gwo-xgboost回归
时间: 2025-05-04 18:35:28 浏览: 24
### 使用 GWO 灰狼优化器结合 XGBoost 进行回归分析
#### 安装必要的库
为了使用 Python 实现 GWO 和 XGBoost 的组合,需安装 `xgboost` 库以及其他辅助库。
```bash
pip install xgboost numpy pandas scikit-learn
```
#### 导入所需模块并准备数据集
加载所需的 Python 模块,并准备好要使用的训练和测试数据集。
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error, r2_score
```
#### 初始化 XGBoost 回归模型
创建一个基础的 XGBoost 回归模型实例,该模型将在后续过程中被 GWO 优化其超参数设置[^1]。
```python
def create_model(params=None):
if params is None:
model = XGBRegressor()
else:
model = XGBRegressor(**params)
return model
```
#### 设计适应度函数
定义适合于评估个体解质量的目标函数。此函数接收一组候选参数作为输入,并返回相应的性能指标得分。
```python
def fitness_function(solution):
# 将解决方案转换成字典形式以便传递给XGBoost
param_dict = {
'n_estimators': int(np.round(solution[0])),
'max_depth': int(np.round(solution[1])),
'learning_rate': solution[2],
'subsample': min(1., max(0., solution[3]))
}
regressor = create_model(param_dict)
# 训练模型
regressor.fit(X_train, y_train)
predictions = regressor.predict(X_test)
mse = mean_squared_error(y_test, predictions)
return -mse # 负号表示最大化负均方误差即最小化正向均方误差
```
#### 编写 GWO 主体逻辑
构建完整的 GWO 流程来搜索最佳的 XGBoost 参数配置。这里简化展示了核心部分;实际应用中可能还需要考虑更多细节如种群初始化策略等。
```python
class GreyWolfOptimizer():
def __init__(self, n_wolves=5, dim=4, lb=[10, 1, 0.01, 0], ub=[1000, 10, 0.3, 1]):
self.n_wolves = n_wolves
self.dim = dim
self.lb = np.array(lb).reshape(-1,)
self.ub = np.array(ub).reshape(-1,)
...
def optimize(self, iterations=100):
alpha_pos = beta_pos = delta_pos = np.zeros((self.dim,))
alpha_fit = beta_fit = delta_fit = float('-inf')
wolves_positions = ... # 随机生成初始位置
for t in range(iterations):
for i in range(self.n_wolves):
current_fitness = fitness_function(wolves_positions[i])
if current_fitness > alpha_fit:
delta_fit = beta_fit; delta_pos = beta_pos.copy()
beta_fit = alpha_fit; beta_pos = alpha_pos.copy()
alpha_fit = current_fitness; alpha_pos = wolves_positions[i].copy()
elif (current_fitness > beta_fit and
current_fitness <= alpha_fit):
delta_fit = beta_fit; delta_pos = beta_pos.copy()
beta_fit = current_fitness; beta_pos = wolves_positions[i].copy()
elif (current_fitness > delta_fit and
current_fitness <= beta_fit):
delta_fit = current_fitness; delta_pos = wolves_positions[i].copy()
a = 2 * (iterations-t)/iterations
for i in range(self.n_wolves):
A1 = 2*a*np.random.rand() - a;
C1 = 2*np.random.rand();
D_alpha = abs(C1*alpha_pos - wolves_positions[i]);
X1 = alpha_pos - A1*D_alpha;
A2 = 2*a*np.random.rand() - a;
C2 = 2*np.random.rand();
D_beta = abs(C2*beta_pos - wolves_positions[i]);
X2 = beta_pos - A2*D_beta;
A3 = 2*a*np.random.rand() - a;
C3 = 2*np.random.rand();
D_delta = abs(C3*delta_pos - wolves_positions[i]);
X3 = delta_pos - A3*D_delta;
wolves_positions[i] = (X1 + X2 + X3) / 3
# 边界处理...
best_params = {'n_estimators': round(alpha_pos[0]),
'max_depth': round(alpha_pos[1]),
'learning_rate': alpha_pos[2],
'subsample': alpha_pos[3]}
return best_params
```
通过上述方法可以有效地利用 GWO 来找到更优的 XGBoost 模型参数,从而提高预测精度和泛化能力[^2]。
阅读全文
相关推荐














