:\anaconda\envs\py39\lib\site-packages\torchdata\datapipes\__init__.py:18: UserWarning: ################################################################################ WARNING! The 'datapipes', 'dataloader2' modules are deprecated and will be removed in a future torchdata release! Please see https://github.com/pytorch/data/issues/1196 to learn more and leave feedback. ################################################################################ deprecation_warning() C:\anaconda\envs\py39\lib\site-packages\torchtext\vocab\__init__.py:4: UserWarning: /!\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\ Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: import torchtext; torchtext.disable_torchtext_deprecation_warning() warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG) C:\anaconda\envs\py39\lib\site-packages\torchtext\utils.py:4: UserWarning: /!\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\ Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: import torchtext; torchtext.disable_torchtext_deprecation_warning() warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG) ImportError: DLL load failed while importing _multiarray_umath: 找不到指定的模块。 Traceback (most recent call last): File "C:\Users\32398\PyCharmMiscProject\深度学习\期末.py", line 13, in <module> import matplotlib.pyplot as plt File "C:\anaconda\envs\py39\lib\site-packages\matplotlib\__init__.py", line 161, in <module> from . import _api, _version, cbook, _docstring, rcsetup File "C:\anaconda\envs\py39\lib\site-packages\matplotlib\rcsetup.py", line 27, in <module> from matplotlib.colors import Colormap, is_color_like File "C:\anaconda\envs\py39\lib\site-packages\matplotlib\colors.py", line 56, in <module> from matplotlib import _api, _cm, cbook, scale File "C:\anaconda\envs\py39\lib\site-packages\matplotlib\scale.py", line 22, in <module> from matplotlib.ticker import ( File "C:\anaconda\envs\py39\lib\site-packages\matplotlib\ticker.py", line 138, in <module> from matplotlib import transforms as mtransforms File "C:\anaconda\envs\py39\lib\site-packages\matplotlib\transforms.py", line 49, in <module> from matplotlib._path import ( ImportError: numpy.core.multiarray failed to import 进程已结束,退出代码为 1

C:\Users\23228\PyCharmMiscProject\.venv\Scripts\python.exe D:\commodity_sorting_system\code\main.py DATA_DIR: D:/commodity_sorting_system/data TRAIN_IMAGES: D:/commodity_sorting_system/data\train\images TRAIN_LABELS: D:/commodity_sorting_system/data\train\labels VAL_IMAGES: D:/commodity_sorting_system/data\val\images VAL_LABELS: D:/commodity_sorting_system/data\val\labels Error importing huggingface_hub.hf_api: cannot import name 'MutableMapping' from 'collections' (C:\Users\23228\AppData\Local\Programs\Python\Python312\Lib\collections\__init__.py) C:\Users\23228\PyCharmMiscProject\.venv\Lib\site-packages\albumentations\__init__.py:28: UserWarning: A new version of Albumentations is available: '2.0.8' (you have '2.0.7'). Upgrade using: pip install -U albumentations. To disable automatic update checks, set the environment variable NO_ALBUMENTATIONS_UPDATE to 1. check_for_updates() Number of images in D:/commodity_sorting_system/data\train\images: 11828 Number of samples in dataset: 11828 Number of images in D:/commodity_sorting_system/data\val\images: 500 Number of samples in dataset: 500 Epoch [1/100], Batch [1/740], Loss: 0.1528 Traceback (most recent call last): File "D:\commodity_sorting_system\code\main.py", line 35, in <module> loss.backward() File "C:\Users\23228\PyCharmMiscProject\.venv\Lib\site-packages\torch\_tensor.py", line 626, in backward torch.autograd.backward( File "C:\Users\23228\PyCharmMiscProject\.venv\Lib\site-packages\torch\autograd\__init__.py", line 347, in backward _engine_run_backward( File "C:\Users\23228\PyCharmMiscProject\.venv\Lib\site-packages\torch\autograd\graph.py", line 823, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ KeyboardInterrupt 进程已结束,退出代码为 1 为什么怎么解决

最新推荐

recommend-type

02.《大数据》配套之二:-数据采集与预处理PPT.ppt

02.《大数据》配套之二:-数据采集与预处理PPT.ppt
recommend-type

19年国赛服务器答案深度解析:网络搭建与应用

网络搭建与应用是一门涉及计算机网络规划、配置、管理和维护的技术学科。在19年的国家竞赛中,参与者需要展示他们对网络架构、网络设备、协议、安全等方面的知识,以及他们在真实世界问题解决中的实际应用能力。在网络搭建与应用19国赛服务器答案中,涉及的知识点可能包括但不限于以下几个方面: 1. 网络基础知识 - 了解网络的基本概念,包括网络的定义、分类(如LAN、WAN等)、网络的功能和网络协议栈(如TCP/IP模型)。 - 理解网络设备的功能和作用,例如交换机、路由器、防火墙等。 - 掌握网络通信的基本原理,包括数据链路层、网络层、传输层和应用层的协议和功能。 2. 网络设计与规划 - 学习如何根据不同的需求设计网络拓扑结构,例如星形、环形、总线型等。 - 掌握IP地址规划和子网划分的方法,如CIDR、VLSM等技术。 - 了解如何进行网络流量分析和带宽规划,以确保网络性能和稳定性。 3. 网络设备配置与管理 - 掌握交换机和路由器的配置命令,例如VLAN划分、路由协议配置、端口安全等。 - 理解网络设备的管理和维护策略,包括日志管理、性能监控和故障诊断。 4. 网络安全 - 学习网络安全的基本原则,包括数据加密、访问控制、入侵检测系统(IDS)和入侵防御系统(IPS)。 - 掌握常见的网络攻击手段及其防御措施,例如DDoS攻击、ARP欺骗、病毒和恶意软件的防御。 5. 服务器搭建与应用 - 了解不同类型的服务器和它们的应用场景,如Web服务器、数据库服务器、邮件服务器等。 - 学习服务器的安装、配置和管理方法,包括操作系统的安装、服务软件的部署、用户管理等。 6. 实践操作 - 通过搭建真实或虚拟的网络环境来实践理论知识,包括使用网络模拟软件(如GNS3、Packet Tracer等)进行网络设备配置和故障排除。 - 学习如何准备和参加网络相关的竞赛,包括时间管理和应对突发问题的策略。 在给定的压缩包子文件的文件名称列表中,“19年国赛服务器的答案”表明该文件包含具体的竞赛解答步骤和方法。文件可能涉及的是如何根据具体的网络搭建与应用的题目,一步一步地提供解题策略、配置命令和执行步骤等。具体内容可能包括: - 对竞赛题目需求的分析和理解。 - 对应的网络设计解决方案和实现步骤。 - 关键的配置命令和参数设置。 - 对于各种网络功能和安全性的测试方法。 - 可能遇到的问题及其解决方案。 综上所述,对于网络搭建与应用19国赛服务器答案的深入学习和掌握,能够帮助专业人士和学生扩展网络知识,提高解决复杂网络问题的能力,并为将来的IT行业工作奠定扎实的基础。通过针对竞赛题目的实际操作演练,还能增强个人的实践技能和创新思维能力。
recommend-type

【VS2010模块化秘籍】:提升项目管理效率的10个技巧

# 1. VS2010模块化编程概述 在现代软件开发中,模块化编程已经成为提高代码质量和促进团队协作的关键技术之一。本章将介绍在Visual Studio 2010(VS2010)环境中如何理解和实施模块化编程。 ## 1.1 什么是模块化编程? 模块化编程是一种组织程序结构的方法,将程序分解为独立且可管理的模块,每个模块实现一个特定的功能。在V
recommend-type

数据分析师发展前景

<think>嗯,用户现在想了解数据分析师的职业发展和未来前景。根据之前的对话,用户是土木本科想转行,之前我建议过数据分析作为可能的方向之一,现在他可能想更深入了解这个领域的潜力。 首先,我需要参考之前提供的引用内容。引用1提到了数据分析师的职业路径,从专员到专家,还有技能提升的重要性。引用2和3强调了行业需求增长和技能的必要性,引用4则讨论了成为行业专家的长期发展优势。这些都需要整合到回答中。 用户的问题集中在职业前景和趋势,所以我要覆盖市场需求、职业阶段、技能要求、行业趋势和转行建议。考虑到用户是转行者,需要突出土木背景如何与数据分析结合,比如提到的BIM、GIS或者工程数据分析,这样
recommend-type

Elasticsearch及IK分词器安装包资源汇总

标题中提到的知识点包括Elasticsearch安装包和IK分词器,这是进行搜索引擎搭建和数据文本分析的重要组件。Elasticsearch是一个基于Lucene构建的开源搜索引擎,具有水平可伸缩性、高可用性和易用性的特点。它提供了全文搜索功能,同时支持结构化搜索和分析,常被用于大数据分析场景中。 描述中涉及的版本信息表明了所附的安装包和分词器支持不同版本的Elasticsearch。Elasticsearch版本6.x和7.x分别对应了两个主要的版本线,而IK分词器是专门为Elasticsearch设计的中文分词插件。 IK分词器是一款支持中文分词的扩展插件,可以根据中文语境进行智能分词,包括正向匹配、正向最大匹配和逆向最大匹配等算法,对中文文本进行处理。分词器的版本通常会与Elasticsearch的版本相匹配,以保证兼容性和最佳性能。 提到的logstash是与Elasticsearch配合使用的数据处理管道工具,负责收集、处理和转发数据。logstash可以作为事件的中介来处理各种来源的数据,然后将其发送到Elasticsearch进行存储。本压缩包中的logstash-6.4.3.tar.gz对应的版本表明了它的兼容性,适用于Elasticsearch 6.x版本。 压缩包文件名称列表中的文件包含了不同软件的多个版本。其中,“elasticsearch-head-master.zip”是一个可以对Elasticsearch进行可视化管理的Chrome插件,它提供了包括集群管理、索引管理、数据操作和查询在内的功能。 另外,“mysql-connector-java-5.1.41.jar”是一个MySQL数据库的Java驱动程序,用于连接Java应用程序和MySQL数据库,但这似乎与Elasticsearch及IK分词器直接关联不大,可能是一个辅助组件,用于在某些集成场景下将数据从MySQL迁移到Elasticsearch。 从标签内容来看,Elasticsearch被归类于源码软件、大数据和搜索引擎类别。它是一个重要的大数据处理组件,特别是在全文搜索和文本分析领域。在大数据背景下,Elasticsearch凭借其卓越的搜索和分析能力,已经成为企业构建和维护搜索引擎的首选技术之一。 总结来说,本次提供的压缩包包含了多个关键组件,它们共同支持构建一个功能强大的搜索引擎和数据分析平台。Elasticsearch自身及其配套的IK分词器、logstash和可视化插件elasticsearch-head,均对大数据和搜索领域有着重要意义。尽管这些工具具有复杂性,但它们的组合使用使得数据的索引、搜索、可视化和分析变得简单、快速和强大。
recommend-type

从零开始:Axure插件开发入门指南,构建自定义Chrome工具

# 摘要 随着原型设计工具Axure RP的广泛应用,定制化插件开发变得日益重要。本文旨在为开发者提供一个完整的Axure插件开发指南,从基础概念到环境搭建,再到核心编程和界面定制,最终实现交互逻辑与发布维护。通过详细解析插件的API、JavaScript编程、数据管理、界面设计及发布流程,本文帮助开发者深入理解并掌握Axure插件开发的关键技术,确保开发过程的高效性和插件的稳定运行。 # 关键字 Axur
recommend-type

代码错误,修改代码

<think>好的,用户说代码有错误,需要修改。首先我得仔细看看之前的代码哪里有问题。题目是关于彩灯的操作和查询,每个彩灯有一个周期k_i,每次操作区间加1,查询时判断当前按动次数是否为k_i的倍数。 首先,用户提供的代码使用了树状数组(Fenwick Tree)来维护差分数组,实现区间加和单点查询。但可能存在一些问题。比如,树状数组的差分处理是否正确? 在区间更新时,原代码是add(l, 1)和add(r+1, -1),这应该是正确的差分方法。当查询单点x时,sum(x)得到的是从1到x的累计值,也就是该点的实际操作次数。这部分逻辑看起来没问题。 但可能的问题在于,当k_i的值很大时,
recommend-type

筹资风险分析模板:Excel高效风险评估工具

Excel模板筹资风险分析.zip是一个用于财务风险分析的工具包,它可能包含了一个名为“筹资风险分析.xlsx”的Excel文件,这个文件被压缩在ZIP格式的压缩包中。下面将详细说明这个Excel模板中可能包含的知识点: 1. 筹资风险概念: 筹资风险指的是企业在筹资过程中由于各种不确定因素的影响,使得企业实际获得的筹资成本高于预期成本,或者筹资方式、筹资渠道未能达到预期目的,从而对企业财务状况和经营成果产生不利影响的可能性。筹资风险可以来源于金融市场波动、债务利率上升、企业信用评级下降等因素。 2. Excel在财务分析中的应用: Excel作为一个强大的电子表格软件,广泛应用于各种财务数据分析和管理中。它具备数据处理、图表制作、公式计算等功能,非常适合用来制作财务模型、进行预算编制、风险分析等任务。筹资风险分析中,Excel可以帮助用户进行敏感性分析、情景模拟和概率分析等。 3. 筹资风险分析的关键要素: - 资本结构:分析企业的债务与权益比例,评估不同筹资方式对资本结构的影响。 - 债务成本:估算企业债务的利率和偿还期限,考虑利率风险和偿债压力。 - 股权成本:计算股权筹资的期望回报率,评估股权稀释的影响。 - 流动性风险:考虑筹资后的资金流动性,确保企业运营资金的充足性。 - 筹资成本:计算不同筹资方式的综合成本,比较各种筹资渠道的经济性。 4. Excel模板筹资风险分析.xlsx可能包含的功能: - 数据录入区:用于输入企业的财务数据和筹资相关的具体参数。 - 计算引擎:使用Excel公式和函数来计算筹资成本、预期回报率等关键指标。 - 情景分析表:通过调整不同的变量,模拟出不同的筹资情景,分析其对企业财务状况的影响。 - 敏感性分析:评估筹资参数变动对企业风险和回报的影响程度。 - 图表展示:将分析结果以图表的形式展现出来,比如使用条形图、折线图和饼图等,直观展示风险和回报的对比。 - 结论和建议:根据分析结果提供筹资策略的优化建议。 5. 筹资风险分析的实施步骤: - 明确分析目标:确定分析筹资风险的目的和需要关注的关键点。 - 收集数据:搜集相关的市场数据、企业财务报表、筹资计划等。 - 构建模型:在Excel中根据筹资风险分析的理论框架构建分析模型。 - 输入参数:将收集到的数据输入到Excel模型中。 - 运行分析:利用Excel的数据处理能力,执行必要的计算和分析。 - 解读结果:分析输出结果,并据此解读筹资风险水平。 - 制定策略:基于分析结果,提出筹资策略和风险控制措施。 6. 筹资风险分析的应用场景: 筹资风险分析不仅可以用于企业自身的筹资决策过程中,还可以在投资评估、财务咨询、风险管理和战略规划等领域发挥作用。在企业层面,它可以辅助管理层和财务部门制定更为稳健和有效的资金筹集计划;在咨询领域,可以为投资者提供分析企业的筹资活动和风险状况的专业意见;在学术研究中,筹资风险分析是研究企业资本结构和企业价值的重要工具。 7. 筹资风险分析的局限性: 尽管Excel模板筹资风险分析提供了有力的工具,但也存在局限性。模型依赖于准确的数据输入,如果假设或数据有误,将影响分析结果的可靠性。此外,市场环境的变化、政策的调整以及其他不可预测的因素都可能对筹资风险造成影响,这些在模型中可能难以全面考虑。 通过使用Excel模板筹资风险分析.zip内的筹资风险分析.xlsx文件,企业可以更有效地进行筹资风险管理,制定出更合理的筹资策略,从而降低财务风险,提高企业的整体价值。
recommend-type

【Z460_Z560 BIOS升级终极指南】:29CN41WW版本升级,性能提升,故障排除

# 摘要 本文探讨了BIOS升级的必要性、益处以及相关风险和解决策略。首先,概述了BIOS的基础概念和版本更新的重要性,接着详细解读了特定笔记本型号Z460/Z560的BIOS架构和升级步骤。文章进一步分析了BIOS升级对于笔记本性能提升的影响,并提供了详细的故障诊断和排除方法。最后,通过分享实际升级案例,总结了BIOS升级的最佳实践和专业建议。本文旨在帮助技术用户深入理解BIOS升级的过程及
recommend-type

lenet论文

<think>首先,用户查询是:“我想查找LeNet论文相关资料 请问LeNet论文原文及技术解析”。这看起来像是一个新查询,因为系统指令提到“请尽可能多的参考用户上一次的问题和你的回答”,但在这个上下文中,没有提供用户上一次的问题或我的回答。所以,我应该基于当前查询和提供的引用内容来回答。 系统指令包括: - 所有行内数学表达式必须使用$...$格式。 - 独立公式使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,如[^1]。 - 回答结构清晰,帮助用户解决问题。 - 参考站内引用:有四个引用