pytroch复现ssd
时间: 2025-06-28 13:23:46 浏览: 7
### 使用 PyTorch 实现 SSD 模型
#### 构建 VGG 基础网络
SSD 模型采用 VGG16 作为基础模型,并在此基础上进行了修改。为了适应不同尺度的目标检测需求,SSD 输入图像尺寸通常设置为 300×300 或者 512×512[^1]。
```python
import torch.nn as nn
from torchvision import models
class BaseVGG(nn.Module):
def __init__(self):
super(BaseVGG, self).__init__()
vgg = models.vgg16(pretrained=True).features
# 修改vgg最后几层以适配SSD的需求
self.base_layers = list(vgg.children())[:-8]
def forward(self, x):
for layer in self.base_layers:
x = layer(x)
return x
```
#### 添加额外卷积层
除了继承自 VGG 的卷积层外,还需要增加多个新的卷积层来提取更丰富的特征图。这些附加的卷积层有助于捕捉多尺度的信息,从而提高小物体检测的效果。
```python
def make_extra_layers():
layers = []
# 定义各层参数
cfg = [
(256, 'S', 512),
(128, 'S', 256),
(128, '', 256),
(128, '', 256)]
padding = {'': 1, 'S': 0}
stride = {'': 1, 'S': 2}
input_channels = 1024
for k, v in enumerate(cfg):
out_channels = v[-1]
conv_layer = nn.Conv2d(input_channels,
out_channels,
kernel_size=(1 if isinstance(k % 2 == 0) else 3),
stride=stride[v[1]],
padding=padding[v[1]])
layers += [conv_layer, nn.ReLU(inplace=True)]
input_channels = out_channels
return nn.Sequential(*layers)
extra_conv_layers = make_extra_layers()
```
#### 创建预测头(Prediction Heads)
对于每一个特征映射位置,都需要为其分配一定数量的默认边界框(anchor boxes),并由相应的分类器和回归器来进行最终预测。这里我们定义了一个简单的函数用于创建这些头部组件[^2]。
```python
def create_multibox(base_model, extra_convs):
loc_layers = []
conf_layers = []
mbox = [4, 6, 6, 6, 4, 4] # 各层次feature map对应的default box数目
base_output_channels = 512
extras_output_channels = [out_ch for _,_,out_ch in extra_convs][:-1]
sources = [*base_model, *extras_output_channels]
for idx, num_boxes in enumerate(mbox):
loc_layers.append(
nn.Conv2d(sources[idx], num_boxes*4, kernel_size=3, padding=1))
conf_layers.append(
nn.Conv2d(sources[idx], num_boxes*num_classes, kernel_size=3, padding=1))
return (nn.ModuleList(loc_layers), nn.ModuleList(conf_layers))
```
#### 组合所有模块完成整个SSD架构构建
通过组合上述各个部分可以得到完整的SSD模型实例化对象net。当给定输入张量`x`时,可以通过调用该对象的方法获取到两个列表形式的结果——分别是定位信息(`featuremap_locs`)以及类别概率分布(`featuremap_classes`)。
```python
class SSD(nn.Module):
def __init__(self, phase='train'):
super(SSD, self).__init__()
self.phase = phase
self.num_classes = 21 # VOC数据集共有20类目标加背景共21类
self.vgg = BaseVGG()
self.extras = make_extra_layers()
self.loc, self.conf = create_multibox([self.vgg]+list(self.extras), [(256,'S',512),(128,'S',256)])
def forward(self, x):
sources = [self.vgg(x)]
for k,v in enumerate(self.extras):
x = F.relu(v(x), inplace=True)
if k%2==1:
sources.append(x)
featuremap_locs = []
featuremap_classes = []
for (x,l,c) in zip(sources,self.loc,self.conf):
featuremap_locs.append(l(x).permute(0,2,3,1).contiguous())
featuremap_classes.append(c(x).permute(0,2,3,1).contiguous())
output_loc = torch.cat([o.view(o.size(0),-1) for o in featuremap_locs],dim=1)
output_conf = torch.cat([o.view(o.size(0),-1) for o in featuremap_classes],dim=1)
if self.phase=='test':
from data.config import voc_config as config
priors = Variable(torch.from_numpy(config['priors']).type(type(x.data)), volatile=True)
decoded_boxes = decode(output_loc,priors,config['variance'])
scores = F.softmax(output_conf,dim=-1)
return detected_objects(decoded_boxes,scores,num_classes=self.num_classes,top_k=config['top_k'],conf_thresh=config['confidence_threshold'])
elif self.phase=='train':
return output_loc.view(output_loc.size(0), -1, 4), \
output_conf.view(output_conf.size(0), -1, self.num_classes)
if __name__ == '__main__':
net = SSD(phase='eval')
print(net.vgg)
x = torch.randn(2, 3, 300, 300)
featuremap_locs, featuremap_classes = net(x)
for i in featuremap_classes:
print(i.shape)
print('..................')
for j in featuremap_locs:
print(j.shape)
```
阅读全文
相关推荐

















