c101数据集vrp
时间: 2025-06-12 18:42:16 浏览: 20
### C101 数据集用于车辆路径问题(VRP)
对于涉及C101数据集的车辆路径问题(VRP),该特定的数据集属于Solomon benchmark的一部分,被广泛应用于评估解决VRP算法的有效性[^1]。此数据集包含了客户位置、需求量以及服务时间窗等信息,旨在模拟现实世界中的配送挑战。
针对C101数据集设计的解决方案通常会考虑以下几个方面:
- **客户需求分析**:理解每个客户的地理位置和服务要求,包括货物数量及时段限制。
- **优化目标设定**:确定主要追求的目标函数,比如最小化总行驶距离或成本、减少使用的车辆数目等。
- **求解方法选取**:采用精确算法(如分支定界法)、启发式算法或是元启发式算法来找到近似最优解。
下面是一个简单的Python实现例子,利用`ortools`库处理基于C101数据集的VRP问题:
```python
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
def create_data_model():
"""Stores the data for the problem."""
data = {}
# Load actual distance matrix, demands, etc., from C101 dataset here.
data['distance_matrix'] = [
[0, 548, 776],
[548, 0, 696],
[776, 696, 0]
] # Simplified example; real distances should come from C101 file.
data['demands'] = [0, 1, 1]
data['vehicle_capacities'] = [2]
data['num_vehicles'] = 1
data['depot'] = 0
return data
def print_solution(data, manager, routing, solution):
"""Prints solution on console."""
total_distance = 0
total_load = 0
for vehicle_id in range(data['num_vehicles']):
index = routing.Start(vehicle_id)
plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
route_distance = 0
route_load = 0
while not routing.IsEnd(index):
node_index = manager.IndexToNode(index)
route_load += data['demands'][node_index]
plan_output += ' {0} Load({1}) -> '.format(node_index, route_load)
previous_index = index
index = solution.Value(routing.NextVar(index))
route_distance += routing.GetArcCostForVehicle(
previous_index, index, vehicle_id)
plan_output += '{0} Load({1})\n'.format(manager.IndexToNode(index),
route_load)
plan_output += 'Distance of the route: {}m\n'.format(route_distance)
plan_output += 'Load of the route: {}\n'.format(route_load)
print(plan_output)
total_distance += route_distance
total_load += route_load
print('Total distance of all routes: {}m'.format(total_distance))
print('Total load of all routes: {}'.format(total_load))
def main():
"""Solve the CVRP problem with time windows using OR-tools library"""
# Instantiate the data problem.
data = create_data_model()
# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
data['num_vehicles'], data['depot'])
# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)
# Define cost of each arc.
def distance_callback(from_index, to_index):
"""Returns the manhattan distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data['distance_matrix'][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
# Define cost function for each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Add Capacity constraint.
def demand_callback(from_index):
"""Returns the demand of the node."""
# Convert from routing variable Index to demands NodeIndex.
from_node = manager.IndexToNode(from_index)
return data['demands'][from_node]
demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback)
routing.AddDimensionWithVehicleCapacity(
demand_callback_index,
0, # null capacity slack
data['vehicle_capacities'], # vehicle maximum capacities
True, # start cumul to zero
'Capacity')
# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)
# Print solution on console.
if solution:
print_solution(data, manager, routing, solution)
if __name__ == '__main__':
main()
```
阅读全文
相关推荐



















