if setting.get('minmax', True): dataX = (dataX - np.min(dataX)) / (np.max(dataX) - np.min(dataX))

时间: 2024-09-06 08:03:44 浏览: 70
这是一段使用Python进行数据标准化处理的代码。具体来说,这段代码的作用是将`dataX`数组中的所有数据归一化到[0,1]区间内。 解释代码中的每一部分: - `setting.get('minmax', True)`:这个表达式是在获取`setting`字典中`'minmax'`键对应的值。如果不存在这个键,那么默认返回`True`。 - `if setting.get('minmax', True):`:这是一个条件判断语句,如果`'minmax'`键对应的值为真(或者默认为`True`),则执行条件块内的代码。 - `dataX = (dataX - np.min(dataX)) / (np.max(dataX) - np.min(dataX))`:这部分是数据归一化的核心代码。它将`dataX`中的每个元素除以`dataX`中的最大值和最小值的差,同时每个元素除以前减去了`dataX`的最小值。这样做的结果是将数据缩放到0和1之间的范围,最小的值会被映射为0,最大的值会被映射为1。 这种方法也称为最小-最大标准化,是数据预处理中常用的一种技术,可以将数据压缩到一个固定范围,有助于加快学习速度和提高模型的性能,尤其是在使用基于梯度的优化算法时。
相关问题

dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY)以这段代码为基础写预测正弦函数的RNN代码,绘图真实值和预测值

好的,以下是基于给出代码完成预测正弦函数的RNN代码: ``` import numpy as np import math import tensorflow as tf import matplotlib.pyplot as plt # 生成数据 dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value dataset = list(map(lambda x: x / scalar, dataset)) # 创建数据集 look_back = 5 trainX, trainY = create_dataset(dataset, look_back) # 转换为张量 trainX = tf.convert_to_tensor(trainX) trainY = tf.convert_to_tensor(trainY) # 定义模型 model = tf.keras.Sequential([ tf.keras.layers.LSTM(32, input_shape=(look_back, 1)), tf.keras.layers.Dense(1) ]) # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.MeanSquaredError()) # 训练模型 history = model.fit(trainX, trainY, epochs=100, batch_size=16, verbose=2) # 预测结果 predicted = [] for i in range(len(dataset) - look_back): x = np.array(dataset[i:i+look_back]) x = np.reshape(x, (1, look_back, 1)) y = model.predict(x) predicted.append(y[0][0]) # 反归一化 predicted = np.array(predicted) predicted = predicted * scalar # 绘图 plt.plot(dataset[look_back:], label='True Data') plt.plot(predicted, label='Predicted Data') plt.legend() plt.show() ``` 在这个 RNN 模型中,我们使用 LSTM 层来学习时间序列数据的特征,然后使用全连接层来进行预测。训练过程中我们使用了 Adam 优化器和均方误差损失函数。最后,我们使用模型对测试集进行预测,并将预测结果和真实值绘制在同一张图上,以便进行比较。

def temp(filename,x,dic): path='excelFile/'+filename df = pandas.read_excel(path,header=None) data = [] datax = df.iloc[0].tolist() datay=df.iloc[1].tolist() transInt(datax) transInt(datay) slope,intercept,r,p,std_err=stats.linregress(datax,datay) def myfunc(datax): return slope*datax+intercept mymodel=list(map(myfunc,datax)) plt.scatter(datax,datay) plt.plot(datax,mymodel) print(x) result=myfunc(int(x)) if r>=0.7 or r<=-0.7: count=2 while count<6 : mymodel_2=numpy.poly1d(numpy.polyfit(datax,datay,count)) myline=numpy.linspace(min(datax),max(datay),100) r2=r2_score(datay,mymodel_2(datax)) plt.scatter(datax,datay) plt.plot(myline,mymodel_2(myline)) result=mymodel_2(int(x)) if r2>=0.7 or r2<=-0.7: break plt.savefig('figs/result.png') dic['Y']=str(result)这段代码报错main thread is not in main loop

这个错误通常是由于在非主线程中使用了 matplotlib 库的某些功能导致的。为了避免这个错误,您可以在调用 `plt` 绘图函数之前,添加以下两行代码: ```python import matplotlib matplotlib.use('Agg') ``` 这样就可以将 matplotlib 的后端设置为 "Agg",这是一种不需要图形界面的后端,可以避免在非主线程中使用 matplotlib 函数时出现报错。最终代码应该是这样的: ```python import matplotlib matplotlib.use('Agg') import pandas import numpy from scipy import stats from sklearn.metrics import r2_score import matplotlib.pyplot as plt def temp(filename, x, dic): path = 'excelFile/' + filename df = pandas.read_excel(path, header=None) data = [] datax = df.iloc[0].tolist() datay = df.iloc[1].tolist() transInt(datax) transInt(datay) slope, intercept, r, p, std_err = stats.linregress(datax, datay) def myfunc(datax): return slope * datax + intercept mymodel = list(map(myfunc, datax)) plt.scatter(datax, datay) plt.plot(datax, mymodel) print(x) result = myfunc(int(x)) if r >= 0.7 or r <= -0.7: count = 2 while count < 6: mymodel_2 = numpy.poly1d(numpy.polyfit(datax, datay, count)) myline = numpy.linspace(min(datax), max(datay), 100) r2 = r2_score(datay, mymodel_2(datax)) plt.scatter(datax, datay) plt.plot(myline, mymodel_2(myline)) result = mymodel_2(int(x)) if r2 >= 0.7 or r2 <= -0.7: break plt.savefig('figs/result.png') dic['Y'] = str(result) ``` 这样就可以避免这个报错了。
阅读全文

相关推荐

025-03-16 21:26:18.516 [main] WARN Engine - prioriy set to 0, because NumberFormatException, the value is: null 2025-03-16 21:26:18.517 [main] INFO PerfTrace - PerfTrace traceId=job_-1, isEnable=false, priority=0 2025-03-16 21:26:18.517 [main] INFO JobContainer - DataX jobContainer starts job. 2025-03-16 21:26:18.519 [main] INFO JobContainer - Set jobId = 0 Loading class com.mysql.jdbc.Driver'. This is deprecated. The new driver class is com.mysql.cj.jdbc.Driver'. The dr iver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary.2025-03-16 21:26:18.885 [job-0] INFO OriginalConfPretreatmentUtil - Available jdbcUrl:jdbc:mysql://master:3306/szt?y earIsDateType=false&zeroDateTimeBehavior=convertToNull&tinyInt1isBit=false&rewriteBatchedStatements=true.2025-03-16 21:26:18.913 [job-0] INFO OriginalConfPretreatmentUtil - table:[szt_data] has columns:[car_no,card_no,clo se_date,company_name,conn_mark,deal_date,deal_money,deal_type,deal_value,equ_no,station].三月 16, 2025 9:26:19 下午 org.apache.hadoop.util.NativeCodeLoader <clinit> 警告: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 2025-03-16 21:26:19.553 [job-0] INFO JobContainer - jobContainer starts to do prepare ... 2025-03-16 21:26:19.553 [job-0] INFO JobContainer - DataX Reader.Job [mysqlreader] do prepare work . 2025-03-16 21:26:19.554 [job-0] INFO JobContainer - DataX Writer.Job [hdfswriter] do prepare work . 2025-03-16 21:26:19.623 [job-0] INFO HdfsWriter$Job - 由于您配置了writeMode append, 写入前不做清理工作, [/daas/ods/o ds_szt_data] 目录下写入相应文件名前缀 [part] 的文件2025-03-16 21:26:19.623 [job-0] INFO JobContainer - jobContainer starts to do split ... 2025-03-16 21:26:19.623 [job-0] INFO JobContainer - Job set Channel-Number to 2 channels. 2025-03-16 21:26:19.646 [job-0] INFO SingleTableSplitUtil - split pk [sql=SELECT MIN(equ_no),MAX(equ_no) FROM szt_da ta WHERE (date_format(deal_date,'%Y%m%d') ='${dt}' AND equ_no IS NOT

import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn import pdb from torch.autograd import Variable import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) # 对训练集测试集划分,划分比例0.8 train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): # 补充forward函数 out, h = self.rnn(x) out = self.linear(out[0]) # print("output的形状", out.shape) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()画出预测值真实值图

import numpy import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[0]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()请适当修改代码,并写出预测值和真实值的代码

private void pictureBox1_Paint(object sender, PaintEventArgs e) { e.Graphics.SmoothingMode = SmoothingMode.AntiAlias; // 计算实际绘制区域 var clientRect = pictureBox1.ClientRectangle; // 自动计算数据边界(需要预先获取points的实际范围) float dataMinX = points.Min(p => p.fiveX); float dataMaxX = points.Max(p => p.fiveX); float dataMinY = points.Min(p => p.sexY); float dataMaxY = points.Max(p => p.sexY); // 计算缩放比例 float scaleX = clientRect.Width / (dataMaxX - dataMinX); float scaleY = clientRect.Height / (dataMaxY - dataMinY); float zoomLevel = Math.Min(scaleX, scaleY) * 0.9f; // 保留10%边距 // 计算偏移量 float offsetX = -dataMinX * zoomLevel + (clientRect.Width - (dataMaxX - dataMinX) * zoomLevel) / 2; float offsetY = -dataMinY * zoomLevel + (clientRect.Height - (dataMaxY - dataMinY) * zoomLevel) / 2; e.Graphics.TranslateTransform(offsetX, offsetY); e.Graphics.ScaleTransform(zoomLevel, zoomLevel); currentTransform = e.Graphics.Transform; // 绘制点(自动适应后的坐标) foreach (var point in points) { float pointSize = 4f / zoomLevel; // 动态调整点大小 e.Graphics.FillEllipse(Brushes.Blue, point.fiveX - pointSize / 2, point.sexY - pointSize / 2, pointSize, pointSize); // 同理处理其他坐标点 e.Graphics.FillEllipse(Brushes.Red, point.eightX - pointSize / 2, point.nineY - pointSize / 2, pointSize, pointSize); } if (isSelecting) { // 在现有图形上叠加绘制选框 using (var pen = new Pen(Color.Red, 1f)) { e.Graphics.DrawRectangle(pen, selectionRect); } } }如何在不修改代码的情况下应用变换矩阵.

最新推荐

recommend-type

新版青岛奥博软件公司营销标准手册.docx

新版青岛奥博软件公司营销标准手册.docx
recommend-type

网站安全管理制度(1).doc

网站安全管理制度(1).doc
recommend-type

基于AVR单片机的自动语音欢迎系统-本科毕业论文(1)(1).doc

基于AVR单片机的自动语音欢迎系统-本科毕业论文(1)(1).doc
recommend-type

本科毕设论文-—电子商务在中小企业中的应用探析(1).doc

本科毕设论文-—电子商务在中小企业中的应用探析(1).doc
recommend-type

2014阿里巴巴校园招聘软件研发工程师笔试真题及答案(1).doc

2014阿里巴巴校园招聘软件研发工程师笔试真题及答案(1).doc
recommend-type

500强企业管理表格模板大全

在当今商业环境中,管理表格作为企业运营和管理的重要工具,是确保组织高效运作的关键。世界500强企业在管理层面的成功,很大程度上得益于它们的规范化和精细化管理。本文件介绍的“世界500强企业管理表格经典”,是一份集合了多种管理表格模板的资源,能够帮助管理者们更有效地进行企业规划、执行和监控。 首先,“管理表格”这个概念在企业中通常指的是用于记录、分析、决策和沟通的各种文档和图表。这些表格不仅仅局限于纸质形式,更多地是以电子形式存在,如Excel、Word、PDF等文件格式。它们帮助企业管理者收集和整理数据,以及可视化信息,从而做出更加精准的决策。管理表格可以应用于多个领域,例如人力资源管理、财务预算、项目管理、销售统计等。 标题中提及的“世界500强”,即指那些在全球范围内运营且在《财富》杂志每年公布的全球500强企业排行榜上出现的大型公司。这些企业通常具备较为成熟和先进的管理理念,其管理表格往往经过长时间的实践检验,并且能够有效地提高工作效率和决策质量。 描述中提到的“规范化”是企业管理中的一个核心概念。规范化指的是制定明确的标准和流程,以确保各项管理活动的一致性和可预测性。管理表格的使用能够帮助实现管理规范化,使得管理工作有据可依、有章可循,减少因个人经验和随意性带来的风险和不确定性。规范化管理不仅提高了企业的透明度,还有利于培养员工的规则意识,加强团队之间的协调与合作。 “经典”一词在这里强调的是,这些管理表格模板是经过实践验证,能够适用于大多数管理场景的基本模式。由于它们的普适性和高效性,这些表格模板被广泛应用于不同行业和不同规模的企业之中。一个典型的例子是SWOT分析表,它可以帮助企业识别内部的优势(Strengths)、弱点(Weaknesses)以及外部的机会(Opportunities)和威胁(Threats)。SWOT分析表就是一个在世界500强企业中普遍使用的管理表格。 标签中的“表格模板”则是对上述管理工具的具体描述。这些模板通常是预先设计好的,能够帮助企业管理者快速开始工作,无需从零开始制作新的表格。它们包含了一些必备的字段和格式,用户可以根据自己的具体需求对模板进行调整和填充。 文件名称列表中的“index.html”可能是压缩包内的一个网页文件,用于展示管理表格的索引或介绍。如果这是一个在线资源,它将允许用户通过网页界面访问和下载各种表格模板。而“menu”可能是一个导航文件,用来帮助用户在多个表格模板之间进行选择。“data”文件夹可能包含了实际的表格模板文件,它们可能以Excel、Word等格式存在。 总的来说,管理表格是企业成功管理不可或缺的工具。通过使用世界500强企业所采纳的管理表格模板,其他企业可以借鉴这些顶级企业的管理经验,帮助自己在管理实践中达到更高的效率和质量。通过规范化和模板化的管理表格,企业可以确保其管理活动的一致性和标准化,这对于保持竞争力和实现长期发展至关重要。
recommend-type

YOLOv8目标检测算法深度剖析:从零开始构建高效检测系统(10大秘诀)

# 1. YOLOv8目标检测算法概述 ## 1.1 YOLOv8的简介与定位 YOLOv8(You Only Look Once version 8)作为一种前沿的目标检测算法,是由YOLO系列算法演化而来。该算法特别强调快速与准确的平衡,它被设计用于实时图像识别
recommend-type

mclmcrrt9_8.dll下载

<think>我们正在处理用户关于"mclmcrrt9_8.dll"文件的下载请求。根据引用内容,这个文件是MATLAB运行时库的一部分,通常与特定版本的MATLABRuntime相关联。用户需求:下载mclmcrrt9_8.dll的官方版本。分析:1.根据引用[2]和[3],mclmcrrt9_0_1.dll和mclmcrrt9_13.dll都是MATLABRuntime的文件,版本号对应MATLAB的版本(如9_0对应R2016a,9_13对应2022b)。2.因此,mclmcrrt9_8.dll应该对应于某个特定版本的MATLAB(可能是R2016b?因为9.8版本通常对应MATLABR
recommend-type

林锐博士C++编程指南与心得:初学者快速提能

首先,这份文件的核心在于学习和提高C++编程能力,特别是针对初学者。在这个过程中,需要掌握的不仅仅是编程语法和基本结构,更多的是理解和运用这些知识来解决实际问题。下面将详细解释一些重要的知识点。 ### 1. 学习C++基础知识 - **基本数据类型**: 在C++中,需要熟悉整型、浮点型、字符型等数据类型,以及它们的使用和相互转换。 - **变量与常量**: 学习如何声明变量和常量,并理解它们在程序中的作用。 - **控制结构**: 包括条件语句(if-else)、循环语句(for、while、do-while),它们是构成程序逻辑的关键。 - **函数**: 理解函数定义、声明、调用和参数传递机制,是组织代码的重要手段。 - **数组和指针**: 学习如何使用数组存储数据,以及指针的声明、初始化和运算,这是C++中的高级话题。 ### 2. 林锐博士的《高质量的C++编程指南》 林锐博士的著作《高质量的C++编程指南》是C++学习者的重要参考资料。这本书主要覆盖了以下内容: - **编码规范**: 包括命名规则、注释习惯、文件结构等,这些都是编写可读性和可维护性代码的基础。 - **设计模式**: 在C++中合理使用设计模式可以提高代码的复用性和可维护性。 - **性能优化**: 学习如何编写效率更高、资源占用更少的代码。 - **错误处理**: 包括异常处理和错误检测机制,这对于提高程序的鲁棒性至关重要。 - **资源管理**: 学习如何在C++中管理资源,避免内存泄漏等常见错误。 ### 3. 答题与测试 - **C++C试题**: 通过阅读并回答相关试题,可以帮助读者巩固所学知识,并且学会如何将理论应用到实际问题中。 - **答案与评分标准**: 提供答案和评分标准,使读者能够自我评估学习成果,了解哪些方面需要进一步加强。 ### 4. 心得体会与实践 - **实践**: 理论知识需要通过大量编程实践来加深理解,动手编写代码,解决问题,是学习编程的重要方式。 - **阅读源码**: 阅读其他人的高质量代码,可以学习到许多编程技巧和最佳实践。 - **学习社区**: 参与C++相关社区,比如Stack Overflow、C++论坛等,可以帮助解答疑惑,交流心得。 ### 5. 拓展知识 - **C++标准库**: 学习C++标准模板库(STL),包括vector、map、list、algorithm等常用组件,是构建复杂数据结构和算法的基础。 - **面向对象编程**: C++是一种面向对象的编程语言,理解类、对象、继承、多态等概念对于写出优雅的C++代码至关重要。 - **跨平台编程**: 了解不同操作系统(如Windows、Linux)上的C++编程差异,学习如何编写跨平台的应用程序。 - **现代C++特性**: 学习C++11、C++14、C++17甚至C++20中的新特性,如智能指针、lambda表达式、自动类型推导等,可以提高开发效率和代码质量。 ### 总结 学习C++是一个系统工程,需要从基础语法开始,逐步深入到设计思想、性能优化、跨平台编程等领域。通过不断的学习和实践,初学者可以逐步成长为一个具有高代码质量意识的C++程序员。而通过阅读经典指南书籍,参与测试与评估,以及反思和总结实践经验,读者将更加扎实地掌握C++编程技术。此外,还需注意编程社区的交流和现代C++的发展趋势,这些都对于保持编程技能的前沿性和实用性是必不可少的。
recommend-type

线性代数方程组求解全攻略:直接法vs迭代法,一文搞懂

# 摘要 线性代数方程组求解是数学和工程领域中的基础而重要的问题。本文首先介绍了线性方程组求解的基础知识,然后详细阐述了直接法和迭代法两种主要的求解策略。直接法包括高斯消元法和LU分解方法,本文探讨了其理论基础、实践应用以及算法优化。迭代法则聚焦于雅可比和高斯-赛德尔方法,分析了其原理、实践应用和收敛性。通过比较分析,本文讨论了两种方法在