语义分割 代码复现
时间: 2025-05-10 10:32:54 浏览: 24
### 关于语义分割的代码实现
#### 使用PyTorch实现语义分割
以下是基于PyTorch的一个简单语义分割模型实现,该模型使用了U-Net架构作为基础。U-Net是一种经典的用于医学图像分割的网络结构,其编码器-解码器的设计非常适合语义分割任务。
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes):
super(UNet, self).__init__()
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.up1 = Up(256, 128)
self.up2 = Up(128, 64)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x = self.up1(x3, x2)
x = self.up2(x, x1)
logits = self.outc(x)
return logits
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = nn.functional.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
```
上述代码实现了U-Net的核心模块,并定义了一个完整的U-Net模型[^5]。
---
#### 使用TensorFlow/Keras实现语义分割
以下是一个简单的基于Keras的FCN(Fully Convolutional Network)实现:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, concatenate, UpSampling2D
from tensorflow.keras.models import Model
def fcn_model(input_shape=(256, 256, 3), num_classes=2):
inputs = Input(shape=input_shape)
# Encoder (downsampling path)
c1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
p1 = MaxPooling2D((2, 2))(c1)
c2 = Conv2D(128, (3, 3), activation='relu', padding='same')(p1)
p2 = MaxPooling2D((2, 2))(c2)
# Bottleneck layer
b = Conv2D(256, (3, 3), activation='relu', padding='same')(p2)
# Decoder (upsampling path)
u1 = UpSampling2D((2, 2))(b)
d1 = Conv2D(128, (3, 3), activation='relu', padding='same')(u1)
m1 = concatenate([d1, c2])
u2 = UpSampling2D((2, 2))(m1)
d2 = Conv2D(64, (3, 3), activation='relu', padding='same')(u2)
m2 = concatenate([d2, c1])
outputs = Conv2D(num_classes, (1, 1), activation='softmax')(m2)
model = Model(inputs=[inputs], outputs=[outputs])
return model
model = fcn_model()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```
此代码展示了如何通过卷积层、池化层和上采样层构建一个基本的全卷积网络来完成语义分割任务[^6]。
---
#### 数据集预处理的重要性
在实际应用中,数据集的质量直接影响模型性能。如果数据集过小或分布不均,则可能导致训练过程中出现偏差。为了缓解这一问题,可以通过扩增技术增加样本数量并调整数据分布。此外,Dropout机制可以在一定程度上防止过拟合,从而提升测试阶段的表现[^4]。
---
#### 轻量化网络的应用
针对资源受限场景下的语义分割任务,可以采用轻量化网络设计策略。例如,Inception系列、SqueezeNet等都提供了有效的参数压缩方法;而深度可分离卷积则进一步降低了计算复杂度。这些技术能够显著减少模型大小而不明显牺牲精度[^2]。
---
阅读全文
相关推荐


















